RU2475636C1 - Способ извлечения высоковязких нефтей и природных битумов из залежи - Google Patents
Способ извлечения высоковязких нефтей и природных битумов из залежи Download PDFInfo
- Publication number
- RU2475636C1 RU2475636C1 RU2011139205/03A RU2011139205A RU2475636C1 RU 2475636 C1 RU2475636 C1 RU 2475636C1 RU 2011139205/03 A RU2011139205/03 A RU 2011139205/03A RU 2011139205 A RU2011139205 A RU 2011139205A RU 2475636 C1 RU2475636 C1 RU 2475636C1
- Authority
- RU
- Russia
- Prior art keywords
- solvent
- viscosity
- asphaltene
- natural bitumen
- components
- Prior art date
Links
Images
Landscapes
- Working-Up Tar And Pitch (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к области добычи нефти, к способам разработки месторождений высоковязких нефтей или природных битумов горизонтальными скважинами с использованием углеводородных растворителей, и может быть использовано при добыче тяжелых высоковязких нефтей и битумов. Обеспечивает повышение нефтеотдачи за счет исключения процессов, снижающих проницаемость пласта. Сущность изобретения: способ включает закачку растворителя в системе парных горизонтальных скважин, где верхняя является нагнетательной, а нижняя - добывающей, отбор смеси высоковязких нефтей или природных битумов с растворителем и контроль за изменением физико-химических свойств добываемой продукции. Состав растворителя для закачки в пласт содержит, об.%: алифатических углеводородов с числом углеродных атомов 5-7 - 80-90, ароматических с числом углеродных атомов 7-9 - 10-20. Соотношение компонентов в составе растворителя определяют в соответствии с физико-химическими свойствами извлекаемых высоковязких нефтей или природных битумов. Контроль за изменением содержания асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах ведут на протяжении всего времени извлечения с использованием метода фотоколориметрии. Корректировку соотношения вязкость-понижающего растворителя и ароматического растворителя асфальтенов в рабочем агенте осуществляют исходя из графика изменения коэффициента светопоглощения: в случае уменьшения коэффициента светопоглощения, свидетельствующего об осаждении асфальтено-смолистых компонентов в пласте, увеличивают количество растворителя асфальтенов в рабочем агенте до отсутствия изменения коэффициента светопоглощения. В качестве алифатических компонентов растворителя используют петролейный эфир, широкую фракцию легких углеводородов - ШФЛУ или нестабильный - газовый бензин. В качестве ароматических углеводородов используют толуол, ксилолы, этилбензин. 2 з.п. ф-лы, 9 ил.
Description
Изобретение относится к области добычи нефти, а именно к способам разработки месторождений высоковязких нефтей или природных битумов горизонтальными скважинами, в частности, с использованием углеводородных растворителей, что позволяет повысить коэффициент извлечения нефти и обеспечить эффективность процессов добычи, подготовки и транспортировки для такого нетрадиционного углеводородного сырья. Изобретение может быть использовано при добыче тяжелых высоковязких нефтей и битумов.
Известен способ [RU 2274742 С1, 20.04.2006] разработки залежи высоковязкой нефти или битума, где интервал продуктивного пласта перфорируют в верхней и нижней частях. В скважину спускают две параллельные колонны насосно-компрессорных труб с одним пакером. Конец первой колонны насосно-компрессорных труб размещают напротив верхней части продуктивного пласта. Конец второй колонны насосно-компрессорных труб с пакером размещают напротив нижней части продуктивного пласта. Пакер устанавливают в интервале между перфорацией верхней и нижней частей продуктивного пласта. В качестве рабочего агента используют оторочки пара и углеводородного растворителя. Закачку рабочего агента и отбор продукции производят циклически: закачивают рабочий агент по первой колонне насосно-компрессорных труб в верхнюю часть продуктивного пласта при закрытой второй колонне насосно-компрессорных труб и отсутствии отбора продукции, отбирают продукцию по второй колонне насосно-компрессорных труб из нижней части продуктивного пласта при закрытой первой колонне насосно-компрессорных труб и отсутствии закачки рабочего агента. Циклы закачки и отбора повторяют.
