RU2471067C2 - Способ выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями (варианты) - Google Patents

Способ выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями (варианты) Download PDF

Info

Publication number
RU2471067C2
RU2471067C2 RU2010106628/03A RU2010106628A RU2471067C2 RU 2471067 C2 RU2471067 C2 RU 2471067C2 RU 2010106628/03 A RU2010106628/03 A RU 2010106628/03A RU 2010106628 A RU2010106628 A RU 2010106628A RU 2471067 C2 RU2471067 C2 RU 2471067C2
Authority
RU
Russia
Prior art keywords
downhole tool
section
wellbore
tool
place
Prior art date
Application number
RU2010106628/03A
Other languages
English (en)
Other versions
RU2010106628A (ru
Inventor
Сами ИСКАНДЕР
Рикардо ВАСКЕС
Трибор РАКЕЛА
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2010106628A publication Critical patent/RU2010106628A/ru
Application granted granted Critical
Publication of RU2471067C2 publication Critical patent/RU2471067C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers

Abstract

Изобретение относится к способам выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями. Техническим результатом является обеспечение более точного выполнения операций испытаний, операций отбора проб или образцов, операций заканчивания. Способ включает спуск скважинного инструмента на каротажном кабеле в ствол скважины, закрепление скважинного инструмента в стволе скважины на первом месте работ в стволе скважины, выполнение операции отбора проб или образцов пластовой текучей среды с использованием инструмента отбора проб, связанного с первой секцией. При этом операцию отбора проб или образцов выполняют на втором месте работ в стволе скважины, когда скважинный инструмент остается закрепленным в стволе скважины на первом месте работ, и при этом второе место работ разнесено с первым местом работ в направлении, параллельном продольной оси скважинного инструмента. Перемещают первую секцию скважинного инструмента и вторую секцию скважинного инструмента так, что первая секция скважинного инструмента переводится от второго места работ в направлении, параллельном продольной оси скважинного инструмента, и вторая секция скважинного инструмента переводится ко второму месту работ в направлении, параллельном продольной оси скважинного инструмента. Затем выполняют операцию отбора керна на втором месте работ с использованием инструмента отбора керна, связанного со второй секцией. 2 н. и 14 з.п. ф-лы, 19 ил.

Description

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится, в общем, к скважинным инструментам и, конкретнее, к устройству и способам выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Скважинные инструменты, такие, например, как инструменты, развертываемые на каротажном кабеле, гибкой насосно-компрессорной трубе и бурильной колонне, обычно используют в стволе скважины для отбора проб или образцов текучей среды из подземного пласта, через который проходит ствол скважины. Такие скважинные инструменты можно альтернативно или дополнительно использовать для измерения одного или нескольких параметров или свойств, относящихся к стволу скважины и/или пласту, таких, например, как температура, давление, свойства горной породы и т.п. на различных глубинах.
Глубина, на которой размещен скважинный инструмент в стволе скважины, может являться значимой. Например, при отборе проб или образцов пласта может являться необходимым контроль глубины пробоотборника, чтобы зонд пробоотборника относительно точно совмещался с пластом или участком пласта. Можно использовать различные известные методики, такие как установка меток на кабеле, использующаяся в случае развертывания скважинного инструмента на каротажном кабеле, и методики корреляции с источником гамма-излучения, которые можно использовать с инструментами, развертываемыми на бурильной колонне, каротажном кабеле и гибкой насосно-компрессорной трубе для контроля глубины, на которой скважинный инструмент размещен в стволе скважины. Вместе с тем, в случае где многочисленные скважинные инструменты используют для выполнения ряда операций в стволе скважины и/или применительно к пласту, выставление второго скважинного инструмента на заданное место работ (например, конкретную глубину и/или ориентацию) в стволе скважины для выполнения второй операции (например, операции отбора проб или образцов) после первой операции (например, закачки текучей среды в пласт), уже выполненной первым скважинным инструментом на данном месте работ, может оказаться трудным.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном описанном примере скважинный инструмент для использования в стволе скважины включает в себя первый инструмент для выполнения первой операции и второй инструмент для выполнения второй операции. Скважинный инструмент также включает в себя первую секцию, включающую в себя выдвижную фиксирующую опору, выдвигающуюся в контакт со стенкой ствола скважины для фиксирования первой секции скважинного инструмента на месте работ в стволе скважины, и вторую секцию, перемещающуюся относительно первой секции вдоль продольной оси скважинного инструмента, когда первая секция зафиксирована на месте работ выдвижной фиксирующей опорой, для перемещения, по меньшей мере, одного первого инструмента или второго инструмента.
