RU2474830C1 - Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот - Google Patents

Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот Download PDF

Info

Publication number
RU2474830C1
RU2474830C1 RU2011134175/28A RU2011134175A RU2474830C1 RU 2474830 C1 RU2474830 C1 RU 2474830C1 RU 2011134175/28 A RU2011134175/28 A RU 2011134175/28A RU 2011134175 A RU2011134175 A RU 2011134175A RU 2474830 C1 RU2474830 C1 RU 2474830C1
Authority
RU
Russia
Prior art keywords
cell
mhz
frequency range
coaxial line
cdp
Prior art date
Application number
RU2011134175/28A
Other languages
English (en)
Inventor
Павел Петрович Бобров
Андрей Владимирович Репин
Ольга Васильевна Кондратьева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный педагогический университет" (ОмГПУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный педагогический университет" (ОмГПУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный педагогический университет" (ОмГПУ)
Priority to RU2011134175/28A priority Critical patent/RU2474830C1/ru
Application granted granted Critical
Publication of RU2474830C1 publication Critical patent/RU2474830C1/ru

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости (КДП) жидких и сыпучих тел в широком диапазоне частот в одной ячейке, заполненной исследуемым веществом, используемой в диапазоне частот 100-4000 МГц как отрезок коаксиальной линии, а в диапазоне частот 1 кГц-1 МГц как цилиндрический конденсатор, при этом в диапазоне частот 100-4000 МГц комплексная диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны, а в диапазоне частот 100 Гц-1 МГц - через измерение полной проводимости, новым является то, что предварительно перед измерением КДП пустую ячейку помещают в дополнительный отрезок коаксиальной линии (фиг.1), внутренний диаметр внешнего проводника которой определяют по формуле
Figure 00000019
, где d - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, закороченной на выходе и производят его калибровку, для чего определяют параметры эквивалентной электрической схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 1 МГц-100 МГц определяют КДП по формулам, связывающим S11 с параметрами эквивалентной схемы. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне (1 кГц-6000 МГц). 5 ил.

