RU2472717C1 - Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы - Google Patents

Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы Download PDF

Info

Publication number
RU2472717C1
RU2472717C1 RU2011128703/05A RU2011128703A RU2472717C1 RU 2472717 C1 RU2472717 C1 RU 2472717C1 RU 2011128703/05 A RU2011128703/05 A RU 2011128703/05A RU 2011128703 A RU2011128703 A RU 2011128703A RU 2472717 C1 RU2472717 C1 RU 2472717C1
Authority
RU
Russia
Prior art keywords
water
cont
treatment
modules
water treatment
Prior art date
Application number
RU2011128703/05A
Other languages
English (en)
Inventor
Александр Викторович Рощин
Илья Владимирович Кумпаненко
Валерий Викторович Усин
Валерий Алексеевич Пашинин
Александр Викторович Павлов
Original Assignee
Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2011128703/05A priority Critical patent/RU2472717C1/ru
Application granted granted Critical
Publication of RU2472717C1 publication Critical patent/RU2472717C1/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение может быть использовано при разработке автоматизированных установок для очистки промышленных сточных вод, а также для водоподготовки и организации питьевого водоснабжения. Система автоматического управления включает модули водоочистки, датчики, регистрирующие параметры процесса в различных точках технологической схемы, клапаны-задвижки, переключающие потоки воды в заданных направлениях, и соединенный с компьютером электронный блок управления, принимающий сигналы от датчиков и посылающий сигналы на клапаны-задвижки. Система содержит несколько сменных модулей водоочистки разной глубины очистки для возможности осуществления многоступенчатой водоочистки, на выходе из которых установлены датчики, непрерывно регистрирующие качество воды по концентрации загрязняющих веществ. На входе в систему установлен датчик, непрерывно регистрирующий качество поступающей в систему исходной воды. На линиях потоков воды установлены клапаны-задвижки, управляемые электронным блоком управления и направляющие потоки очищаемой воды в модули водоочистки разной глубины очистки в разных сочетаниях в зависимости от степени загрязненности исходной воды. Система позволяет непрерывно проводить анализ качества воды по содержанию в ней загрязняющих веществ в различных точках технологической схемы и использовать эти данные для оперативной оптимизации процесса водоочистки. 1 з.п. ф-лы, 8 ил., 2 табл.

