RU2480630C1 - Клапан перепускной для погружного центробежного электронасоса - Google Patents

Клапан перепускной для погружного центробежного электронасоса Download PDF

Info

Publication number
RU2480630C1
RU2480630C1 RU2011139811/06A RU2011139811A RU2480630C1 RU 2480630 C1 RU2480630 C1 RU 2480630C1 RU 2011139811/06 A RU2011139811/06 A RU 2011139811/06A RU 2011139811 A RU2011139811 A RU 2011139811A RU 2480630 C1 RU2480630 C1 RU 2480630C1
Authority
RU
Russia
Prior art keywords
valve
shaft
pump
fluid
bypass
Prior art date
Application number
RU2011139811/06A
Other languages
English (en)
Other versions
RU2011139811A (ru
Inventor
Владимир Баянович Шрамек
Андрей Юрьевич Саблин
Дмитрий Федорович Матвеев
Иван Георгиевич Смирнов
Original Assignee
Общество с ограниченной ответственностью "Русская электротехническая компания" ("РУСЭЛКОМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Русская электротехническая компания" ("РУСЭЛКОМ") filed Critical Общество с ограниченной ответственностью "Русская электротехническая компания" ("РУСЭЛКОМ")
Priority to RU2011139811/06A priority Critical patent/RU2480630C1/ru
Publication of RU2011139811A publication Critical patent/RU2011139811A/ru
Application granted granted Critical
Publication of RU2480630C1 publication Critical patent/RU2480630C1/ru

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Check Valves (AREA)

Abstract

Изобретение относится к нефтедобывающему оборудованию и может быть использовано при добыче пластовой жидкости из скважины, в частности для пропуска жидкости от входного модуля (фильтра) или газосепаратора на прием погружного скважинного центробежного электронасоса (ЭЦН), и для подвода жидкости из затрубного пространства к насосу в случае засорения фильтрующих элементов частицами механических примесей. Клапан перепускной содержит ступенчатый корпус с центральным отверстием для прохода жидкости, в котором установлен вал с возможностью вращения. Один конец вала соединен с валом входного модуля или газосепаратора, а другой - с валом насоса ЭЦН. В ступенчатой части корпуса выполнены перепускные отверстия, расположенные под углом к центральной оси клапана по направлению потока добываемой жидкости. В каждом перепускном отверстии установлен обратный клапан, включающий седло и запорный элемент, установленный в корпусе обратного клапана с возможностью перемещения. Изобретение направлено на повышение надежности работы клапана, позволяющего обеспечить поступление пластовой жидкости на прием насоса в случае засорения фильтрующего элемента входного модуля или газосепаратора, исключив при этом возникновение аварийной ситуации, связанной со срывом подачи ЭЦН. 5 з.п. ф-лы, 1 ил.

