RU2479668C1 - Способ ионно-плазменного легирования поверхности изделия - Google Patents

Способ ионно-плазменного легирования поверхности изделия Download PDF

Info

Publication number
RU2479668C1
RU2479668C1 RU2011139822/02A RU2011139822A RU2479668C1 RU 2479668 C1 RU2479668 C1 RU 2479668C1 RU 2011139822/02 A RU2011139822/02 A RU 2011139822/02A RU 2011139822 A RU2011139822 A RU 2011139822A RU 2479668 C1 RU2479668 C1 RU 2479668C1
Authority
RU
Russia
Prior art keywords
plasma
anode
treated surface
cathode
working gas
Prior art date
Application number
RU2011139822/02A
Other languages
English (en)
Inventor
Владимир Алексеевич Грибков
Александр Викторович Дубровский
Александр Сергеевич Демин
Елена Викторовна Демина
Сергей Алексеевич Масляев
Валерий Николаевич Пименов
Original Assignee
Валерий Николаевич Пименов
Елена Викторовна Демина
Владимир Алексеевич Грибков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Николаевич Пименов, Елена Викторовна Демина, Владимир Алексеевич Грибков filed Critical Валерий Николаевич Пименов
Priority to RU2011139822/02A priority Critical patent/RU2479668C1/ru
Application granted granted Critical
Publication of RU2479668C1 publication Critical patent/RU2479668C1/ru

Links

Images

Abstract

Изобретение относится к плазменной обработке поверхности изделий и может быть использовано в машиностроении, электротехнике, энергетике, электронике и других областях. Способ включает формировании в камере плазменной установки в среде рабочего газа под действием высокого напряжения, приложенного к аноду и катоду, плазменного сгустка, воздействующего на обрабатываемую поверхность, с внедрением в поверхностный слой имплантируемого материала, при этом плазменный сгусток формируют при повышенном градиенте электрического поля между катодом и анодом на его выходном участке за счет уменьшения расстояния между ними без возникновения пробоя в среде рабочего газа в начальной стадии разряда и образования между анодом, имеющим расширение со стороны обрабатываемой поверхности, и обрабатываемой поверхностью горообразного плазменного индуктивного накопителя энергии, и воздействие им на обрабатываемую поверхность в интервале времени от 30 до 200 мкс.
Способ позволяет повысить прочность покрытия за счет увеличения эффективности воздействия плазменного сгустка на обрабатываемую поверхность. 3 ил., 1 пр.