Description

Изобретение относится к области автоматизации систем водоочистки и может быть использовано при разработке установок для очистки промышленных сточных вод, хозяйственно-бытовых сточных вод, дренажных вод с орошаемых земель, организованных и неорганизованных стоков с территорий населенных пунктов и промышленных площадок, сельскохозяйственных полей и крупных животноводческих комплексов, а также для водоподготовки и организации питьевого водоснабжения.
На протяжении последнего десятилетия резко возросло количество патентов, в которых предлагаются в зависимости от назначения очищаемой воды различные способы и автоматические устройства для водоочистки. Например, станция очистки оборотной воды для плавательных бассейнов, включающая озонатор для обеззараживания воды (RU 2180324, C02F 9/04, 10.03.2002), портативный очиститель воды фильтрацией через адсорбент с последующей обработкой УФ-светом (US 7632397, C02F 1/32, 15.12.2009), способ и устройство для очистки воды путем комбинированной обработки ультразвуком и озоном (US 7384563, C02F 1/20, C02F 1/36, C02F 1/78, 10.06.2008), автоматический комплекс очистки нефтесодержащих сточных вод (RU 2235069, C02F 9/08, 27.08.2004), установка очистки природной воды для приготовления питьевой и пищевой воды высокого качества, включающая холодильник с теплообменником для удаления тяжелых изотопных модификаций воды путем их кристаллизации (RU 2332355, C02F 1/22, C02F 9/04, C02F 1/78, 20.09.2007), и др.
Недостатком известных устройств является отсутствие контроля качества воды в процессе очистки и невозможность автоматического регулирования качества очищаемой воды по содержанию в ней вредных веществ.
Наиболее близкой к предлагаемой системе автоматического управления технологическим процессом очистки воды является система автоматического управления технологическим процессом очистки воды на скорых фильтрах (RU 2322283, кл. B01D 24/48, B01D 37/04, 20.04.2008 - прототип). Система-прототип содержит фильтр с зернистой загрузкой, работающий в режиме периодической промывки (модуль очистки), датчик уровня воды в фильтре, датчик потери напора, измеряющий разность давлений воды до и после фильтра; датчики расхода и давления воды на линии промывной воды и датчик расхода фильтрата на линии фильтрата. Все датчики соединены с контроллерным шкафом управления (электронным блоком управления), принимающим от них сигналы. Контроллерный шкаф в свою очередь управляет работой промывного насоса (через преобразователь частоты в питающей сети его электродвигателя), затвора (клапана), установленного на линии фильтрата, и пяти задвижек (клапанов) на пяти линиях: линии подачи исходной воды на фильтрование, линии фильтрата, линии промывной воды и линиях канализации и повторного использования воды. Контроллерный шкаф (электронный блок управления) соединен с компьютером, отображающим информацию о процессе очистки воды. При достижении предельно допустимого значения потери напора воды в фильтре (что указывает на загрязнение загрузки фильтра) датчик потери напора посылает об этом сигнал на контроллерный шкаф. После получения такого сигнала контроллерный шкаф перекрывает поступление исходной воды на фильтр, открывает задвижку на линии промывной воды и включает преобразователь частоты промывного насоса до окончания промывки загрузки фильтра.
Главным достоинством системы-прототипа является возможность автоматического переключения фильтра из режима фильтрования в режим промывки и обратно, что позволяет повысить качество управления технологическим процессом очистки воды.
Недостатками системы-прототипа являются отсутствие контроля качества воды в различных точках технологической схемы и, соответственно, невозможность управления режимами работы установки на основе данных о содержании загрязняющих веществ в очищаемой воде.
Задачей изобретения является разработка системы автоматического оперативного управления технологическим процессом очистки воды от загрязняющих веществ, которая позволит непрерывно проводить анализ качества воды по содержанию в ней загрязняющих веществ в различных точках технологической схемы и использовать эти данные для оптимизации процесса водоочистки.
Решение поставленной задачи достигается предлагаемой системой автоматического управления технологическим процессом очистки воды, включающей модули водоочистки, датчики, регистрирующие параметры процесса в различных точках технологической схемы, клапаны-задвижки, переключающие потоки воды в заданных направлениях, соединенный с компьютером электронный блок управления, принимающий сигналы от датчиков и посылающий сигналы на клапаны-задвижки, которая, согласно изобретению, содержит несколько сменных модулей водоочистки разной глубины очистки для возможности осуществления многоступенчатой водоочистки, на выходе из которых установлены датчики, непрерывно регистрирующие качество воды по концентрации загрязняющих веществ, на входе в систему установлен датчик, непрерывно регистрирующий качество поступающей в систему исходной воды, а на всех линиях потоков воды в системе установлены клапаны-задвижки, управляемые электронным блоком управления и направляющие потоки очищаемой воды в один или несколько модулей водоочистки в зависимости от сигналов датчиков контроля качества воды.