В другом описанном примере скважинный инструмент для использования в стволе скважины включает в себя первую выдвижную фиксирующую опору для контакта со стенкой ствола скважины для фиксирования инструмента на месте работ в стволе скважины. Скважинный инструмент также включает в себя первый инструмент скважинного инструмента для выполнения первой операции на месте работ в стволе скважины и второй инструмент скважинного инструмента, разнесенный с первым инструментом и предназначенный для выполнения второй операции. Дополнительно, скважинный инструмент включает в себя выдвижной элемент для перемещения второго инструмента к месту работ, когда фиксирующая опора находится в контакте со стенкой ствола скважины, для выполнения второй операции после первой операции.
В другом описанном примере способ выполнения операций в стволе скважины включает в себя спуск скважинного инструмента на место работ в стволе скважины, закрепление первой секции скважинного инструмента к стенке ствола скважины и выполнение первой операции на месте работ. Способ также включает в себя перемещение второй секции скважинного инструмента от первой секции вдоль продольной оси скважинного инструмента и выполнение второй операции второй секцией на месте работ.
В другом описанном примере способ выполнения операции в стволе скважины включает в себя спуск скважинного инструмента в ствол скважины, закрепление первой секции скважинного инструмента к стенке ствола скважины, перемещение второй секции скважинного инструмента от первой секции вдоль продольной оси скважинного инструмента и выполнение операции в стволе скважины второй секцией.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг.1A показан пример буровой установки и ствола скважины.
На фиг.1B-5 показан пример скважинного инструмента с перемещающейся секцией для выполнения многочисленных операций на заданном месте работ или заданной глубине в стволе скважины.
На фиг.6-8 показан другой способ использования являющегося примером скважинного инструмента фиг.1-5 для получения увеличенных перемещений в стволе скважины посредством многочисленных циклов закрепления/открепления и выдвижения/втягивания перемещающейся секции.
На фиг.9 и 10 показан другой пример скважинного инструмента, который можно развертывать на каротажном кабеле и который можно использовать для бурения с нажимом или расширения или разбуривания уступов или других сужений в стволе скважины.
На фиг.11-13 показан другой пример способа использования скважинного инструмента для сдвига и извлечения или залавливания и вытаскивания прихваченного инструмента в стволе скважины.
На фиг.14 показан другой пример скважинного инструмента с перемещающейся вдоль продольной оси и вращающейся секцией.
На фиг.15 и 16 показан пример механизмов выдвижения/втягивания, которые можно использовать в являющихся примерами скважинных инструментах, описанных в данном документе.
На фиг.17 показан пример способа, которым в скважинных инструментах, являющихся примерами и описанных в данном документе, можно создавать измеренное линейное смещение одной секции скважинного инструмента относительно другой секции скважинного инструмента.
На фиг.18 и 19 показан пример систем фиксирующих опор, которые можно использовать в скважинных инструментах, являющихся примерами, описанными в данном документе.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В общем, являющиеся примерами компоновки низа бурильной колонны или скважинные инструменты, описанные в данном документе, можно использовать для выполнения одной или нескольких операций на одной или нескольких точно контролируемых глубинах или местах работ в стволе скважины. Многочисленные операции или последовательность операций с использованием многочисленных различных компонентов скважинного инструмента можно выполнять, по существу, на одном месте работ или глубине в стволе скважины, и/или один тип операций можно выполнять на многочисленных, точно контролируемых интервалах мест работ, глубинах и/или ориентациях в стволе скважины. В отличие от известных скважинных инструментов, скважинные инструменты, являющиеся примерами, описанные в данном документе, включают в себя одну или несколько секций, каждая из которых может включать в себя один или несколько инструментов или устройств для выполнения одной или нескольких операций в стволе скважины. Одна или несколько секций каждого из скважинных инструментов, являющихся примерами, может быть перемещающейся (то есть выдвигающейся, втягивающейся и т.д.) относительно продольной осевой линии скважинного инструмента с перемещением на точные расстояния. Таким способом, отдельные инструменты или устройства скважинного инструмента можно более точно устанавливать на глубинах или местах работ в стволе скважины, чем это возможно с использованием обычных методик, таких, например, как нанесение отметок на каротажный кабель, с использованием методик корреляции с источником гамма-излучения и т.д. Таким образом, скважинные инструменты, являющиеся примерами, описанные в данном документе, обеспечивают более точное выполнение операций испытаний, операций отбора проб или образцов, операций заканчивания и т.д. для получения результатов, являющихся более точными, стабильными и надежными, чем это возможно при обычном техническом оснащении.