Недостатком указанного способа, основанного на использовании вертикальных скважин, является низкий уровень охвата продуктивного пласта воздействием и, как следствие, невысокий коэффициент извлечения нефти. Кроме того, спуск двух параллельных колонн насосно-компрессорных труб с одним пакером является технически сложной операцией.
Известны способы добычи полезных ископаемых с обработкой скважин высокочастотным электромагнитным полем (ВЭП) [RU 2139415 С1, 10.10.1999, RU 1824983 C1, 10.12.1996], которые могут быть использованы при добыче тяжелых высоковязких нефтей и битумов. Согласно способам пласт вскрывают по крайней мере одной нагнетательной и одной эксплуатационной скважинами, которые обрабатывают ВЭП. Одновременно с обработкой нагнетательной скважины ВЭП осуществляют закачку растворителя или смесей растворителей в пласт. При этом закачку растворителя осуществляют в объеме, достаточном для достижения эксплуатационной скважины. Температуру на забое нагнетательной скважины регулируют. Обработку этой скважины после снижения температуры на забое не ниже пластовой ведут циклически.
Недостатком указанных способов, также основанных на использовании вертикальных скважин, является невозможность полноценного охвата продуктивного пласта воздействием высокочастотного электромагнитного поля. Кроме того, этот способ подразумевает повышенный расход растворителя, что снижает его рентабельность.
Известен способ извлечения тяжелых нефтей [RU 2117756 C1, 20.08.1998], по которому в качестве растворителя в пар с температурой 330-360 К вводят дизтопливо в пределах 0,005 мас.%.
Недостатком этого изобретения является использование растворителя только в качестве добавки к низкотемпературному пару. При этом в качестве растворителя выбрано дизтопливо, что существенно ограничивает его применимость, как по растворяющей способности тяжелых нефтей, так и по экономическим причинам.
В патенте [СА 26445267 А1, 2010.05.26] обосновано использование композиционного растворителя для поверхностной и скважинной экстракции битумов из нефтенасыщенных песчаников. Растворитель включает полярный компонент с карбонильными группами (кетоны) и неполярный компонент (алканы с числом атомов углерода от 2 до 7). Соотношение компонентов регулируется в соответствии с параметром растворимости Хансена. Недостатком этого изобретения является слабая растворяющая способность композиционного растворителя, потому что кетоны не являются полноценными растворителями асфальтенов.
Описан [RU 2387818 С1, 27.04.2010] способ разработки залежей тяжелых и сверхтяжелых нефтей и природных битумов с использованием водяного пара и углеводородного растворителя, в качестве которого применяют смесь углеводородов предельного алифатического и ароматического рядов, основным компонентом которой является бензол. Однако стоит отметить, что бензол является очень токсичным и канцерогенным растворителем.
В патенте [СА 2590829 А1, 2007.12.26], выбранном заявителем в качестве прототипа, представлены практически все возможные варианты композиций углеводородных растворителей и методов их использования для добычи тяжелых нефтей и битумов. В основе композиции предлагается использовать сочетание вязкость-понижающего растворителя и растворителя асфальтенов. В качестве вязкость-понижающего растворителя могут использоваться различные нормальные и циклические алкановые углеводороды, а также алкены, диоксид углерода и пирролидоны. В качестве растворителя асфальтенов могут использоваться ароматические углеводороды: бензол, толуол, ксилолы и т.д. вплоть до полициклических (антрацен), а также различные ароматические кислород-, азот- и галогенпроизводные. Кроме того, в композицию могут быть включены всевозможные поверхностно-активные вещества анионного, катионного, неионогенного и амфотерного типов. Соотношение вязкость-понижающего растворителя и растворителя асфальтенов в композиции может варьироваться от 10:1 до 1:10. Устойчивость асфальтенов к осаждению при смешении легких алкановых углеводородов и различных тяжелых нефтей или битумов предварительно определяется лабораторным тестированием поглощения излучения лазера. Метод закачки также охватывает все возможные варианты - от простого нагнетания до совместного использования с паром и другими теплоносителями.