Description

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристики веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества.
Известны способы измерения комплексной диэлектрической проницаемости (КДП) в различных частотных диапазонах. Так, на низких частотах, вплоть до частот 1-5 МГц, применяют конденсаторный метод с использованием измерителей импеданса (измерителей LCR). На частотах от 1 МГц до 100 МГц применяются различные модификации резонансных методов, основанные на использовании контуров с сосредоточенными параметрами и квазистационарных резонаторов. На частотах выше 100 МГц используются волноводные методы, основанные на измерении импеданса отрезка волноводной или коаксиальной линии, заполненной исследуемым веществом. Каждый из этих способов обеспечивает измерение диэлектрической проницаемости в относительно узкой полосе частот. Все эти способы описаны в (Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Изд-во физ.-мат.лит. 1963. 404 с.).
В последние десятилетия широко используют для измерения КДП векторные анализаторы цепей, измеряющие параметры матрицы рассеяния отрезка линии, заполненной исследуемым веществом (Weir W.В. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. // Proc. IEEE. 1974. Vol.62, No.1. P.33-37). При этом, как показано в работе (Gorriti A., Slob Е.A new tool for S-parameters measurements and permittivity reconstruction. // IEEE Geoscience and Remote Sensing. 2005. Vol.43. No.8. P.1727-1735.), для достижения приемлемой погрешности оптическая длина заполненного отрезка линии (произведение показателя преломления исследуемого вещества на геометрическую длину) должна превышать 1/5 длины волны. Поэтому для измерения КДП на частотах в диапазоне 300 кГц-100 МГц используют другие способы измерения - датчик в виде разомкнутого отрезка коаксиальной линии (Wagner N., Emmerich К., Bonitz F., Kupfer К. Experimental Investigations on the Frequency- and Temperature-Dependent Dielectric Material Properties of Soil // IEEE Transactions on Geoscience and Remote Sensing. 2011. Vol.49, No.7. P.2518-2530.) или другие способы, описанные в (Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Изд-во физ.-мат.лит. 1963. 404 с.).
При этом фактически измеряется уже другой образец, так как при заполнении разных ячеек одним и тем же сыпучим веществом не удается выдержать одинаковую плотность сложения, в результате чего измеренные значения КДП получаются разными.
Наиболее близким по технической сущности решением является способ измерения диэлектрической проницаемости жидкостей, основанный на измерении комплексного коэффициента передачи и комплексного коэффициента отражения электромагнитной волны (параметров матрицы рассеяния S11 и S12) от отрезка коаксиальной линии (ячейки) длиной 20 см, заполненного исследуемым веществом (Folgero K. Broad-band dielectric spectroscopy of low-permittivity fluids using one measurement cell. // IEEE Transactions on Instrumentation and Measurement. 1998. Vol.47. No.4. P.881-885).
Данный способ реализуют следующим образом.
Исследуемое вещество помещают в ячейку, представляющую собой отрезок коаксиальной линии с волновым сопротивлением 50 Ом и длиной 20 см. Через ячейку с веществом пропускают электромагнитные волны заданной частоты. При этом в диапазоне частот 100-6000 МГц с помощью векторного анализатора цепей измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) электромагнитной волны, распространяющейся в ячейке, и по формулам, связывающим параметр S12 с КДП, определяют КДП.
В диапазоне частот 10-100 МГц для уменьшения погрешности измерения КДП с помощью этого же векторного анализатора цепей измеряют комплексный коэффициент отражения (параметр матрицы рассеяния S11) от одного конца этой же ячейки при реализации на другом конце режима холостого хода и по формулам, связывающим параметр S11 с КДП, определяют КДП.
На частотах диапазона 1 кГц-10 МГц измеряют полную проводимость этой же ячейки с помощью измерителя полных импедансов (или проводимостей) и по формулам, связывающим полную проводимость с КДП, определяют последнюю.
Большим достоинством способа-прототипа является возможность измерения одного и того же образца, размещенного в ячейке, в широком диапазоне частот. Необходимость таких измерений возникает, например, при изучении свойств дисперсных сред, имеющих несколько частотных областей диэлектрической релаксации, при изучении диэлектрических свойств водо- и нефтенасыщенных горных пород, знание которых необходимо при проведении геологоразведочных работ.
Однако известный способ имеет существенный недостаток, заключающийся в высокой погрешности измерения КДП в диапазоне частот 10 МГц-100 МГц, так как влияние КДП вещества в ячейке, длина которой много меньше длины волны (на верхней частоте диапазона в 15 раз, а на нижней - в 150), на коэффициент отражения остается слабым. Кроме того, не всегда возможно использование ячейки длиной 20 см. При измерении температурной зависимости КДП она может не поместиться в термостат. При заполнении длинной ячейки сыпучим веществом возникающая неодинаковая плотность может приводить к неправильным измерениям КДП на частотах выше 1-2 ГГц.
Задачей заявляемого технического решения является разработка такого способа измерения комплексной диэлектрической проницаемости, который обеспечил бы высокую точность измерения во всем диапазоне частот (1 кГц-6000 МГц) при использовании ячеек меньшей длины.