Description

Изобретение относится к нефтедобывающему оборудованию и может быть использовано при добыче пластовой жидкости (нефти) из скважины, в частности для пропуска жидкости от входного модуля (фильтра) или газосепаратора на прием погружного скважинного центробежного электронасоса (ЭЦН).
Известен погружной центробежный высоконапорный электронасос для подъема жидкости из скважины (патент РФ №2140575, F04D 13/10, дата публ. 27.10.1999), содержащий последовательно соединенные сливной клапан, шламовый патрубок, обратный клапан, установленные па насосно-компрессорной трубе, секции насоса с входным модулем или газосепаратором и погружной электродвигатель.
Недостатком известной конструкции, в которой входной модуль или газосепаратор соединены непосредственно с нижней секцией ЭЦН, является то, что при засорении фильтрующей сетки входного модуля или газосепаратора частицами механических примесей, содержащихся в жидкости, происходит прекращение поступления пластовой жидкости па прием насоса, и насос работает вхолостую, происходит срыв подачи. В результате срыва подачи происходят явления, негативно влияющие на работоспособность установки ЭЦН:
- отсутствие движения жидкости вдоль погружного электродвигателя (ПЭД) приводит к его перегреву и последующему выходу из строя;
- в условиях отсутствия подачи вся энергия, потребляемая насосом, расходуется только на нагрев насоса и окружающей его жидкости;
- нагрев жидкости в насосе приводит к локальному парообразованию, что, в свою очередь, провоцирует сухое трение в рабочих деталях насоса и их повышенный износ;
- срыв подачи сопровождается плавлением кабеля, нарушением герметичности гидрозащиты, вызывает электропробой изоляции обмотки статора ПЭД.
Все это приводит к созданию аварийной ситуации, сокращению наработки на отказ, необходимости подъема всей установки ЭЦН из скважины для ее замены на другую установку.
Известен предохранительный перепускной клапан, используемый в составе фильтра погружного скважинного насосного агрегата для добычи нефти (патент №72269, E21B 43/10, дата публикации 2008.04.10), включающий корпус, в котором размещен запорный орган, представляющий собой полый цилиндрический поршень, размещенный в соответствующем отверстии корпуса с возможностью осевого перемещения. Внутри корпуса выполнено отверстие, связывающее полость корпуса с затрубным пространством. Запорный орган с помощью винтовой цилиндрической пружины прижат к внутренней стенке крышки с заданным усилием.
Недостатками известного предохранительного перепускного клапана являются:
- низкая надежность работы клапана ввиду заклинивания запорного органа (цилиндрического поршня) при попадании частиц механических примесей, содержащихся в жидкости, в зазор между запорным органом и крышкой или корпусом;
- увеличенные массогабаритные характеристики фильтра с предохранительным клапаном, затрудняющие спускоподъемные операции установки ЭЦН в скважине и создающие при этом повышенные нагрузки на конструкцию в целом, приводят к уменьшению времени безотказной работы насосной установки в зоне повышенной кривизны скважины.
Известен предохранительный клапан погружного скважинного насосного агрегата (патент №66417, E21B 43/38, дата публикации 2007.09.10), взятый в качестве прототипа, включающий корпус с перепускными отверстиями в боковой стенке, который выполнен с возможностью гидравлического соединения приема насоса с затрубным пространством за шламоуловителем по ходу движения перекачиваемой жидкости при условии прекращения движения перекачиваемой жидкости через шламоуловитель, золотниковую втулку с радиальными перепускными отверстиями в боковой стенке. Втулка установлена с возможностью осевого перемещения. В крайнем нижнем положении втулки перепускные отверстия корпуса и втулки совмещаются, и обеспечивается возможность движения перекачиваемой жидкости из затрубного пространства на прием насоса. В частности втулка подпружинена и снабжена шариковым обратным клапаном, выполненным с возможностью перекрытия центрального отверстия втулки при движении жидкости в обратном направлении после остановки насоса.
Недостатками известного предохранительного клапана погружного скважинного насосного агрегата являются:
- низкая надежность работы клапана в виду заклинивания золотниковой втулки при попадании частиц механических примесей, содержащихся в жидкости, в зазор между корпусом и золотниковой втулкой;
- низкая вероятность безотказной работы известного клапана, связанная с низкой чувствительностью клапана, в связи с низкой скоростью перемещения золотниковой втулки в случае заполнения шламоуловителя или засорения сепаратора механическими примесями. При этом срыв подачи насоса может произойти ранее, чем золотниковая втулка переместится в положение совмещения перепускных отверстий втулки и корпуса, при котором произойдет поступление жидкости из затрубного пространства на прием насоса;
- низкая ремонтопригодность клапана, так как невозможно произвести замену деталей предохранительного клапана, не размонтировав его предварительно от патрубка сепаратора и пакер-пробки или полого цилиндрического хвостовика, закрепленного на нижнем открытом конце кожуха, внутри которого установлен электродвигатель и гидрозащита, разобрав при этом корпус клапана для замены деталей;
- размещение предохранительного клапана между ПЭД и нижерасположенным шламоуловителем существенно увеличивает длину всей установки ЭЦН, что создает дополнительные трудности при спуске-подъеме установки в скважине, а также приводит к возможному разрушению наиболее нагруженных элементов, например фланцевого соединения ПЭД, с последующим падением нижерасположенного оборудования на забой скважины. Увеличение массогабаритных характеристик установки приводит к повышенному износу деталей насоса и уменьшению времени безотказной работы насосной установки при ее работе в зоне повышенной кривизны скважины.
Задача изобретения - создание перепускного клапана, позволяющего обеспечить поступление пластовой жидкости на прием насоса в случае засорения фильтрующего элемента входного модуля или газосепаратора, исключив при этом возникновение аварийной ситуации, связанной со срывом подачи пластовой жидкости насосом и отказом работы установки ЭЦН с последующим ее подъемом из скважины.