В некоторых являющихся примерами скважинных инструментах, описанных в данном документе, скважинный инструмент включает в себя первую секцию, имеющую выдвижную фиксирующую опору или другой элемент (элементы), для контакта со стенкой ствола скважины для фиксирования первой секции скважинного инструмента на заданном месте работ (то есть глубине и/или ориентации) в стволе скважины. Вторая секция скважинного инструмента является перемещающейся относительно первой секции вдоль продольной оси скважинного инструмента, когда первая секция зафиксирована на месте работ выдвижной фиксирующей опорой. Вторая секция скважинного инструмента может включать в себя вторую выдвижную фиксирующую опору для фиксирования второй секции к стенке ствола скважины. Первая секция может перемещаться (то есть выдвигаться, втягиваться и т.п.) относительно второй секции, когда выдвижная фиксирующая опора первой секции втянута и когда вторая выдвижная фиксирующая опора фиксирует вторую секцию на стенке ствола скважины.
Хотя скважинные инструменты, являющиеся примерами, описаны в данном документе как имеющие две секции и одну или две выдвижные фиксирующие опоры, можно использовать любое другое число дополнительных секций и/или выдвижных фиксирующих опор. Дополнительно, каждая из секций может являться перемещающейся (то есть выдвижной, втягивающейся и т.д.) относительно других секций и может включать в себя один или несколько инструментов или устройств для выполнения операций в стволе скважины, таких, например, как операции отбора проб или образцов, операции испытаний, операции отбора керна и т.д. Таким образом, в общем, один или несколько инструментов или устройств могут включать в себя инструменты оценки пласта и/или инструменты оценки коллектора. Перемещающиеся секции могут перемещаться вдоль продольной оси скважинного инструмента на точные расстояния для точной установки одного или нескольких инструментов (например, испытательных инструментов, инструментов отбора проб или образцов, инструментов отбора керна и т.д.), соединенных с секциями, на различных глубинах или местах работ в стволе скважины.
Являющиеся примерами скважинные инструменты, имеющие перемещающиеся секции, описанные в данном документе, можно спускать в ствол скважины и поднимать из него на каротажном кабеле, бурильной колонне, гибкой насосно-компрессорной трубе и/или другим способом для выполнения различных операций или последовательностей операций на точно контролируемых глубинах или в точно контролируемых интервалах глубин в стволе скважины. Конкретнее, в некоторых примерах скважинный инструмент с перемещающейся секцией можно спускать в ствол скважины, и первую секцию скважинного инструмента можно закреплять или фиксировать к стенке ствола скважины. Первая операция выполняется на месте работ (то есть на глубине и/или с ориентацией) в стволе скважины. Например, первая операция может включать в себя операцию испытания пласта, такую как измерение свойств горной породы. Первую операцию может выполнить первый инструмент или устройство во второй перемещающейся секции скважинного инструмента, когда вторая секция находится во втянутом состоянии (то есть когда вторая секция не выдвинута от первой секции). Вторую секцию скважинного инструмента можно затем выдвинуть (например, гидравлическим устройством) от первой секции вдоль продольной оси скважинного инструмента. Вторую секцию можно выдвинуть на точно контролируемое расстояние для совмещения другого инструмента испытания пласта или устройства (например, устройства испытаний текучей среды) во второй секции, по существу, с местом работы на стенке ствола скважины, аналогичном месту, на котором была выполнена первая операция. Таким способом, первую и вторую операции выполняют, по существу, на одном месте работ в стволе скважины (например, по существу на одном месте работ на стенке ствола скважины). Таким образом, результаты первой и второй операций можно точно коррелировать друг с другом и местом работ в стволе скважины.