В компьютерную программу управления клапанами-задвижками введены пороговые значения концентраций загрязняющих веществ на различных ступенях водоочистки, что позволяет направлять потоки очищаемой воды через модули водоочистки разной глубины очистки в любых сочетаниях и в любой последовательности как при возрастании загрязненности поступающей в систему исходной воды и превышении пороговых значений, так и при уменьшении загрязненности поступающей в систему исходной воды.
Блок-схема предлагаемой системы автоматического управления технологическим процессом очистки воды на примере трехступенчатой водоочистки приведена на фиг.1. Система автоматического управления содержит три сменных модуля разной глубины водоочистки: модуль грубой очистки M1 (1), средней - М2 (2) и тонкой водоочистки - М3 (3). На выходе каждого модуля установлены датчики А1 (4), А2 (5), A3 (6), непрерывно регистрирующие качество воды по концентрации загрязняющих веществ. На входе в систему установлен датчик А0 (7). непрерывно регистрирующий качество поступающей в систему исходной воды. Движение воды по системе регулируется клапанами-задвижками К0 (8), К1 (9), К2 (10), К3 (11), К4 (12), К5 (13), К6 (14), К7 (15), К8 (16), К9 (17), управляемыми соединенным с компьютером электронным блоком управления ЦБУ (18).
В качестве датчиков А0, A1, А2, A3 можно использовать быстродействующие высокочувствительные фотоэлектрические анализаторы качества воды, работающие в широком диапазоне длин волн. Спектральные характеристики датчиков-анализаторов А0, A1, А2, A3 выбираются в зависимости от качества исходной воды и требуемой глубины очистки. Чувствительность анализаторов достаточна для регистрации загрязнений до уровня 0,5 ПДК.
В компьютерную программу ЦБУ для управления клапанами-задвижками К0, К1, К2, К3, К4, К5, К6, К7, К8, К9 введены пороговые значения концентраций загрязняющих веществ (контаминантов) на различных ступенях водоочистки: k0cont, соответствующее максимально допустимому загрязнению исходной воды, поступающей в систему очистки, и k1cont, k2cont, k3cont, соответствующие максимально допустимому загрязнению воды после процедуры ее очистки в модулях M1, М2, М3, соответственно; k0cont>k1cont>k2cont>k3cont. При превышении показаний датчика А0 пороговой величины k0cont включается сигнал тревоги, и поступление исходной воды в систему автоматически отключается. В зависимости от сигналов датчиков контроля качества воды А0, A1, А2, A3 - превышают их показания пороговые значения концентраций контаминантов k1cont, k2cont, k3cont, или вода является более чистой, предлагаемая система автоматического управления технологическим процессом очистки воды будет работать в различных режимах, в которых функционирует разное число очистных модулей в различных сочетаниях.
Предлагаемая система автоматического управления технологическим процессом очистки воды на примере трехступенчатой водоочистки работает следующим образом.
А. Последовательность режимов работы при возрастании загрязненности поступающей в систему исходной воды.
Алгоритм работы системы в указанных режимах представлен на фиг.2, параметры алгоритма приведены в таблице 1. На фиг.2 номера условий соответствуют номерам условий во втором столбце таблицы 1, базирующихся на показаниях датчиков-анализаторов А0, A1, А2, A3, приведенных в столбцах 3-6 таблицы 1.
Figure 00000001
* Примечания:
1. Показания, равные 0, для А1 и А2 в столбцах 4 и 5 означают, что датчики-анализаторы А1 и А2 отключены, так как отключены модули очистки M1 и М2.
2. К0, …К9 (+/-) - клапан включен/выключен.
3. M1, М2, М3 (+/-) - модуль очистки подключен/отключен.
4. OK - продолжается работа в этом режиме.
5. ALARM - сигнал тревоги; работа системы прекращается, все клапаны К0, …К9 ставятся в положение «выключено».
Режим 0 - так обозначен режим работы системы при полностью отключенных модулях очистки, так как качество исходной воды достаточно высокое, что подтверждается показаниями датчика А0 (7): kcont≤k3cont - то есть содержание загрязняющих веществ в поступающей в систему исходной воде меньше (или равно) минимального порогового значения k3cont. На фиг.3 показано состояние системы в нулевом режиме работы: включены клапаны К0 (8), К6 (14), К7 (15), К8 (16), клапаны К1 (9), К2 (10), К3 (11), К4 (12), К5 (13), К9 (17) выключены. На данной и последующих фигурах включенные клапаны показаны белым цветом, а выключенные - черным.
Режим 1 - согласно показаниям датчика А0 (7) содержание загрязняющих веществ в исходной воде возросло до величины, превышающей пороговое значение k3cont, но оно меньше (или равно) порогового значения k2cont: k3cont≤kcont≤k2cont. Автоматически включается модуль очистки М3 (3) - это происходит в результате включения клапанов К0 (8), К4 (12), К5 (13), К7 (15), К8 (16) и выключения клапанов К1 (9), К2 (10), К6 (11), К6 (14), К9 (17) по команде, отданной из ЦБУ (18) (см. фиг.4). В режиме 1 система работает в течение всего времени, пока показания анализатора А0 (7) соответствуют условию: k3cont≤kcont≤k2cont, а анализатора A3 (6) условию: kcont≤k3cont. Если показания на А0 (7) остаются неизменными (k3cont≤kcont≤k2cont), а на A3 (6) обнаруживается превышение минимального 3-го порогового значения: kcont≥k3cont, это означает, что модуль М3 (3) не справляется со своими функциями и требует замены.