Способ не предполагает контроль за осаждением асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах в процессе их извлечения.
Общим недостатком всех вышеперечисленных изобретений является отсутствие методики регулирования состава растворителя в процессе закачки с учетом его совместимости с вытесняемой нефтью или природным битумом. Это не позволяет оперативно выявить выпадение асфальтено-смолистых компонентов. При закачке растворителей необходимо учитывать изменение содержания асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах. В зависимости от состава нефти и используемого растворителя асфальтено-смолистые компоненты могут либо осаждаться в пласте, препятствуя эффективному нефтевытеснению, либо оставаться в растворенном состоянии и свободно извлекаться с добываемой нефтью. Объем образующихся осадков асфальтено-смолистых компонентов зависит как от их содержания в нефти, так и от их коллоидного состояния. Для предотвращения процессов выпадения асфальтено-смолистых компонентов при извлечении высоковязких нефтей и природных битумов необходимо присутствие до 20 об.% ароматических углеводородов в составе растворителя, о чем свидетельствуют полученные экспериментальные данные. Так, на фигуре 1 приведено изменение содержания асфальтенов в Ашальчинской нефти при добавлении в состав растворителя ароматических углеводородов.
Задача изобретения - создание нового технологичного способа извлечения высоковязких нефтей и природных битумов из залежи, расширяющего ассортимент известных способов, позволяющего быстро и с высокой точностью контролировать изменение физико-химических свойств извлекаемых высоковязких нефтей или природных битумов для предотвращения процессов выпадения смолистых компонентов в пласте.
Технический результат изобретения - сохранение коллоидной стабильности высоковязкой нефти или природного битума в пласте (устойчивости асфальтенов, содержащихся в разрабатываемом нефтяном пласте, к осаждению) в результате своевременного выявления момента начала выпадения асфальтенов и определения оптимального соотношения вязкость-понижающего растворителя и растворителя асфальтенов в соответствии с полученными данными для предупреждения их выпадения, что приводит к увеличению извлечения высоковязких нефтей из залежи. Кроме того, контроль за изменением физико-химических параметров извлекаемых нефтей в течение всего времени эксплуатирования скважины, экспрессно выполняемым предлагаемым методом, позволяет существенно снизить использование ароматических растворителей, являющихся более дорогими и менее экологически безопасными по сравнению с базовым растворителем.
Технический результат достигается заявляемым способом извлечения высоковязких нефтей и природных битумов из залежи, включающим закачку в горизонтальные нагнетательные скважины растворителя (рабочего агента), состоящего из вязкость-понижающего растворителя (осадителя), в качестве которого используют алифатические углеводороды с числом углеродных атомов С5-С7, и растворителя асфальтенов, который представляет собой ароматические углеводороды, в объемном соотношении (90-80):(10-20), отбор продукции с контролем за изменением содержания асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах и корректировку соотношения вязкость-понижающего растворителя и растворителя асфальтенов в рабочем агенте в соответствии с полученными данными, причем контроль за изменением содержания асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах ведут постоянно на протяжении всего времени извлечения высоковязких нефтей и природных битумов из залежи, с использованием метода фотоколориметрии, и корректировку соотношения вязкость-понижающего растворителя и растворителя асфальтенов в рабочем агенте осуществляют исходя из кривой изменения коэффициента светопоглощения (Ксп): в случае уменьшения Ксп, свидетельствующего об осаждении асфальтено-смолистых компонентов в пласте, увеличивая количество растворителя асфальтенов в рабочем агенте до отсутствия изменения Ксп (до достижения начальных величин Ксп).
Способ осуществляют следующим образом.