Поставленная задача решается благодаря тому, что в заявляемом способе, как и в прототипе, исследуемое вещество помещают в ячейку, представляющую собой отрезок коаксиальной линии с волновым сопротивлением 50 Ом, через которую пропускают электромагнитные волны, при этом в диапазоне частот 1 кГц-1 МГц измеряют полную проводимость Yя ячейки как цилиндрического конденсатора, в диапазоне частот 100 МГц-6000 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) электромагнитной волны, распространяющейся в ячейке, и по формулам, связывающим Yя и S12 с КДП, соответственно, определяют КДП, а в диапазоне частот 1 МГц-100 МГц измеряют комплексный коэффициент отражения (параметр матрицы рассеяния S11), но в отличие от прототипа в заявляемом способе предварительно перед измерением КДП пустую ячейку помещают в дополнительный отрезок коаксиальной линии, внутренний диаметр внешнего проводника которой определяют по формуле
Figure 00000001
,
где d1 - внешний диаметр корпуса ячейки;
Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, закороченного на выходе, и производят калибровку этого отрезка (как измерительного средства), для чего определяют параметры эквивалентной электрической схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и измеряют КДП, которую в диапазоне частот 1 МГц-100 МГц определяют по формулам, связывающим ее с параметром S11 через предварительно рассчитанные параметры эквивалентной схемы при нахождении ячейки с исследуемым веществом в дополнительном отрезке коаксиальной линии.
На фиг.1 представлен эскиз измерительного устройства, используемого при реализации заявляемого способа, где 1 - ячейка, выполненная в виде отрезка коаксиальной линии и заполненная исследуемым веществом 2; 3 - дополнительный отрезок коаксиальной линии, в которую помещена ячейка 1; 4 - СВЧ разъем, служащий для подключения устройства к векторному анализатору цепей (не показан); 5 - опорные диэлектрические шайбы, расположенные в ячейке 1; 6 - опорная диэлектрическая шайба, расположенная в дополнительном отрезке 3 на его входе; 7 - место соединения корпуса ячейки 1 с внутренним проводником 8 дополнительного отрезка 3 коаксиальной линии, закороченной на выходе; l0 - расстояние между шайбами 5; l - расстояние между шайбой 6 и закороченным концом дополнительного отрезка 3.
На фиг.2а представлена эквивалентная электрическая схема измерительного устройства, изображенного на фиг.1, с включенной ячейкой 1. Здесь Eg и R0 - ЭДС и внутреннее сопротивление выхода векторного анализатора цепей, соответственно (R0=50 Ом); C1 - емкость между торцевой частью корпуса ячейки, расположенной в опорной диэлектрической шайбе 6; короткозамкнутая линия длиной l и волновым сопротивлением Z01 замещает дополнительный отрезок линии передачи 3, в разрыв центрального проводника которого включена ячейка;
На фиг.2б представлена эквивалентная схема того же измерительного устройства в виде цепи с сосредоточенными параметрами. Здесь Eg, R0 и C1 - те же, что и на фиг.2а; C0 - рабочая емкость ячейки 1 (емкость между шайбами 5 пустой ячейки 1); Cn - паразитная емкость, которая образована частями ячейки 1 за пределами исследуемого образца, включая опорные шайбы 5; G - активная проводимость рабочей части ячейки; L - индуктивность, образованная короткозамкнутым отрезком длиной l и волновым сопротивлением Z01.
На фиг.3 представлены результаты измерений действительной части КДП трансформаторного масла при температуре 25°C, измеренные в ячейке длиной 10,5 см. Маркерами 1 и 3 отмечены результаты, полученные при измерении КДП способом-прототипом; маркером 2 - результаты, полученные заявляемым способом; штриховыми линиями отмечены границы диапазона возможных значений КДП с учетом приборной погрешности.
На фиг.4 представлены результаты измерений в этой же ячейке действительной части КДП смеси песка с бентонитовой глиной в равных долях с объемной влажностью 0,09 м33 и плотностью 1,45 г/см3 при температуре 25°C. Маркерами 1 и 3 отмечены результаты, полученные при измерении КДП способом-прототипом; маркером 2 - результаты, полученные заявляемым способом; штриховыми линиями отмечены границы диапазона возможных значений КДП с учетом приборной погрешности.
На фиг.5 представлены результаты измерений удельной проводимости смеси песка с бентонитовой глиной в равных долях с объемной влажностью 0,09 м33 и плотностью 1,45 г/см3 при температуре 25°C. Маркерами 1 и 3 отмечены результаты, полученные при измерении КДП способом-прототипом; маркером 2 - результаты, полученные заявляемым способом; штриховыми линиями отмечены границы диапазона возможных значений КДП с учетом приборной погрешности.
Заявляемый способ реализуется следующим образом.
Сначала производят калибровку дополнительного отрезка 3 коаксиальной линии как измерительного устройства с помещенной внутри этой линии пустой ячейкой 1, для чего определяют параметры элементов Cl, Cn и L эквивалентной электрической схемы с сосредоточенными параметрами (см. фиг.2б).
Следует отметить, что представление эквивалентной электрической схемы в виде схемы с сосредоточенными параметрами возможно на частотах ниже 100 МГц, поскольку длина ячейки 1 и, соответственно, длина дополнительного отрезка 3 много меньше длины волны.
В этом случае ячейка 1, представляющая собой отрезок коаксиальной линии, может рассматриваться как цилиндрический конденсатор, полная проводимость Yя которого определяется по формуле (Хиппель А.Р. Диэлектрики и волны. - М.: Изд-во "Иностранная литература". 1960. 439 с.)
Figure 00000002
где
G - активная проводимость исследуемого вещества;
j - мнимая единица;
ω - циклическая частота;
СП - паразитная емкость, образованная частями ячейки 1, включающими опорные шайбы 5, за пределами исследуемого образца 2;