Режим 2 - согласно показаниям датчика А0 (7) содержание загрязняющих веществ в исходной воде возросло до величины, превышающей 2-е пороговое значение k2cont, но оно меньше (или равно) первого порогового значения k1cont: k2cont≤kcont≤k1cont. Автоматически включается, дополнительно к работающему модулю очистки М3 (3), модуль очистки М2 (2) - это происходит в результате включения клапанов К0 (8), К1 (9), К2 (10), К5 (13), К7 (15) и выключения клапанов К3 (11), К4 (12), К6 (14), К8 (16), К9 (17) по команде, отданной из ЦБУ (18) (см. фиг.5). В режиме 2 система работает, пока анализатор А2 (5) показывает kcont≤k2cont, а анализатор A3 (6) - kcont≤k3cont. При показаниях анализаторов: А2 - kcont≤k2cont и A3 - k3cont≤kcont≤k2cont требуется заменить модуль М3, а при показаниях этих же анализаторов А2 и A3 - kcont≥k2cont заменяется модуль М2.
Режим 3 - согласно показаниям датчика А0 (7) содержание загрязняющих веществ в исходной воде возросло до величины, превышающей 1-е пороговое значение k1cont, но оно меньше максимально допустимого загрязнения исходной воды k0cont: k1cont≤kcont≤k0cont. Автоматически включаются клапаны К1 (9), К5 (13), К7 (15), К9 (17) и выключаются клапаны К0 (8), К2 (10), К3 (11), К4 (12), К6 (14), К8 (16). В этом режиме в системе работают все три модуля очистки: M1 (1), М2 (2), М3 (3) (см. фиг.6). В соответствии с показаниями датчиков-анализаторов (условия см. в таблице 1), как и при работе в режимах 1 и 2, производится замена модулей очистки М3, М2, M1. В случае, когда загрязнение исходной воды превышает максимально допустимое для данной системы: kcont≥k0cont, раздается сигнал тревоги, и водоочистная система отключается.
Б. Последовательность режимов работы при убывании загрязненности поступающей в систему исходной воды
Алгоритм работы системы в данных режимах представлен на фиг.7, параметры алгоритма приведены в таблице 2. На фиг.7 номера условий соответствуют номерам условий во втором столбце таблицы 2, базирующихся на показаниях датчиков-анализаторов А0, A1, А2, A3, приведенных в столбцах 3-6 таблицы 2.
Figure 00000002
Режим 3 - рассмотрение начинаем с режима очистки, когда исходная вода максимально загрязнена (при условии, что уровень загрязнения не превышает порогового значения k0cont) и включены все очищающие модули M1 (1), М2 (2), М3 (3) (см. фиг.6). При этом клапаны К1 (9), К5 (13), К7 (15), К9 (17) включены, а клапаны К0 (8), К2 (10), К3 (11), К4 (12), К6 (14), К8 (16) выключены. Если показания уровня загрязнения на анализаторах А0 (7), А1 (4), А2 (5), A3 (6) равны: k1cont≤kcont≤k0cont, kcont≤k1cont, kcont≤k2cont, kcont≤k3cont, соответственно, то режим работы системы остается неизменным.
Режим 2 - как только уровень загрязнения исходной воды снизился - показания анализатора А0 (7) равны k2cont≤kcont≤k1cont - система автоматически переходит на рабочий режим 2 с функционирующими модулями М2 (2) и М3 (3) (модуль M1 (1) отключается), в котором клапаны К0 (8), К1 (9), К2 (10), К5 (13), К7 (15) включены, а клапаны К3 (11), К4 (12), К6 (14), К8 (16), К9 (17) выключены (см. фиг.5). В течение всего времени, пока показания анализаторов А0 (7), А2 (5), A3 (6) равны k2cont≤kcont≤k1cont, kcont≤k2cont, kcont≤k3cont, соответственно, система остается в данном режиме очистки.
Режим 1 - если уровень загрязнения исходной воды продолжает снижаться - показания анализатора А0 (7) равны k3cont≤kcont≤k2cont - система переключается в рабочий режим 1 с только одним работающим модулем очистки - модулем тонкой водоочистки М3 (3). Для этого автоматически включаются клапаны К0 (8), К4 (12), К5 (13), К7 (15), К8 (16) и выключаются клапаны К1 (9), К2 (10), К3 (11), К6 (14), К9 (17) (см. фиг.4). В этом состоянии система остается, пока на анализаторах А0 (7) и A3 (6) имеются показания k3cont≤kcont≤k2cont и kcont≤k3cont, соответственно.
Режим 0 - когда уровень загрязнения исходной воды становится ниже минимального порогового значения - показания анализатора А0 (7) равны (или меньше) kcont≤k3cont - исходная вода, минуя все выключенные модули очистки, поступает на выход, то есть включены клапаны К0 (8), К6 (14), К7 (15), К8 (16) и выключены клапаны К1 (9), К2 (10), К3 (11), К4 (12), К5 (13), К9 (17) (см. фиг.3).
Очевидно, что если в процессе работы системы качество исходной воды начнет ухудшаться, система автоматически переключится в состояние, соответствующее алгоритму работы при возрастании загрязненности (см. выше).
Алгоритмы работы системы при возрастании загрязненности (фиг.2) и при убывании загрязненности (фиг.7) могут быть объединены в единый алгоритм. Такой алгоритм для рассмотренного примера блочно-модульной установки трехуровневой водоочистки приведен на фиг.8.
Таким образом, предлагаемая система автоматического управления технологическим процессом очистки воды позволяет непрерывно проводить анализ качества воды по содержанию в ней загрязняющих веществ в различных точках технологической схемы и использовать эти данные для оперативной оптимизации процесса водоочистки.