Производят бурение нагнетательных горизонтальных скважин, бурение добывающей горизонтальной скважины под каждой нагнетательной скважиной в пределах этого же продуктивного пласта для отбора высоковязких нефтей или природных битумов, закачку растворителя в горизонтальные нагнетательные скважины. Снижение вязкости вязкой нефти или битума достигается за счет разжижения растворителем, в результате чего смесь нефть (битум)-растворитель самотеком стекает вниз в добывающую скважину. Процесс может осуществляться в различных вариантах: для пары горизонтальных скважин, одиночной горизонтальной скважины или комбинации вертикальных и горизонтальных скважин. Закачку растворителя осуществляют циклически или постоянно через верхний горизонтальный ствол с поддержанием на его забое давления, близкого к гидростатическому. При этом отбор смеси высоковязких нефтей или природных битумов с растворителем осуществляют постоянно через нижний горизонтальный ствол.
В качестве растворителя используют смесь алифатических с числом углеродных атомов 5-7 и ароматических углеводородов, доля которых не превышает 20 об%. В качестве алифатических компонентов растворителя могут использоваться: петролейный эфир, широкая фракция легких углеводородов (ШФЛУ) или нестабильный (газовый) бензин, а в качестве ароматических - толуол, этилбензол, ксилол, ароматические нефрасы. Соотношение компонентов в составе растворителя определяется в соответствии с физико-химическими свойствами извлекаемых высоковязких нефтей или природных битумов.
Контроль за изменением физико-химических свойств извлекаемых высоковязких нефтей или природных битумов для выявления процессов выпадения асфальто-смолистых компонентов в пласте осуществляют постоянно, в режиме реального времени на основе анализа добываемой продукции после удаления растворителя. Можно использовать непосредственное определение содержания асфальтенов и смол в пробах, однако данный вариант является трудоемким и длительным. Для постоянного контроля физико-химических свойств извлекаемых высоковязких нефтей или природных битумов может быть использован ряд параметров, напрямую зависящих от содержания асфальтено-смолистых компонентов, такие как плотность, окисленность. Наиболее удобными являются спектральные методы, основанные на измерении поглощения излучения в видимом, ультрафиолетовом или инфракрасном диапазоне. Соответственно определяют изменение поглощения нефтей при определенной длине волны, например коэффициент светопоглощения (Ксп) в интервале 500-650 нм. Контроль за изменением физико-химических свойств высоковязких нефтей или природных битумов осуществляют на основе регулярного определения (мониторинга) Ксп в процессе их извлечения. Для начального этапа извлечения высоковязких нефтей или природных битумов используется растворитель с содержанием ароматических углеводородов 10 об.%. Так, снижение значений Ксп в анализируемых пробах по сравнению с исходной нефтью до обработки растворителем свидетельствует о процессах выпадения асфальтено-смолистых компонентов в пласте. В этом случае к базовому алифатическому углеводородному растворителю необходимо добавление от 10 до 20 об.% таких ароматических углеводородов или фракций, как толуол, этилбензол, ксилол, нефрас А 130/150. Необходимое количество ароматических углеводородов определяют для каждой залежи или скважины индивидуально на основе предварительного лабораторного моделирования и последующего мониторинга в технологическом процессе.
Изобретение иллюстрируется примерами конкретного выполнения на примере модельных экспериментов на насыпных моделях с использованием высоковязких нефтей Мордово-Кармальского и Ашальчинского месторождений.
Пример 1
Модельный эксперимент с использованием высоковязких нефтей Мордово-Кармальского месторождения
В качестве растворителя используют петролейный эфир 40-70, вытеснение проводят на модели нефтенасыщенного песчаника с проницаемостью 270 мкм2. В процессе вытеснения отбирают пробы равных объемов высоковязких нефтей с растворителем, в которых после отгонки растворителя анализируют изменение значений Ксп при 630 нм методом фотоколориметрии. На основании полученных данных строят кривую зависимости коэффициента светопоглощения (Ксп) во времени (фигура 2).
Так, уменьшение значений Ксп во времени свидетельствует, что в процессе вытеснения высоковязких нефтей Мордово-Кармальского месторождения петролейным эфиром происходит осаждение асфальтено-смолистых компонентов в пласте (фигура 2).