В более общем плане, являющиеся примерами скважинные инструменты с перемещающимися секциями, описанные в данном документе, можно использовать для выполнения ряда или последовательности операций (например, двух или более операций) на заданном месте работ в стволе скважины. Каждая из операций может являться операцией отбора проб или образцов (например, операцией отбора проб или образцов текучей среды), операцией испытаний (например, измерений температуры и/или давления), операцией отбора керна или любой другой операцией, которую можно выполнять в стволе скважины. Аналогично, являющиеся примерами скважинные инструменты, описанные в данном документе, можно использовать для выполнения последовательности операций, связанных с заканчиванием ствола скважины. Например, первая операция может включать в себя сверление отверстия в обсадной колонне, и последующие операции могут включать в себя закачку цемента, закупоривание просверленного отверстия, активирование систем заканчивания и т.д.
Являющиеся примерами скважинные инструменты, описанные в данном документе, можно также использовать для выполнения операции одного типа на многочисленных, точно контролируемых интервалах глубины или местах работ в стволе скважины. Например, операции испытаний, такие как каротажные операции, операции градиентных измерений, операции отображения и т.п., можно выполнять посредством пошагового перемещения секций, являющихся примерами скважинных инструментов, описанных в данном документе, и получения измерений (например, температуры, давления, значения параметров свойств горных пород и т.д.) на каждом интервале глубины или места работ вдоль стенки ствола скважины.
В некоторых примерах перемещающаяся секция скважинного инструмента может включать в себя участок, вращающийся вокруг продольной оси скважинного инструмента. В данных примерах вращающийся участок может включать в себя бурильное устройство для обеспечения разбуривания препятствий, расширения сужений и т.п. в стволе скважины. В частности, в варианте, где являющийся примером скважинный инструмент спускают на каротажном кабеле, первую секцию скважинного инструмента можно закреплять на стенке ствола скважины и вторую секцию можно с осевой нагрузкой выдвигать к препятствию в стволе скважины с вращением, тем самым, обеспечивая выполнение операции бурения бурильным устройством на каротажном кабеле. В других примерах вращающийся участок второй секции может включать в себя один или несколько датчиков (например, датчики температуры, давления и/или датчики изображения), использующихся для получения измерений по периметру и/или для выполнения одной или нескольких операций по окружности или периметру ствола скважины на заданной глубине или месте работ.
В других примерах скважинный инструмент может использовать свои выдвижные фиксирующие опоры и одну или несколько перемещающихся секций для перемещения или продвижения скважинного инструмента в стволе скважины. Перемещение скважинного инструмента таким способом является особенно предпочтительным, по существу, в горизонтальных или наклонно-направленных секциях ствола скважины, в которых иное перемещение замедляется или не допускается, например, для перемещения в стволе скважины скважинного инструмента, развернутого на каротажном кабеле. В частности, первую выдвижную фиксирующую опору, связанную с первой секцией скважинного инструмента, можно выдвигать для фиксирования первой секции скважинного инструмента относительно стенки ствола скважины. Вторую секцию можно затем переместить (то есть выдвинуть) вдоль продольной оси скважинного инструмента от первой секции (например, глубже в ствол скважины). Выдвижную фиксирующую опору, соединенную со второй секцией, можно затем выдвинуть для фиксирования второй секции относительно стенки ствола скважины. Первую выдвижную фиксирующую опору затем втягивают и первую секцию перемещают (то есть втягивают) ко второй секции. Первую выдвижную фиксирующую опору затем выдвигают вновь для фиксирования первой секции относительно ее нового, более глубокого места работ на стенке ствола скважины, и вторую выдвижную фиксирующую опору можно затем втягивать для обеспечения повторения описанного выше процесса, пока скважинный инструмент не переместится на необходимое расстояние в стволе скважины.