ε' - действительная часть КДП вещества, находящегося в ячейке 1;
Figure 00000003
- рабочая емкость цилиндрического конденсатора (отрезка пустой ячейки 1 между опорными шайбами 5);
ε0=8,85·10-12 Ф/м - электрическая постоянная;
D - внутренний диаметр внешнего проводника ячейки 1;
d - внешний диаметр центрального проводника ячейки 1;
l0 - расстояние между шайбами 5;
при этом активная проводимость (действительная часть комплексной проводимости Yя) определяется по формуле
Figure 00000004
,
где σ - удельная проводимость исследуемого вещества.
Индуктивность L короткозамкнутого дополнительного отрезка связана с его длиной l и волновым сопротивлением Z01 (см. фиг.2а) соотношением (Мейнке X., Гундлах Ф.В. Радиотехнический справочник. - М.-Л.: Госэнергоиздат, 1960. 416 с):
Figure 00000005
Откуда
Figure 00000006
с - скорость света в вакууме.
Емкость C1 определяется при калибровке дополнительного отрезка 3 коаксиальной линии с расположенной в ней пустой ячейкой 1.
Комплексный коэффициент отражения (параметр матрицы рассеяния S11) от участка АВ эквивалентной схемы (фиг.2б), измеряемой с помощью векторного анализатора цепей, равен (Матей Г.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. Т.1. - М.: Связь, 1971. - 440 с.):
Figure 00000007
где ZAB - импеданс цепи, показанной на рис.2б, между точками A и B.
Из выражения (3) получаем
Figure 00000008
С другой стороны,
Figure 00000009
,
откуда
Figure 00000010
Подставляя в (5) значение ZAB из (4), определяемое через измеренные значения параметра матрицы рассеяния S11, находим полную проводимость ячейки и разделяем ее на действительную и мнимую части:
Figure 00000011
Из (1) получаем
Figure 00000012
Figure 00000013
При осуществлении калибровки сначала пустую (вещество - воздух с диэлектрической проницаемостью
Figure 00000014
и удельной проводимостью σ=0) ячейку 1 подключают к измерителю полной проводимости как цилиндрический конденсатор и измеряют мнимую часть
Figure 00000015
полной проводимости ячейки 1. Паразитную емкость СП находят с помощью формулы
Figure 00000016
полученной из формулы (6).
Далее пустую ячейку 1 помещают в дополнительный отрезок 2 коаксиальной линии, как показано на фигуре 1, и с помощью СВЧ разъема 4 и кабеля присоединяют к разъему векторного анализатора цепей (не показано) и на частотах в диапазоне 1-100 МГц измеряют комплексный коэффициент отражения (параметр матрицы рассеяния S11).
Определив по формуле (2) начальное значение L и приняв начальное значение рабочей емкости C1=0 методом минимизации невязки между измеренными и вычисленными по формуле (3) значениями параметра S11, подбирают такие значения C1 и L, при которых ε' максимально приближается к единице, а σ - к нулю. В результате подбора значений C1 и L полученное значение диэлектрической проницаемости воздуха в диапазоне частот 2-100 МГц может отличаться от единицы не более чем на 0,8%, а на частоте 1-2 МГц отклонение составляет ≈3%.
После осуществления калибровки ячейку 1 заполняют веществом, КДП которого необходимо измерить в широком диапазоне частот. Измеряют полную проводимость.
При измерении КДП в диапазоне частот 1 кГц-1 МГц ячейку 1, заполненную исследуемым веществом, подключают к измерителю полных проводимостей как цилиндрический конденсатор, измеряют полную проводимость Yя ячейки 1 и по формулам (6) и (7) с использованием найденного при калибровке значения СП находят действительную часть КДП ε' и удельную проводимость σ вещества.
В диапазоне частот 1-100 МГц ячейку 1, помещенную в дополнительный отрезок 3 коаксиальной линии, подключают к векторному анализатору цепей и измеряют комплексный коэффициент отражения (параметр матрицы рассеяния S11). Затем, используя найденные при калибровке значения СП, C1, L, по формулам (4) и (5) определяют полную проводимость ячейки 1, а с помощью формул (6) и (7) находят ε' и σ.
При измерении КДП в диапазоне 100-6000 МГц ячейку 1 подключают к векторному анализатору цепей и измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и с использованием формул, приведенных в работе (Эпов М.И., Миронов В.Л., Бобров П.П., Савин И.В., Репин А.В. Исследование диэлектрической проницаемости нефтесодержащих пород в диапазоне частот 0,05-16 ГГц. // Геология и геофизика, 2009. Т.50. №.5. С.613-618), методом минимизации невязки между измеренными и вычисленными значениями параметра S12 находят значения комплексной диэлектрической проницаемости
Figure 00000017
.
Результаты, приведенные на фиг.3, показывают, что относительная погрешность измерения малых значений (около 2) действительной части КДП Δε'/ε' в диапазоне частот 20-70 МГц не превышает 0,5%, на частотах 10 и 100 МГц она составляет 1%, на частоте 1 МГц - 8%. Абсолютная погрешность измерения удельной проводимости составляет около 5·10-4 См/м, т.е. также лучше, чем погрешность, получаемая по методу-прототипу, несмотря на использование более короткой ячейки.
Относительная погрешность измерения больших значений (около 10 в диапазоне 1-70 МГц) действительной части КДП (см. фиг.4) на частоте 1 МГц составляет 0,2%, возрастая до 3% на частоте 100 МГц. Абсолютная погрешность измерения удельной проводимости составляет около 6·10-4 См/м.
Таким образом, благодаря всей совокупности признаков заявляемого технического решения обеспечивается измерение комплексной диэлектрической проницаемости, как и в прототипе, в одной ячейке в диапазоне частот 1 кГц-6000 МГц, при этом достигается, в отличие от прототипа, низкая погрешность измерения во всем частотном диапазоне, даже при использовании ячейки меньшей длины.