Технический результат, получаемый при решении поставленной задачи, - повышение надежности работы клапана, ремонтопригодности, удобство эксплуатации, увеличение наработки на отказ установки ЭЦН.
Указанный технический результат достигается тем, что клапан перепускной для погружного центробежного электронасоса, содержащий корпус с перепускными отверстиями, который выполнен с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса, согласно изобретению снабжен валом, установленным в корпусе с возможностью вращения и соединения одного конца вала с валом входного модуля или газосепаратора, а другого конца вала - с валом электронасоса, при этом перепускные отверстия расположены в ступенчатой части корпуса под углом к центральной оси клапана по направлению потока добываемой жидкости, в каждом перепускном отверстии установлен обратный клапан, включающий седло и запорный элемент, установленный в корпусе обратного клапана с возможностью перемещения.
Выполнение перепускных отверстий под углом к центральной оси клапана по направлению потока добываемой жидкости позволяет уменьшить гидравлическое сопротивление протекающей жидкости из затрубного пространства через перепускные отверстия клапана в случае засорения ниже расположенного входного модуля или газосепаратора, что увеличивает напор насоса, его производительность, повышает надежность работы клапана, предотвращая срыв подачи насоса, что увеличивает наработку на отказ установки ЭЦН.
Установка в перепускных отверстиях обратных клапанов позволяет повысить чувствительность срабатывания клапана при повышении давления в затрубном пространстве, что повышает быстродействие и надежность работы клапана, предотвращая срыв подачи насоса.
Выполнение корпуса клапана сборным, состоящим из двух частей, позволяет улучшить условия сборки/разборки клапана, что повышает ремонтопригодность клапана.
Установка в корпусе клапана опоры вала с помощью разъемного соединения, например резьбового, повышает ремонтопригодность клапана.
Установка клапана обратного в перепускном отверстии с помощью разъемного соединения, например с помощью резьбы, позволяет быстро произвести его замену или ремонт.
Выполнение запорного элемента обратного клапана в виде шара обеспечивает герметичность обратного клапана в закрытом положении, а также при открытии клапана обеспечивает самоцентрирование шара в полости корпуса клапана. Точечный контакт шара и корпуса при перемещении шара вдоль оси обратного клапана не позволяет заклинивание его в корпусе, что повышает надежность работы перепускного клапана в целом.
Подпружинивание шара обратного клапана в противоположном направлении воздействия на шар потока жидкости, поступающего из затрубного пространства, позволяет использовать клапан как в горизонтальных, так и наклонных скважинах, что расширяет функциональные возможности клапана.
Выполнение клапана перепускного в виде самостоятельного изделия, имеющего на корпусе и на обоих концах вала присоединительные элементы, например шлицевые муфты для соединения с валом входного модуля или газосепаратора и насосом, повышает удобство эксплуатации, ремонтопригодность клапана.
Наличие указанных признаков позволяет сделать вывод о новизне технического решения.
При сравнении заявленного решения с другими техническими решениями в данной области техники не выявлена совокупность признаков, отличающих заявленное решение от прототипа, что позволяет сделать вывод о соответствии технического решения критерию «изобретательский уровень».
Таким образом, заявленное решение является новым, имеет изобретательский уровень, промышленно применимо.
Па фигуре приведен общий вид клапана перепускного для погружного центробежного электронасоса.
Клапан перепускной содержит ступенчатый корпус 1 с отверстием для прохода жидкости 2, выполненный, например, сборным, включающим верхнюю часть 3 и нижнюю часть 4 корпуса. В корпусе 1 установлен вал 5, закрепленный, в частности, в подшипниковой опоре 6, в которой установлены радиальные подшипники скольжения 7. В опоре 6 выполнены каналы 8 для прохода перекачиваемой жидкости. Подшипниковая опора 6 закреплена в корпусе 1 с помощью разъемного соединения, например резьбы. На концах вала 5 установлены шлицевые муфты 9 и 10 для соединения вала 5 с валом входного модуля или газосепаратора и валом насоса ЭЦН соответственно (не показано). В ступенчатой части корпуса 1 выполнены перепускные отверстия 11, расположенные под углом к центральной оси клапана по направлению потока добываемой жидкости. В каждом перепускном отверстии 11 установлен обратный клапан 12. Обратный клапан 12 содержит клапанную пару, включающую седло 13 и подпружиненный пружиной 14 запорный элемент (шар) 15, установленный в отверстии 16 корпуса 17 обратного клапана 12 с возможностью перемещения. Обратные клапаны 12 установлены в перепускных отверстиях 11 с помощью, например, резьбового соединения.
Корпус 1 содержит присоединительный фланец 18 с отверстиями 19 для крепежных элементов, позволяющий произвести монтаж перепускного клапана к входному модулю (не показано). Корпус 1 снабжен крепежными элементами (шпильками) 20 для соединения с корпусом насоса ЭЦН.
Устройство работает следующим образом.
При включении насосной установки пластовая жидкость, находящаяся под давлением столба жидкости в скважине, поступает от входного модуля или газосепаратора (не показано), через отверстие 2 в перепускной клапан, проходит через каналы 8 подшипниковой опоры 6 и поступает на прием ЭЦН. При этом шар 15 обратного клапана 12 прижат к седлу 13 пружиной 14, что исключает подвод пластовой жидкости из затрубного пространства через перепускные отверстия 11 внутрь перепускного клапана и соответственно к приему насоса ЭЦН. При частичном или полном засорении входного модуля или газосепаратора (не показано) частицами механических примесей происходит увеличение перепада давления между давлением жидкости снаружи и жидкостью, находящейся во внутренней полости перепускного клапана. При этом происходит открытие обратного клапана 12, при котором шар 15 перемещается от седла 13, сжимая пружину 14 обратного клапана 12. Пластовая жидкость через отверстие 16 обратного клапана 12 поступает из затрубного пространства внутрь корпуса 1 перепускного клапана и далее, проходя через каналы 8 подшипниковой опоры 6, выходит из клапана и поступает на прием насоса, обеспечивая его жидкостью для продолжения работы, что предотвращает срыв подачи электронасоса.