На фиг.1А показан пример буровой установки 10 и бурильной колонны 12, с которыми можно использовать являющиеся примером устройство и способы, описанные в данном документе, например, для отбора проб или образцов пластовой текучей среды и/или выполнения других операций применительно к подземному пласту F. В показанном примере компоновка 10 наземной буровой платформы и вышки установлена над стволом 106 скважины, проходящим через подземный пласт F. В показанном примере ствол 106 скважины выполнен роторным бурением общеизвестным способом. Специалисту в данной области техники, воспользовавшемуся данным изобретением, должно быть ясно, вместе с тем, что устройство и способы, описанные в данном документе, также могут найти практическое применение в наклонно-направленном бурении, так же как и в роторном бурении, и не ограничиваются наземными буровыми установками. Дополнительно, хотя ствол 106 скважины показан как необсаженный ствол, являющиеся примерами устройство и способы, описанные в данном документе, можно также использовать применительно к обсаженным стволам скважин.
Как показано на фиг.1A, бурильная колонна 12 подвешена в стволе 106 скважины и включает в себя буровое долото 15 на своем нижнем конце. Бурильную колонну 12 вращает ротор 16, соединенный с ведущей бурильной трубой 17 на верхнем конце бурильной колонны 12. Бурильная колонна 12 подвешена на крюке 18, прикрепленном к талевому блоку (не показано) посредством ведущей бурильной трубы 17 и вертлюга 19, обеспечивающего вращение бурильной колонны 12 относительно крюка 18.
Буровая текучая среда или буровой раствор 26 хранится в емкости 27, выполненной на буровой площадке. Буровой насос 29 оборудован для подачи буровой текучей среды 26 во внутреннюю полость бурильной колонны 12 через отверстие (не показано) в вертлюге 19, для осуществления прохода потока буровой текучей среды 26 вниз через бурильную колонну 12 в направлении, в общем, указанном стрелками 9. Буровая текучая среда 26 выходит из бурильной колонны 12 через отверстия (не показано) в буровом долоте 15, и затем буровая текучая среда 26 циркулирует вверх через кольцевое пространство 28 между внешней поверхностью бурильной колонны 12 и стенкой ствола 106 скважины в направлении, в общем, указанном стрелками 32. При этом буровая текучая среда 26 смазывает буровое долото 15 и уносит на поверхность выбуренную породу при возвращении в емкость 27 для повторной циркуляции.
Бурильная колонна 12 дополнительно включает в себя компоновку 5 низа бурильной колонны вблизи бурового долота 15 (то есть в нескольких отрезках длины утяжеленной бурильной трубы от бурового долота 15). Компоновка 5 низа бурильной колонны включает в себя утяжеленные бурильные трубы с устройствами измерения, обработки и хранения информации. Компоновка 5 низа бурильной колонны также включает в себя блок 40 передачи данных на поверхность/локально для обмена информацией с наземными системами.
На фиг.1B-5 показана являющаяся примером последовательность операций, выполняемых являющимся примером скважинным инструментом 100, имеющим первую секцию 102 и вторую секцию 104. Как показано на фиг.1, являющуюся примером забойную компоновку или скважинный инструмент 100 спускают в ствол 106 скважины на каротажном кабеле 108. Каротажный кабель 108 может включать в себя многочисленные электрические провода, кабели и т.д. для передачи электрических сигналов (то есть сигналов передачи данных, сигналов управления, энергетических сигналов и т.д.) между скважинным инструментом 100 и блоком 110 электронного оборудования и обработки данных на поверхности вблизи ствола 106 скважины. Каротажный кабель 108 может также включать в себя один или несколько тросов, придающих прочность каротажному кабелю 108 для несения веса скважинного инструмента 100 при его подъеме, спуске и висении в стволе 106 скважины.