Description

Изобретение относится к обработке поверхности изделий, а именно к способу плазменной обработки поверхности изделий, например, в машиностроении, электротехнике, энергетике, электронике и других областях.
В ряде областей энергетики, ускорительной, военной и аэрокосмической технике используются элементы конструкций, которые должны выдерживать многократное воздействие мощных импульсных потоков ионизирующего излучения. В частности, такие материалы должны противостоять потокам горячей плазмы (температура порядка 1-10 млн. градусов), быстрых ионов и электронов (с энергией частиц 0,1…1,0 МэВ) и рентгеновского излучения (энергия фотонов 0,01…1,0 МэВ). Эти параметры типичны для солнечного ветра и солнечных вспышек, для плазмы и быстрых частиц вблизи первой стенки термоядерных реакторов с инерциальным и магнитным удержанием плазмы, а также для ряда промышленных ускорителей. Среди веществ, применяемых для изготовления вышеуказанных элементов, - различные виды нержавеющей стали, вольфрам, бериллий, разные типы керамики, оптические материалы, композиты и пр.
Известен способ получения эрозионно стойких теплозащитных покрытий [1], включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50-80 вес. % диоксида циркония и 50-20 вес. % нихрома, при этом для напыления керметной композиции используют механическую смесь, содержащую порошки диоксида циркония и нихрома с размером частиц 10-40 и 40-100 мкм соответственно, и подачу порошковой смеси осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид кальция, содержание которого составляет величину 4-6 вес.%.
Недостатком известного способа [1] являются недостаточно высокие механические свойства напиленного покрытия и невысокая прочность сцепления покрытия с основой.
Известен также способ обработки поверхности изделия [2], включающий подачу порошкового компонента в ламинарную плазменную струю, при этом порошковый компонент подают в плазменную струю транспортирующим газом в направлении ее истечения под углом 5-10° к оси плазменной струи, причем транспортирующий газ вводят в количестве 0,5-0,6 расхода плазмообразующего газа. В известном способе обеспечивается напыление порошковой компоненты в различных пространственных положениях образца.
Известные способы [1, 2] не обеспечивают высоких механических свойств напыленного покрытия и необходимой прочности сцепления покрытия с основой.
Наиболее близким по технической сущности к предлагаемому способу является известный способ плазменной обработки поверхности изделия [3], основанный на формировании плазменной струи в камере плазменной установки в среде рабочего газа под действием высокого напряжения, приложенного к аноду и катоду, и воздействии высокотемпературной плазмой на поверхность изделия с внедрением в его поверхностный слой имплантируемого материала, при этом плазменную струю формируют сгустками в импульсном режиме со скоростью истечения плазменной струи (105-106) м/сек, температурой (0,1-3,0) КЭВ, плотностью мощности потока плазменной струи 106-1010 Вт/см2, а концентрацию легирующего компонента в поверхностном слое задают количеством воздействующих импульсов и длительностью воздействия отдельного импульс. При этом воздействующие импульсы формируют с частотой в пределах 0,01-105 Гц и с длительностью воздействующего импульса в пределах от 10-8 до 10-6 сек, а в качестве источника легирующего компонента используют материал анода или материал вставки, которую располагают в аноде на оси плазменной струи.
Недостатком такого способа является недостаточная эффективность воздействия плазменной струи (сгустка) на обрабатываемую поверхность, поскольку импульсы, генерируемые в известном способе, обладают очень короткой длительностью.
Предлагаемый способ направлен на увеличение длительности плазменного воздействия на облучаемый материал путем образования торообразного плазменного индуктивного накопителя энергии, «затягивающего» время воздействия.
Технический результат, заключающийся в повышении эффективности воздействия плазменного сгустка на обрабатываемую поверхность с целью повышения прочности покрытия, достигается в предлагаемом способе плазменной обработки поверхности изделия, основанном на формировании в камере плазменной установки в среде рабочего газа под действием высокого напряжения, приложенного к аноду и катоду, плазменного сгустка, воздействующего на обрабатываемую поверхность, с внедрением в поверхностный слой компонента имплантируемого материала тем, что плазменный сгусток формируют при повышенном градиенте электрического поля между катодом и анодом на его выходном участке без возникновения пробоя в среде рабочего газа в начальной стадии разряда с образованием в зоне воздействия торообразного плазменного индуктивного накопителя энергии в интервале времени от 30 до 200 мкс.