Claims (6)

1. Клапан перепускной для погружного центробежного электронасоса, содержащий корпус с перепускными отверстиями, который выполнен с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса, отличающийся тем, что клапан снабжен валом, установленным в корпусе с возможностью вращения и соединения одного конца вала с валом входного модуля или газосепаратора, а другого конца вала с валом электронасоса, при этом перепускные отверстия расположены в ступенчатой части корпуса под углом к центральной оси клапана по направлению потока добываемой жидкости, в каждом перепускном отверстии установлен обратный клапан, включающий седло и запорный элемент, установленный в корпусе обратного клапана с возможностью перемещения.
2. Клапан по п.1, отличающийся тем, что корпус клапана выполнен сборным, включающим верхнюю и нижнюю части.
3. Клапан по п.1, отличающийся тем, что вал установлен в корпусе клапана с помощью подшипниковой опоры с каналами для прохода жидкости.
4. Клапан по п.3, отличающийся тем, что подшипниковая опора вала установлена в корпусе с помощью разъемного соединения, например, резьбового.
5. Клапан по п.1, отличающийся тем, что клапан обратный установлен в перепускном отверстии с помощью разъемного соединения, например, с помощью резьбы.
6. Клапан по п.1, отличающийся тем, что запорный элемент обратного клапана выполнен в виде шара, подпружиненного в противоположном направлении воздействия на шар потока жидкости, поступающего из затрубного пространства.
RU2011139811/06A 2011-09-29 2011-09-29 Клапан перепускной для погружного центробежного электронасоса RU2480630C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011139811/06A RU2480630C1 (ru) 2011-09-29 2011-09-29 Клапан перепускной для погружного центробежного электронасоса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011139811/06A RU2480630C1 (ru) 2011-09-29 2011-09-29 Клапан перепускной для погружного центробежного электронасоса

Publications (2)

Publication Number Publication Date
RU2011139811A RU2011139811A (ru) 2013-04-10
RU2480630C1 true RU2480630C1 (ru) 2013-04-27

Family

ID=49151655

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139811/06A RU2480630C1 (ru) 2011-09-29 2011-09-29 Клапан перепускной для погружного центробежного электронасоса