Являющийся примером скважинный инструмент 100 также включает в себя первую выдвижную фиксирующую опору или элемент 112, встроенный в первую секцию 102, и вторую выдвижную фиксирующую опору или элемент 114, встроенный во вторую секцию 104. Каждую из выдвижных фиксирующих опор 112 и 114 можно выборочно выдвигать от скважинного инструмента 100 или наружу от него в контакт или для сцепления со стенкой 116 ствола 106 скважины для закрепления или фиксирования положения соответствующей одной из секций 102 и 104 скважинного инструмента 100 относительно стенки 116 ствола 106 скважины. Другими словами, первую выдвижную фиксирующую опору 112 можно выдвигать в контакт со стенкой 116 для фиксирования положения первой секции 102 относительно стенки 116 ствола 106 скважины. Аналогично, вторую выдвижную фиксирующую опору 114 можно выдвигать в контакт со стенкой ствола 106 скважины для фиксирования второй секции 104 относительно стенки 116 ствола 106 скважины. Выдвижные фиксирующие опоры или элементы 112 и 114 можно исполнить с использованием поршня с гидравлическим управлением, пружины, двигателя, зубчатого механизма или любым другим способом. В варианте, где выдвижные фиксирующие опоры или элементы 112 и 114 исполнены с использованием поршня с гидравлическим управлением (как показано в примере фиг.19), выдвижные фиксирующие опоры или элементы 112 и 114 можно исполнить способом, аналогичным системе крепления MDT (модульный динамический испытатель пластов) фирмы Schlumberger, Inc. Дополнительно, хотя на фиг.1B-5 показаны две выдвижные фиксирующие опоры или элемента 112 и 114, более двух таких выдвижных фиксирующих опор или элементов можно разместить радиально по скважинному инструменту 100.
Вторая секция 104 являющегося примером скважинного инструмента 100 также включает в себя первое устройство или инструмент 118 и второе устройство или инструмент 120, разнесенные на расстояние 122 вдоль продольной оси скважинного инструмента 100 с первым инструментом 118. Каждый из инструментов 118 и 120 может иметь конфигурацию для выполнения одной или нескольких операций в стволе скважины, таких, например, как операции испытаний, операции отбора проб или образцов, операции отбора керна и т.д. Один пример керноотборного инструмента описан в патенте США № 6729416. В частности, на фиг.1 и 2 данного патента показан пример керноотборного инструмента, по отношению к скважинному инструменту и пласту, из которого керн подлежит отбору. Один пример пробоотборника описан в патенте США № 7195063. В частности, на фиг.1 и 2 данного патента показан пример пробоотборника, относящегося к скважинному инструменту, и пласт, из которого проба текучей среды подлежит отбору.
В некоторых примерах инструменты 118 и 120 выполняют различные, но дополняющие друг друга, операции при выполнении последовательности операций на конкретном месте работ вдоль стенки 116 ствола 106 скважины. Например, первый инструмент 118 может иметь конфигурацию для выполнения операции испытаний, такой как измерение температуры или давления, и второй инструмент 120 может иметь конфигурацию для выполнения операции отбора проб или образцов, такой как извлечение пластовой текучей среды из пласта.
В другом примере инструменты 118 и 120 могут выполнять последовательность или ряд операций заканчивания. Например, первый инструмент 118 может использовать керноотборное устройство для удаления поврежденной области или зоны в стволе 106 скважины, и второй инструмент 120 можно использовать для получения проб или образцов, измерения давления и т.д. из неповрежденной области, получившейся в результате удаления поврежденной области первым инструментом 118. В другом примере первый инструмент 118 можно использовать для сверления отверстия в обсадной колонне (не показано) ствола 106 скважины, и второй инструмент 120 можно использовать для закачки цемента, закупоривания отверстия, активирования систем заканчивания и т.д., при этом обеспечивается использование инструментов 118 и 120 для выполнения последовательности или ряда операций заканчивания, по существу, на одном месте работ в стволе 106 скважины. В другом примере первый инструмент 118 может выполнять операции испытаний, такие как измерение свойств горной породы, а второй инструмент 120 может выполнять операции испытаний, такие как измерение свойств текучей среды.
Хотя в являющемся примером скважинном инструменте 100 показаны первый и второй инструменты 118 и 120, соединенные со второй секцией 104 так, что оба инструмента 118 и 120 перемещаются вместе, когда вторая секция 104 перемещается относительно первой секции 102, один или оба инструмента 118 и 120 могут быть вместо этого соединены с первой секцией 102. В варианте, где один из инструментов 118 соединен с первой секцией 102, а другой инструмент соединен со второй секцией 104, перемещение второй секции 104 относительно первой секции 102 обуславливает перемещение инструментов 118 и 120 друг от друга или друг к другу, а не вместе, как в варианте являющегося примером инструмента 100 фиг.1B. Дополнительно, хотя два инструмента показаны с являющимся примером инструментом 100 фиг.1B, вместо этого можно использовать любое число инструментов, расположенных любым способом, или любое число перемещающихся секций.