Для уменьшения процесса осаждения асфальтенов к растворителю - петролейному эфиру - добавляют 5 об.% толуола и проводят вытеснение в аналогичных условиях. Отбирают пробы, отгоняют растворитель и анализируют изменение Ксп при 630 нм методом фотоколориметрии. На основании полученных данных строят график зависимости коэффициента светопоглощения (Ксп) во времени (фигура 3). Из полученных результатов можно сделать вывод, что при добавлении к петролейному эфиру 5 об.% толуола происходит процесс осаждения асфальтенов в пласте примерно в той же степени, что и при вытеснении чистым петролейным эфиром. Это свидетельствует о недостаточном объеме толуола в смеси.
Для дальнейшего уменьшения процесса осаждения асфальтенов к растворителю - петролейному эфиру - добавляют 10 об.% толуола и эксперимент продолжают. В результате анализа полученных после вытеснения проб высоковязкой нефти Мордово-Кармальского месторождения зафиксировано минимальное изменение Ксп (фигура 4), что фактически свидетельствует об отсутствии процесса осаждения асфальтено-смолистых компонентов в пласте.
Пример 2
Модельный эксперимент с использованием высоковязких нефтей Ашальчинского месторождения
Пример 2 проводят в условиях примера 1, но анализируют высоковязкие нефти Ашальчинского месторождения.
Кривая зависимости Ксп во времени приведена на фигуре 5. Можно видеть, что в процессе вытеснения высоковязких нефтей Ашальчинского месторождения петролейным эфиром также происходит осаждение асфальтено-смолистых компонентов в пласте. Аналогично примеру 1, к петролейному эфиру добавляют 10 об.% толуола, проводят вытеснение, отбирают пробы, отгоняют растворитель и строят график изменения Ксп (фигура 6). График фиксирует снижение Ксп, т.е. осаждение асфальтено-смолистых компонентов в пласте также происходит, однако в меньшей степени по сравнению с вытеснением чистым петролейным эфиром. Поэтому для высоковязкой нефти Ашальчинского месторождения в следующем модельном эксперименте к петролейному эфиру добавляют 15 об.% толуола и эксперимент повторяют. Результаты представлены на фигуре 7. Из них можно сделать вывод, что процесс осаждения асфальтенов в пласте происходит и содержание толуола в количестве 15 об.% в смеси является недостаточным для предотвращения осаждения асфальтенов. Поэтому для высоковязкой нефти Ашальчинского месторождения в следующем модельном эксперименте к петролейному эфиру добавляют 20 об.% толуола и эксперимент повторяют снова. Результаты представлены на фигуре 8. При добавлении к петролейному эфиру 25 об.% толуола отмечаются аналогичные изменения, что и при добавлении к петролейному эфиру 20 об.% толуола, - наблюдается минимальное изменение Ксп. Это свидетельствует о прекращении образования отложений асфальтено-смолистых компонентов в пласте в процессе вытеснения. Результаты представлены на фигуре 9. Можно сделать вывод, что добавление к петролейному эфиру 20 об.% толуола является достаточным для предотвращения процесса осаждения асфальтенов в пласте.
Таким образом, для высоковязких нефтей и природных битумов различных месторождений может быть подобран оптимальный состав растворителя для вытеснения.
Заявленное изобретение позволяет быстро и с высокой точностью контролировать изменение физико-химических свойств извлекаемых высоковязких нефтей или природных битумов для выявления процессов выпадения асфальтено-смолистых компонентов в пласте, что позволяет избежать забивания скважины и приводит к увеличению нефтеотдачи.