Country Status (1)

Country Link
RU (1) RU2480630C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629290C1 (ru) * 2016-06-23 2017-08-28 ЗАО "Римера" Способ для эксплуатации скважин и устройства для его реализации
RU176533U1 (ru) * 2017-01-09 2018-01-22 Открытое акционерное общество "Сургутнефтегаз" Модуль входной перепускной для УЭЦН

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU608987A2 (ru) * 1976-01-04 1978-05-30 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Погружной центробежный электронасос дл перекачки неоднородной жидкости
RU2102633C1 (ru) * 1996-01-05 1998-01-20 Борис Николаевич Малашенко Способ защиты от срыва подачи погружного центробежного электронасоса и устройство для его осуществления
US5993151A (en) * 1996-02-09 1999-11-30 Kvaerner Ships Equipment A.S. Centrifugal pump device
RU79618U1 (ru) * 2008-07-15 2009-01-10 "Центр Разработки Нефтедобывающего Оборудования (Црно)" Газопесочный сепаратор погружного скважинного насоса для добычи нефти

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU608987A2 (ru) * 1976-01-04 1978-05-30 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Погружной центробежный электронасос дл перекачки неоднородной жидкости
RU2102633C1 (ru) * 1996-01-05 1998-01-20 Борис Николаевич Малашенко Способ защиты от срыва подачи погружного центробежного электронасоса и устройство для его осуществления
US5993151A (en) * 1996-02-09 1999-11-30 Kvaerner Ships Equipment A.S. Centrifugal pump device
RU79618U1 (ru) * 2008-07-15 2009-01-10 "Центр Разработки Нефтедобывающего Оборудования (Црно)" Газопесочный сепаратор погружного скважинного насоса для добычи нефти

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629290C1 (ru) * 2016-06-23 2017-08-28 ЗАО "Римера" Способ для эксплуатации скважин и устройства для его реализации
RU176533U1 (ru) * 2017-01-09 2018-01-22 Открытое акционерное общество "Сургутнефтегаз" Модуль входной перепускной для УЭЦН

Also Published As

Publication number Publication date
RU2011139811A (ru) 2013-04-10

Similar Documents

Publication Publication Date Title
US10584571B2 (en) Downhole apparatus and method
US9181785B2 (en) Automatic bypass for ESP pump suction deployed in a PBR in tubing
RU2380522C1 (ru) Установка для одновременно-раздельного исследования и эксплуатации электропогружным насосом многопластовой скважины (варианты)
US11994003B2 (en) Fallback prevention valve apparatus, system and method
CA2710008C (en) Full bore injection valve
US10677032B1 (en) Electric submersible pump intake system, apparatus, and method
US20090001304A1 (en) System to Retrofit an Artificial Lift System in Wells and Methods of Use
RU2480630C1 (ru) Клапан перепускной для погружного центробежного электронасоса
WO2012112983A2 (en) Apparatus and methods for well completion design to avoid erosion and high friction loss for power cable deployed electric submersible pump systems
RU2539504C1 (ru) Устройство для нагнетания жидкости в пласт
RU114492U1 (ru) Фильтр для погружного центробежного электронасоса
US10227986B2 (en) Pumping system for a wellbore and methods of assembling the same
CN109072679B (zh) 具有打开/关闭的轴向通路和侧向流体通路的井下工具
CA2958761C (en) Internal subsurface safety valve for rotating downhole pumps
RU2339797C1 (ru) Устройство для одновременно-раздельной эксплуатации многопластовой скважины
RU2737409C1 (ru) Погружная насосная установка на грузонесущем кабеле и способ ее эксплуатации
RU2364711C1 (ru) Скважинная насосная установка для добычи нефти и закачки воды в пласт
RU161651U1 (ru) Клапан обратный шариковый
RU152084U1 (ru) Обратный клапан установки электроцентробежного насоса
RU2503866C1 (ru) Клапан обратный штанговый
US11168547B2 (en) Progressive cavity pump and methods for using the same
RU2727944C2 (ru) Компоновка роторного насоса и роторная насосная установка
RU44142U1 (ru) Клапан специальный двухкамерный для эксплуатации скважин установками электроцентробежных насосов
AU2017261842A1 (en) A valve assembly and a method of installation/operation