Claims (1)

  1. Способ измерения комплексной диэлектрической проницаемости (КДП) жидких и сыпучих веществ в широком (1 кГц-6000 МГц) диапазоне частот, включающий в себя размещение исследуемого вещества в ячейку, представляющую собой отрезок коаксиальной линии с волновым сопротивлением 50 Ом, через которую пропускают электромагнитные волны, при этом в диапазоне частот 1 кГц-1 МГц измеряют полную проводимость (YЯ) ячейки как цилиндрического конденсатора, в диапазоне частот 100 МГц-6000 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12 электромагнитной волны, распространяющейся в ячейке) и по формулам, связывающим YЯ и S12 с КДП соответственно, определяют КДП, а в диапазоне частот 1 МГц-100 МГц измеряют комплексный коэффициент отражения (параметр матрицы рассеяния S11), отличающийся тем, что предварительно перед измерением КДП пустую ячейку помещают в дополнительный отрезок коаксиальной линии, внутренний диаметр внешнего проводника которой определяют по формуле:
    Figure 00000018
    ,
    где d - внешний диаметр корпуса ячейки;
    Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, закороченной на выходе и производят его калибровку, для чего определяют параметры эквивалентной электрической схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 1 МГц-100 МГц определяют КДП по формулам, связывающим S11 с параметрами эквивалентной схемы.
RU2011134175/28A 2011-08-12 2011-08-12 Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот RU2474830C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011134175/28A RU2474830C1 (ru) 2011-08-12 2011-08-12 Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011134175/28A RU2474830C1 (ru) 2011-08-12 2011-08-12 Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот

Publications (1)

Publication Number Publication Date
RU2474830C1 true RU2474830C1 (ru) 2013-02-10

Family

ID=49120529

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011134175/28A RU2474830C1 (ru) 2011-08-12 2011-08-12 Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот

Country Status (1)

Country Link
RU (1) RU2474830C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660284C1 (ru) * 2017-07-19 2018-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ измерения частотного спектра комплексной диэлектрической проницаемости
RU217882U1 (ru) * 2023-01-20 2023-04-24 Федеральное государственное бюджетное учреждение науки Омский научный центр Сибирского отделения Российской академии наук (ОНЦ СО РАН) Устройство для измерения спектров диэлектрической проницаемости почв на основе симметричной полосковой линии