При этом повышение градиента электрического поля между анодом и катодом обеспечивают посредством уменьшения расстояния между катодом и анодом на его выходном участке.
Указанный технический результат достигается также тем, что плазменный сгусток формируют при расширяющемся в сторону обрабатываемой поверхности аноде.
Сущность изобретения поясняется чертежами, где:
- на фиг.1 показана схема, поясняющая аппаратурную реализацию предложенного способа и формирование плазменного сгустка;
- на фиг.2 представлены осциллограммы, иллюстрирующие линчевание плазмы в зоне воздействия на обрабатываемую поверхность;
- на фиг.3 показаны интерферограммы, полученные в промежутке «анод - обрабатываемая поверхность».
Предложенный способ реализуется следующим образом и поясняется схемой (фиг.1), на которой схематически показана установка, содержащая анод 1 с изолятором 2, катод 3, выполненный, например, в виде катодных стержней, симметрично расположенных вокруг анода 1, и изделие с обрабатываемой поверхностью 4, заключенные в герметичную камеру (на чертеже не показана), заполненную рабочим газом. В качестве рабочего газа может использоваться водород, гелий, азот, дейтерий, аргон и др. Анод 1 выполнен из материала, используемого для легирования поверхности 4.
Под действием высокого напряжения, приложенного к аноду 1 и катоду 3, в камере плазменной установки в среде рабочего газа создается плазменная структура 5. При этом формируют плазменный сгусток при повышенном градиенте электрического поля между катодом 3 и анодом 1 на его выходном участке без возникновения пробоя в среде рабочего газа в начальной стадии разряда с образованием торообразного плазменного индуктивного накопителя энергии 6 в интервале времени от 30 до 200 мкс, воздействующего на обрабатываемую поверхность 4 с внедрением в поверхностный слой компонента имплантируемого материала.
Повышение градиента электрического поля между анодом 1 и катодом 3 обеспечивают посредством уменьшения расстояния между катодом 3 и анодом 1 на его выходном участке. Плазменный сгусток 6 формируют при расширяющемся в сторону обрабатываемой поверхности аноде (на участке 7).
При запитывании катода 3 и анода 1 от конденсаторной батареи (на чертеже не показана) происходит электрический разряд в наполняющем камеру рабочем газе, который носит затухающий осциллирующий характер (обычно наблюдается 4-6 колебаний).
Промежуток «анод-катод» пробивается по поверхности изолятора 2 и при этом формируется токовоплазменная оболочка (ТПО).
Эта оболочка за счет обратного пинч-эффекта отжимается пондеромоторной силой от изолятора 2 и ускоряется в коаксиальном промежутке между анодом 1 и катодом 3 вдоль оси камеры Z, захватывая весь газ, равномерно заполнявший до этого всю камеру.
Повышение градиента электрического поля анодом 1 и катодом 3 приведет к возникновению перенапряжения ~1 MB на пинче 8 в момент «обрыва тока» [4] и, как следствие, к взрывной эмиссии материала анода и катода. Этот разлетающийся материал должен привести, в свою очередь, к отсоединению основной токовой петли от батареи (не показана) и замыканию контура тока на выходном участке 7 анода 1 в форме тора 6, как это показано на фиг.1.
После аксиальной стадии ускорения плазмы наступает радиальная стадия, когда захваченная оболочкой плазма сжимается к оси Z камеры, формирует т.н. воронкообразный «пинч», который порождает мощную кумулятивную струю горячей плазмы вдоль оси Z камеры от анода 1. Впоследствии пинч «взрывается» различными неустойчивостями (т.н. «обрыв тока») и генерирует мощные потоки быстрых электронов (направленных к аноду) и ионов (от анода). Электроны при торможении у анода 1 производят вспышку рентгеновского излучения, а ионы в состоянии максимального сжатия пинча - нейтронного. Длительности импульсов горячей плазмы и потоков электронов, ионов, рентгеновского и нейтронного излучений в зависимости от размера установки оказываются порядка 10…200 наносекунд (нс). Перенапряжение на пинче в этот период времени достигает величины порядка 1 MB.
Торообразная структура, которая образуется в момент времени, близкий к моменту достижения разрядным током максимального значения, образует своего рода «плазменный индуктивный накопитель» 6, который будет разряжаться по апериодическому закону за время τ~L/R, где L - индуктивность торообразной токовой петли (т.е., фактически, пинча), a R - активное сопротивление плазмы пинча.
При этом образовавшаяся на выходном участке 7 анода 1 токово-плазменная "перемычка" служит замыкателем и для токового контура, обеспечивающего диссипацию оставшейся энергии плазменной структуры 5 (фиг.1).
При этом осуществляется легирование поверхности 4.
После описанных стадий плазма пинча 8 разваливается, и газ снова заполняет камеру. При последующих затухающих колебаниях тока разряда этот процесс пробоя вдоль изолятора 2 и сгребания газа к оси Z повторяется в каждом полупериоде.