Claims (3)
1. Способ извлечения высоковязких нефтей и природных битумов из залежи, включающий закачку в скважины растворителя - рабочего агента, состоящего из вязкость-понижающего растворителя, в качестве которого используют алифатические углеводороды с числом углеродных атомов 5-7, и растворителя асфальтенов, который представляет собой ароматические углеводороды, в соотношении (90-80):(10-20), отбор продукции с контролем содержания методом фотоколориметрии асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах и корректировку соотношения вязкость-понижающего растворителя и растворителя асфальтенов в рабочем агенте в соответствии с полученными данными, отличающийся тем, что контроль за изменением содержания асфальтено-смолистых компонентов в извлекаемых высоковязких нефтях или природных битумах ведут на протяжении всего времени извлечения, с использованием метода фотоколориметрии, и корректировку соотношения вязкость-понижающего растворителя и растворителя асфальтенов в рабочем агенте осуществляют исходя из графика изменения коэффициента светопоглощения: в случае уменьшения коэффициента светопоглощения, свидетельствующего об осаждении асфальтено-смолистых компонентов в пласте, увеличивая количество растворителя асфальтенов в рабочем агенте до отсутствия изменения коэффициента светопоглощения.
2. Способ извлечения высоковязких нефтей и природных битумов из залежи по п.1, отличающийся тем, что в качестве алифатических компонентов растворителя используют петролейный эфир, широкую фракцию легких углеводородов - ШФЛУ или нестабильный - газовый бензин.
3. Способ извлечения высоковязких нефтей и природных битумов из залежи по п.1, отличающийся тем, что в качестве ароматических компонентов растворителя используют толуол, этилбензол, ксилол, ароматические нефрасы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011139205/03A RU2475636C1 (ru) | 2011-09-27 | 2011-09-27 | Способ извлечения высоковязких нефтей и природных битумов из залежи |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011139205/03A RU2475636C1 (ru) | 2011-09-27 | 2011-09-27 | Способ извлечения высоковязких нефтей и природных битумов из залежи |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2475636C1 true RU2475636C1 (ru) | 2013-02-20 |
Family
ID=49121029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011139205/03A RU2475636C1 (ru) | 2011-09-27 | 2011-09-27 | Способ извлечения высоковязких нефтей и природных битумов из залежи |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2475636C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2693208C2 (ru) * | 2017-12-08 | 2019-07-01 | федеральное государственное бюджетное образовательное учреждение высшего образования "Югорский государственный университет" | Способ стимулирования добычи высоковязкой или остаточной нефти |
RU2694983C1 (ru) * | 2018-05-18 | 2019-07-18 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Способ извлечения высоковязкой нефти и природного битума из залежи |
RU2705135C1 (ru) * | 2018-10-25 | 2019-11-05 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Методика комплексного выбора композиции растворителя для воздействия на битуминозную нефть |
RU2728176C1 (ru) * | 2019-12-13 | 2020-07-28 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ добычи трудноизвлекаемых запасов нефти |
RU2751762C1 (ru) * | 2016-08-28 | 2021-07-16 | Линде Акциенгезелльшафт | Неразделенная широкая фракция легких углеводородов для повышения нефтеотдачи |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1522081A1 (ru) * | 1987-11-23 | 1989-11-15 | Всесоюзный научно-исследовательский институт нефтепромысловой геофизики | Способ идентификации нефтей и нефтепродуктов |
RU2268362C1 (ru) * | 2004-08-02 | 2006-01-20 | Открытое акционерное общество "Шешмаойл" | Способ определения относительных дебитов совместно эксплуатируемых нефтяных пластов |
RU2304705C1 (ru) * | 2006-11-01 | 2007-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки неоднородной нефтяной залежи |
US20080011475A1 (en) * | 2006-07-14 | 2008-01-17 | Paul Daniel Berger | Oil recovery method employing amphoteric surfactants |
RU2372616C1 (ru) * | 2008-05-14 | 2009-11-10 | Учреждение Российской академии наук Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра РАН | Способ определения содержания смол в нефтях |
RU2429343C1 (ru) * | 2010-10-20 | 2011-09-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи |
-
2011
- 2011-09-27 RU RU2011139205/03A patent/RU2475636C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1522081A1 (ru) * | 1987-11-23 | 1989-11-15 | Всесоюзный научно-исследовательский институт нефтепромысловой геофизики | Способ идентификации нефтей и нефтепродуктов |
RU2268362C1 (ru) * | 2004-08-02 | 2006-01-20 | Открытое акционерное общество "Шешмаойл" | Способ определения относительных дебитов совместно эксплуатируемых нефтяных пластов |
US20080011475A1 (en) * | 2006-07-14 | 2008-01-17 | Paul Daniel Berger | Oil recovery method employing amphoteric surfactants |
RU2304705C1 (ru) * | 2006-11-01 | 2007-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки неоднородной нефтяной залежи |
RU2372616C1 (ru) * | 2008-05-14 | 2009-11-10 | Учреждение Российской академии наук Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра РАН | Способ определения содержания смол в нефтях |
RU2429343C1 (ru) * | 2010-10-20 | 2011-09-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2751762C1 (ru) * | 2016-08-28 | 2021-07-16 | Линде Акциенгезелльшафт | Неразделенная широкая фракция легких углеводородов для повышения нефтеотдачи |
RU2693208C2 (ru) * | 2017-12-08 | 2019-07-01 | федеральное государственное бюджетное образовательное учреждение высшего образования "Югорский государственный университет" | Способ стимулирования добычи высоковязкой или остаточной нефти |
RU2694983C1 (ru) * | 2018-05-18 | 2019-07-18 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Способ извлечения высоковязкой нефти и природного битума из залежи |
RU2705135C1 (ru) * | 2018-10-25 | 2019-11-05 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Методика комплексного выбора композиции растворителя для воздействия на битуминозную нефть |
RU2728176C1 (ru) * | 2019-12-13 | 2020-07-28 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ добычи трудноизвлекаемых запасов нефти |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9739125B2 (en) | Method for upgrading in situ heavy oil | |
RU2475636C1 (ru) | Способ извлечения высоковязких нефтей и природных битумов из залежи | |
Akbarzadeh et al. | Asphaltenes—problematic but rich in potential | |
Pei et al. | Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification | |
CA2693640C (en) | Solvent separation in a solvent-dominated recovery process | |
CA2721573C (en) | Solvent assisted oil recovery | |
RU2613214C2 (ru) | Способ получения характеристик углеводородных пласт-коллекторов | |
Jamaluddin et al. | Deasphalted oil: A natural asphaltene solvent | |
CA2767874C (en) | Process | |
RU2652774C2 (ru) | Система и способ извлечения нефти | |
Alian et al. | Study of asphaltene precipitation induced formation damage during CO 2 injection for a Malaysian light oil | |
RU2652049C1 (ru) | Способ газоциклической закачки жидкого диоксида углерода при сверхкритических условиях в нефтедобывающую скважину | |
Alade et al. | Review on applications of ionic liquids (ILs) for bitumen recovery: mechanisms, challenges, and perspectives | |
Yakubov et al. | Physical modeling of ultraviscous oil displacement by using solvent on a large model of oil reservoir | |
Su et al. | Interplay between rock permeability and the performance of huff-n-puff CO2 injection | |
Mullins et al. | Characterization of asphaltene transport over geologic time aids in explaining the distribution of heavy oils and solid hydrocarbons in reservoirs | |
CN104314525B (zh) | 一种利用油酸进行原位改质的火驱采油方法 | |
Oseghale et al. | Asphaltene deposition and remediation in crude oil production: solubility technique | |
RU2693208C2 (ru) | Способ стимулирования добычи высоковязкой или остаточной нефти | |
RU2728176C1 (ru) | Способ добычи трудноизвлекаемых запасов нефти | |
RU2694983C1 (ru) | Способ извлечения высоковязкой нефти и природного битума из залежи | |
Salehi-Moorkani et al. | Evaluation of Asphaltene Deposition Removal in Fractured Carbonate Reservoirs: a Case Study | |
Borisov et al. | Experimental Study of the Effect of Composite Solvent and Asphaltenes Contents on Efficiency of Heavy Oil Recovery Processes at Injection of Light Hydrocarbons | |
Mirzayi et al. | Prediction of solvent effect on asphaltene precipitation at reservoir conditions | |
Elkahky | Novel Approach to Predict and Model Asphaltene Precipitation and Deposition in Multiphase Flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190928 |