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1661676A1 (ru) * 1988-12-05 1991-07-07 Институт кибернетики им.В.М.Глушкова Способ определени комплексной диэлектрической проницаемости
JPH05157784A (ja) * 1991-12-10 1993-06-25 Fuji Elelctrochem Co Ltd 誘電率測定方法
RU2046351C1 (ru) * 1991-11-25 1995-10-20 Военный объединенный совет Всероссийского общества изобретения и рационализаторов Способ определения комплексных диэлектрической и магнитной проницаемостей радиопоглощающих материалов
RU2231078C1 (ru) * 2002-12-15 2004-06-20 Ульяновский государственный технический университет Способ измерения больших значений комплексной диэлектрической проницаемости импедансных материалов на свч и устройство для его осуществления
JP2006071546A (ja) * 2004-09-03 2006-03-16 Mitsubishi Electric Corp 周波数特性評価装置、sパラメータ測定器、tdr波形測定器、および周波数特性評価装置用のプログラム
US20070085552A1 (en) * 2003-10-31 2007-04-19 Tdk Corporation Method of measuring relative dielectric constant of dielectric substance of powders, cavity resonator used in the same, and application apparatus
US20080007274A1 (en) * 2004-12-22 2008-01-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor using the capacitive measuring principle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1661676A1 (ru) * 1988-12-05 1991-07-07 Институт кибернетики им.В.М.Глушкова Способ определени комплексной диэлектрической проницаемости
RU2046351C1 (ru) * 1991-11-25 1995-10-20 Военный объединенный совет Всероссийского общества изобретения и рационализаторов Способ определения комплексных диэлектрической и магнитной проницаемостей радиопоглощающих материалов
JPH05157784A (ja) * 1991-12-10 1993-06-25 Fuji Elelctrochem Co Ltd 誘電率測定方法
RU2231078C1 (ru) * 2002-12-15 2004-06-20 Ульяновский государственный технический университет Способ измерения больших значений комплексной диэлектрической проницаемости импедансных материалов на свч и устройство для его осуществления
US20070085552A1 (en) * 2003-10-31 2007-04-19 Tdk Corporation Method of measuring relative dielectric constant of dielectric substance of powders, cavity resonator used in the same, and application apparatus
JP2006071546A (ja) * 2004-09-03 2006-03-16 Mitsubishi Electric Corp 周波数特性評価装置、sパラメータ測定器、tdr波形測定器、および周波数特性評価装置用のプログラム
US20080007274A1 (en) * 2004-12-22 2008-01-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor using the capacitive measuring principle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Folgero K. Broad-band dielectric spectroscopy of low-permittivity fluids using one measurement cell // IEEE Transactions on Instrumentation and Measurement. 1998. Vol.47. No.4. P.881-885. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660284C1 (ru) * 2017-07-19 2018-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ измерения частотного спектра комплексной диэлектрической проницаемости
RU217882U1 (ru) * 2023-01-20 2023-04-24 Федеральное государственное бюджетное учреждение науки Омский научный центр Сибирского отделения Российской академии наук (ОНЦ СО РАН) Устройство для измерения спектров диэлектрической проницаемости почв на основе симметричной полосковой линии
RU2810948C1 (ru) * 2023-06-07 2024-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный педагогический университет" Устройство для измерения спектров диэлектрической проницаемости почв в широкой полосе частот на основе симметричной полосковой линии

Similar Documents

Publication Publication Date Title
Bobrov et al. Wideband frequency domain method of soil dielectric property measurements
US8947102B1 (en) Soil water and conductivity sensing system
Curtis Moisture effects on the dielectric properties of soils
CN105137199B (zh) 基于网络分析仪的介质介电常数测量方法
WO2007018434A1 (en) A method and apparatus for measuring the water conductivity and water volume fraction of a multiphase mixture containing water
US9366613B2 (en) Matrix permitivity determination
Bohleber et al. Permittivity of ice at radio frequencies: Part I. Coaxial transmission line cell
Gorriti et al. A new tool for accurate S-parameters measurements and permittivity reconstruction
González-Teruel et al. Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe
RU2509315C2 (ru) Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ
Casanova et al. Design of access-tube TDR sensor for soil water content: Testing
Schwing et al. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses
Epov et al. Dielectric relaxation in oil-bearing clayey rocks
RU2474830C1 (ru) Способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ в широком диапазоне частот
CN108680614A (zh) 双螺旋高频电容传感器高含水油水两相流持水率测量方法
Kordzadeh et al. Permittivity measurement of liquids, powders, and suspensions using a parallel‐plate cell
Roy et al. Coaxial microwave resonant sensor design for monitoring ionic concentration in aqueous solutions
Farhat et al. Measuring the dielectric properties of soil: a review and some innovative proposals
RU159796U1 (ru) Устройство для определения влажности почвы
Dilman et al. Effects of calibration process on complex dielectric permittivity measurements with open-ended coaxial probes
Starr et al. Soil water content determination using a network analyzer and coaxial probe
Frangi et al. New in situ techniques for the estimation of the dielectric properties and moisture content of soils
RU2626458C1 (ru) Способ измерения физических свойств жидкости
RU2570600C1 (ru) Способ моделирования при разработке антенн
RU2660284C1 (ru) Способ измерения частотного спектра комплексной диэлектрической проницаемости

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140813

NF4A Reinstatement of patent

Effective date: 20150510