Claims (2)

1. Система автоматического управления технологическим процессом очистки воды, включающая модули водоочистки, датчики, регистрирующие параметры процесса в различных точках технологической схемы, клапаны-задвижки, переключающие потоки воды в заданных направлениях, соединенный с компьютером электронный блок управления, принимающий сигналы от датчиков и посылающий сигналы на клапаны-задвижки, отличающаяся тем, что она содержит несколько сменных модулей водоочистки разной глубины очистки для возможности осуществления многоступенчатой водоочистки, на выходе из которых установлены датчики, непрерывно регистрирующие качество воды по концентрации загрязняющих веществ, на входе в систему установлен датчик, непрерывно регистрирующий качество поступающей в систему исходной воды, а на всех линиях потоков воды в системе установлены клапаны-задвижки, управляемые электронным блоком управления и направляющие потоки очищаемой воды в один или несколько модулей водоочистки в зависимости от сигналов датчиков контроля качества воды.
2. Система автоматического управления по п.1, отличающаяся тем, что в компьютерную программу управления клапанами-задвижками введены пороговые значения концентраций загрязняющих веществ на различных ступенях водоочистки, что позволяет направлять потоки очищаемой воды через модули водоочистки разной глубины очистки в любых сочетаниях и в любой последовательности как при возрастании загрязненности поступающей в систему исходной воды и превышении пороговых значений, так и при уменьшении загрязненности поступающей в систему исходной воды.
RU2011128703/05A 2011-07-12 2011-07-12 Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы RU2472717C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011128703/05A RU2472717C1 (ru) 2011-07-12 2011-07-12 Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011128703/05A RU2472717C1 (ru) 2011-07-12 2011-07-12 Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы

Publications (1)