Пример реализации способа.
Для реализации способа использовалась установка плазменного фокуса (ПФ), в которой для повышения градиента электрического поля на выходном участке анода 1 он был выполнен в соответствии с фиг.1.
С помощью магнитных зондов (на фиг.1 не показаны) записывались магнитные сигналы в этой области, а следовательно, и структура токов в зоне (см. совмещенные осциллограммы производной тока dl/dt на фиг.2а, б, в). На этих осциллограммах буквой «О» отмечен момент особенности производной тока, когда происходит сжатие (линчевание) плазмы у оси Z, обрыв тока и генерация пучков быстрых электронов и ионов. Из этих осциллограмм видно, что во время первого полупериода разряда тока вплоть до «особенности» (момента «О» подскока напряжения) все зонды показывают синхронно меняющиеся по фазе значения dl/dt (фиг.2а). Однако после момента «О» и, в особенности, во втором полупериоде разряда и далее все зонды показывают различные друг по отношению к другу колебательные процессы вплоть до противофазных (фиг.2б, в). На фиг.2 в показаны первый и второй полупериоды разряда. Здесь также видны несинхронные и противофазные колебания от разных зондов после момента «О».
С помощью кадровой наносекундной лазерной интерферометрии наблюдалась динамика плазмы в промежутке между центром анода 1 и расположенной напротив него облучаемой поверхности 4 в разные моменты времени (фиг.3). Лазерные интерферограммы были получены для моментов времени, соответствующих особенности тока («О») (фиг.3а) и для значительно более поздних моментов, например для запаздывания по отношению к особенности на 10 микросекунд («Л») (фиг.3б), во время второго (отрицательного) полупериода разряда.
Приведенные на фиг.3 примеры показывают, как меняется конфигурация плазмы вблизи момента, отмеченного буквой «О» (фиг.3а и б), а также после момента «О» вблизи момента времени «Л» (фиг.3в и г).
Из этих рисунков видно, что пинч вблизи момента «О» быстро меняет свою форму за 60 нс и должен в течение последующих 50-100 нс разрушиться (что и наблюдалось в других разрядах), тогда как на 10-й мкс имеется практически стационарная плазменная колонна.
Таким образом, приведенный пример показывает «отшнуровывание» токового контура и образование замкнутой торообразной токовой конфигурации 6 с перемычкой на выходном срезе анода 1. При этом такой пинч поддерживается протекающим по нему током, и выделяющаяся при этом в пинче энергия производит воздействие горячей плазмой на поверхность 4 в течение более длительного времени, чем в прототипе [3].
Экспериментально полученные данные показывает, что плотность и температура вторичной плазмы у поверхности мишени спадают монотонно.
Результаты экспериментов подтверждают реализуемость такого режима «затягивания» импульса плазменного теплового воздействия на поверхности 4, которое может достигать величину от 30 до 200 мкс в зависимости от типа установки и используемых в ней электродов (анода и катода).
Используя предлагаемый способ для обработки материалов комбинированными потоками ионов, электронов и высокотемпературной импульсной плазмы, можно осуществлять поверхностное легирование облученных изделий, осаждая на их поверхность различные материалы, входящие в состав либо анода, или катода. Способ «ионно-плазменного легирования» поверхностей можно применять для улучшения поверхностных свойств обрабатываемых изделий.
Обработка исследуемого материала в ПФ приводит к модифицированию поверхностных слоев изделий на основе структурно-фазового превращения и формирования ультрадисперсной микроструктуры.
Предлагаемый способ обеспечивает получение легированных многокомпонентных поверхностных слоев с широкой гаммой физических свойств и может быть востребовано в различных областях науки и техники.
Промышленная применимость предложенного способа обработки поверхностных слоев изделий подтверждается результатами проведенных опытов.
Поверхностное легирование материалов с помощью предлагаемого способа является перспективным для модифицирования поверхностных слоев с целью повышения их коррозионной и радиационной стойкости, а также улучшения механических свойств.
Источники информации
1. Патент РФ №2283363, МПК C23C 4/00, 2003 г.
2. Патент РФ №1625045, МПК C23C 4/00, 1988 г.
3. Патент РФ №2340703, МПК C23C 13/14, 2007 г.
4. V.A.Gribkov, A.Banaszak, B.Bienkowska, A.V.Dubrovsky, I.Ivanova-Stanik, L.Jakubowski, L.Karpinski, R.A.Miklaszewski, M.Paduch, M.J.Sadowski, M.Scholz, A.Szydlowski, K.Tomaszewski (2007) Plasma dynamics in PF-1000 device under the full-scale energy storage: II. Fast electrons and ions characteristics versus neutron emission parameters, and the gun optimization properties, J. Phys. D: Appl. Phys. 40 3592-3607.