Publication Number Publication Date
RU2472717C1 true RU2472717C1 (ru) 2013-01-20

Family

ID=48806461

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011128703/05A RU2472717C1 (ru) 2011-07-12 2011-07-12 Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы

Country Status (1)

Country Link
RU (1) RU2472717C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2652208C2 (ru) * 2015-10-28 2018-04-25 Сяоми Инк. Способ и устройство (варианты) управления подачей воды в водоочистительной установке
RU2656049C2 (ru) * 2016-08-15 2018-05-30 Общество с ограниченной ответственностью "Новый поток - Центр" Установка комплексной водоочистки универсальная мобильная автоматизированная УМКВА-1
RU2680991C2 (ru) * 2014-07-24 2019-03-01 Фошань Вайоми Электрикал Текнолоджи Ко., Лтд. Система водоочистки и способ контроля и администрирования фильтрующих элементов на основе системы водоочистки
RU2749271C1 (ru) * 2019-05-16 2021-06-07 Общество с ограниченной ответственностью "ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ "АВЕРС-СЕРВИС" Система управления узлами универсальной модульной автоматической установки очистки воды и способ управления узлами универсальной модульной автоматической установки очистки воды на ее основе
CN113816522A (zh) * 2021-09-16 2021-12-21 南方智水科技有限公司 一体化智慧集成水厂设备
RU2763132C1 (ru) * 2021-03-13 2021-12-27 Сергей Яковлевич Чернин Система мониторинга концентрации загрязняющих веществ, в том числе нефтепродуктов, в сточных водах и управления работой очистных сооружений предприятий
CN116059681A (zh) * 2023-03-07 2023-05-05 福建省龙德新能源有限公司 用于控制结晶成核的超声控制方法及其系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2028646A6 (es) * 1991-02-13 1992-07-01 Box Marine S A Estacion modular y automatica de separacion y control de efluentes contaminados por hidrocarburos en general.
RU2170606C1 (ru) * 1999-10-18 2001-07-20 ЗАО "Мембраны" Передвижной исследовательский автоматизированный комплекс для проектирования технологических схем
RU29158U1 (ru) * 2003-01-30 2003-04-27 Подопригора Сергей Павлович Система управления подготовкой котловой воды
WO2003106003A1 (en) * 2002-06-12 2003-12-24 The Water System Group, Inc. Purified water supply system
RU2322283C2 (ru) * 2006-01-31 2008-04-20 Государственное унитарное предприятие нефтегазового направления "Авитрон-Ойл" ГУПНН "Авитрон-Ойл" Система автоматического управления технологическим процессом очистки воды на скорых фильтрах
RU2377193C2 (ru) * 2007-10-01 2009-12-27 Российская Федерация, от имени которой выступает государственный заказчик - Государственная корпорация по атомной энергии "Росатом" Автоматизированная система водоподготовки
CN201638081U (zh) * 2010-04-23 2010-11-17 煤炭科学研究总院杭州环保研究院 矿井水净化处理全过程监控系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2028646A6 (es) * 1991-02-13 1992-07-01 Box Marine S A Estacion modular y automatica de separacion y control de efluentes contaminados por hidrocarburos en general.
RU2170606C1 (ru) * 1999-10-18 2001-07-20 ЗАО "Мембраны" Передвижной исследовательский автоматизированный комплекс для проектирования технологических схем
WO2003106003A1 (en) * 2002-06-12 2003-12-24 The Water System Group, Inc. Purified water supply system
US20040104157A1 (en) * 2002-06-12 2004-06-03 Beeman David R. Purified water supply system
RU29158U1 (ru) * 2003-01-30 2003-04-27 Подопригора Сергей Павлович Система управления подготовкой котловой воды
RU2322283C2 (ru) * 2006-01-31 2008-04-20 Государственное унитарное предприятие нефтегазового направления "Авитрон-Ойл" ГУПНН "Авитрон-Ойл" Система автоматического управления технологическим процессом очистки воды на скорых фильтрах
RU2377193C2 (ru) * 2007-10-01 2009-12-27 Российская Федерация, от имени которой выступает государственный заказчик - Государственная корпорация по атомной энергии "Росатом" Автоматизированная система водоподготовки
CN201638081U (zh) * 2010-04-23 2010-11-17 煤炭科学研究总院杭州环保研究院 矿井水净化处理全过程监控系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680991C2 (ru) * 2014-07-24 2019-03-01 Фошань Вайоми Электрикал Текнолоджи Ко., Лтд. Система водоочистки и способ контроля и администрирования фильтрующих элементов на основе системы водоочистки
RU2652208C2 (ru) * 2015-10-28 2018-04-25 Сяоми Инк. Способ и устройство (варианты) управления подачей воды в водоочистительной установке
US10196284B2 (en) 2015-10-28 2019-02-05 Xiaomi Inc. Method and apparatus for controlling water output of water purifier, water purifier, and storage medium
RU2656049C2 (ru) * 2016-08-15 2018-05-30 Общество с ограниченной ответственностью "Новый поток - Центр" Установка комплексной водоочистки универсальная мобильная автоматизированная УМКВА-1
RU2749271C1 (ru) * 2019-05-16 2021-06-07 Общество с ограниченной ответственностью "ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ "АВЕРС-СЕРВИС" Система управления узлами универсальной модульной автоматической установки очистки воды и способ управления узлами универсальной модульной автоматической установки очистки воды на ее основе
RU2763132C1 (ru) * 2021-03-13 2021-12-27 Сергей Яковлевич Чернин Система мониторинга концентрации загрязняющих веществ, в том числе нефтепродуктов, в сточных водах и управления работой очистных сооружений предприятий
CN113816522A (zh) * 2021-09-16 2021-12-21 南方智水科技有限公司 一体化智慧集成水厂设备
CN116059681A (zh) * 2023-03-07 2023-05-05 福建省龙德新能源有限公司 用于控制结晶成核的超声控制方法及其系统

Similar Documents

Publication Publication Date Title
RU2472717C1 (ru) Система автоматического управления технологическим процессом очистки воды с непрерывным контролем ее качества в различных точках технологической схемы
US9409110B2 (en) Method of maintaining water quality in a process stream
US5873996A (en) Community drinking water purification system
KR100979096B1 (ko) 간헐폭기식 공기세정방식을 이용한 막분리 공정의 최적운전제어시스템 및 방법
KR101697155B1 (ko) 중앙관리 및 관제 시스템을 갖는 간이정수장치
JP2013086034A (ja) 水質浄化システム
JP2003126855A (ja) 膜濾過システム
KR101743540B1 (ko) 우수처리 재활용 시스템
KR100850770B1 (ko) 농업용 수처리 장치 및 이를 이용한 농업재이용수로전환하는 방법
CN210419655U (zh) 一种实验室综合废水处理装置
KR100191863B1 (ko) 역삼투압 정수장치 및 그 제어방법
KR100811128B1 (ko) 자동제어 방식의 전처리-막여과 하이브리드 수처리시스템
KR20100033109A (ko) 수처리용 여과장치
KR20080071838A (ko) 수질시료 샘플링 수조
JP2009195893A (ja) 浄水膜ろ過設備の運転方法
KR101418738B1 (ko) 가압형-침지형 하이브리드 막 여과시스템
CN206308164U (zh) 一种多模块组合移动净水设备
KR101586319B1 (ko) 플러싱 기능을 가지는 정수기 및 이를 제어하는 제어방법
JP2007229713A (ja) ろ過池の運転管理制御方法
JP2015116521A (ja) 浄水装置及び浄水方法
KR100204291B1 (ko) 정수기의 정수동작 제어방법
RU2749271C1 (ru) Система управления узлами универсальной модульной автоматической установки очистки воды и способ управления узлами универсальной модульной автоматической установки очистки воды на ее основе
CN210845431U (zh) 一种城市用污水处理设备
KR20160056509A (ko) 하수처리시설
KR100292676B1 (ko) 어류 사육수조의 여과수 공급 라인과 장치 및 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140713

NF4A Reinstatement of patent

Effective date: 20170502

PC41 Official registration of the transfer of exclusive right

Effective date: 20171107

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180713