Claims (1)

  1. Способ ионно-плазменного легирования поверхности изделия, включающий формирование в камере плазменной установки в среде рабочего газа под действием напряжения, приложенного к аноду и катоду, плазменного сгустка и воздействие им на обрабатываемую поверхность с внедрением в поверхностный слой имплантируемого материала, отличающийся тем, что плазменный сгусток формируют при повышенном градиенте электрического поля между катодом и анодом на его выходном участке за счет уменьшения расстояния между ними без возникновения пробоя в среде рабочего газа в начальной стадии разряда и образования между анодом, имеющим расширение со стороны обрабатываемой поверхности, и обрабатываемой поверхностью торообразного плазменного индуктивного накопителя энергии, и воздействие им на обрабатываемую поверхность в интервале времени от 30 до 200 мкс.
RU2011139822/02A 2011-10-03 2011-10-03 Способ ионно-плазменного легирования поверхности изделия RU2479668C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011139822/02A RU2479668C1 (ru) 2011-10-03 2011-10-03 Способ ионно-плазменного легирования поверхности изделия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011139822/02A RU2479668C1 (ru) 2011-10-03 2011-10-03 Способ ионно-плазменного легирования поверхности изделия

Publications (1)

Publication Number Publication Date
RU2479668C1 true RU2479668C1 (ru) 2013-04-20

Family

ID=49152733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139822/02A RU2479668C1 (ru) 2011-10-03 2011-10-03 Способ ионно-плазменного легирования поверхности изделия

Country Status (1)

Country Link
RU (1) RU2479668C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579845C1 (ru) * 2014-08-26 2016-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Плазменная обработка поверхности с использованием разряда пинчевого типа
RU2694177C1 (ru) * 2019-01-22 2019-07-09 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Способ ионно-плазменного получения наноструктур на поверхности вольфрама

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055745A1 (en) * 1999-05-27 2000-11-29 Sony Corporation Method and apparatus for surface modification
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
RU2304827C1 (ru) * 2006-04-03 2007-08-20 Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет Способ формирования высокотемпературного сверхпроводникового покрытия
EP1865544A1 (en) * 2005-03-31 2007-12-12 Matsushita Electric Industrial Co., Ltd. Plasma doping method and apparatus
RU2340703C1 (ru) * 2007-03-20 2008-12-10 Валерий Николаевич Пименов Способ плазменной обработки поверхности изделия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055745A1 (en) * 1999-05-27 2000-11-29 Sony Corporation Method and apparatus for surface modification
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
EP1865544A1 (en) * 2005-03-31 2007-12-12 Matsushita Electric Industrial Co., Ltd. Plasma doping method and apparatus
RU2304827C1 (ru) * 2006-04-03 2007-08-20 Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет Способ формирования высокотемпературного сверхпроводникового покрытия
RU2340703C1 (ru) * 2007-03-20 2008-12-10 Валерий Николаевич Пименов Способ плазменной обработки поверхности изделия

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579845C1 (ru) * 2014-08-26 2016-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Плазменная обработка поверхности с использованием разряда пинчевого типа
RU2694177C1 (ru) * 2019-01-22 2019-07-09 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Способ ионно-плазменного получения наноструктур на поверхности вольфрама

Similar Documents

Publication Publication Date Title
Ozur et al. Generation of low-energy high-current electron beams in plasma-anode electron guns
Mesyats Ecton or electron avalanche from metal
Qian et al. Electron pulse broadening due to space charge effects in a photoelectron gun for electron diffraction and streak camera systems
Honrubia et al. On intense proton beam generation and transport in hollow cones
Mesyats Ectons and their role in plasma processes
Coll et al. Design of vacuum arc-based sources
Klír et al. Efficient neutron production from a novel configuration of deuterium gas-puff Z-pinch
JP2017512315A (ja) 高エネルギー荷電粒子を磁気カスプ配位に閉じ込める方法及び装置
RU2340703C1 (ru) Способ плазменной обработки поверхности изделия
Javadi et al. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device
Gizzi et al. An integrated approach to ultraintense laser sciences: The PLASMON-X project
Ryabchikov et al. Vacuum arc ion and plasma source Raduga 5 for materials treatment
RU2479668C1 (ru) Способ ионно-плазменного легирования поверхности изделия
Koval et al. Electron sources with plasma grid emitters: Progress and prospects
US20120281798A1 (en) Solid-state pulsed power plasma jet injector
CA2477960C (en) Method and device for compressing a substance by impact and plasma cathode thereto
Wang et al. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction
Yushkov et al. A forevacuum plasma source of pulsed electron beams
Furman et al. Ionic diode
Erofeev et al. Conditions for uniform impact of the plasma of a runaway-electron-induced pulsed diffuse discharge on an anode
Liu et al. Study on generation characteristics of plasma jets of multi-electrode in a pulse vacuum discharge
Gribkov et al. The Vikhr plasma focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering
Kazakov et al. Formation of pulsed large-radius electron beam in the forevacuum pressure range by a plasma-cathode source based on arc discharge
Zhao et al. Near-100 mev proton acceleration from 1021 W/cm2 laser interacting with near-critical density plasma
Isaev et al. Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131004