Блок 110 электронного оборудования и обработки данных может включать в себя один или несколько процессоров, запоминающих устройств, электронных цепей передачи данных, цепей электропитания и т.д. для управления работой скважинного инструмента 100. В частности, как описано более подробно ниже, блок 110 электронного оборудования и обработки данных может посылать сигналы управления на скважинный инструмент 100, обуславливающие выдвижение первой выдвижной фиксирующей опоры 112 для контакта со стенкой 116 ствола 106 скважины и обуславливающие выдвижение второй секции 104 от первой секции 102 или втягивание к ней вдоль продольной оси скважинного инструмента 100, когда первая секция зафиксирована относительно стенки 116 ствола 106 скважины выдвинутой фиксирующей опорой 112. Аналогично, блок 110 электронного оборудования и обработки данных может обуславливать выдвижение второй фиксирующей опоры 114 в контакте со стенкой 116, с фиксированием при этом второй секции 104 относительно стенки 116. Когда вторая секция 104 зафиксирована установленной относительно стенки 116 и первая фиксирующая опора 112 втянута, блок 110 электронного оборудования и обработки данных может обуславливать выдвижение первой секции 102 от второй секции 104 или втягивание к ней вдоль продольной оси скважинного инструмента 100.
В некоторых примерах блок 110 электронного оборудования и обработки данных может работать с открытой системой управления, при которой требуется участие оператора для правильного соблюдения последовательности операций скважинного инструмента 100. В частности, при таком управлении с открытой системой может требоваться участие оператора для выдвижения и/или втягивания выдвижных фиксирующих опор 112 и/или 114, управления инструментами 118 и 120 и/или осуществления перемещения второй секции 104 относительно первой секции 102. Альтернативно, блок 110 электронного оборудования и обработки данных может работать с замкнутой системой управления, в которой по существу или вообще не требуется участие оператора для управления последовательностью операций скважинного инструмента 100. В таком управлении с замкнутой системой являющийся примером скважинный инструмент 100 может работать полностью автоматически, при этом фиксирующие опоры 112 и/или 114 выдвигаются и/или втягиваются автоматически, инструменты 118 и 120 работают автоматически и в нужное время и вторая секция 104 перемещается относительно первой секции 102 в автоматическом режиме.
При эксплуатации скважинный инструмент 100 спускают на каротажном кабеле 108 в ствол 106 скважины на необходимую глубину. Необходимая глубина или место работ в стволе 106 скважины может соответствовать глубине, на которой первый инструмент или устройство 118 совмещается с местом "L" работ или выставляется вблизи него, как показано на фиг.1В. Скважинный инструмент 100 можно спускать на необходимую глубину или место работ с использованием методики нанесения отметок и/или любой методики корреляции, такой, например, как по источнику гамма-излучения, по естественному потенциалу и т.д.
Как показано на фиг.2, после спуска скважинного инструмента 100 на необходимую глубину первую выдвижную фиксирующую опору 112 можно выдвигать в контакт со стенкой 116 ствола 106 скважины для фиксирования или закрепления скважинного инструмента 100 относительно стенки 116 ствола 106 скважины. Таким образом, как показано на фиг.2, первый инструмент или устройство 118 зафиксирован на месте работ или на глубине, на которой инструмент или устройство 118 является, по существу, совмещенным с местом L работ, которое может, например, быть связано с пластом, подлежащему испытанию, отбору проб или образцов, и т.д.
Затем, как показано на фиг.3, башмак или фиксирующую опору 300 можно выдвигать из инструмента 118, и пробоотборный зонд, датчик, керноотборное устройство, устройство закачки текучей среды и т.п. устройство 302 можно выдвигать, как показано, в контакт со стенкой 116 вблизи места L работ. Фиксирующая опора 300 и зонд, датчик, керноотборное устройство, устройство закачки текучей среды и т.д. можно выдвигать и втягивать с использованием гидравлических поршней или т.п. известными способами. Вне зависимости от типа и конкретной конфигурации инструмента (инструментов) или устройства (устройств), используемых для исполнения первого инструмента 118, зонд, датчик, керноотборное устройство, устройство закачки текучей среды и т.п. устройства 302 выполняют свою операцию (операции) на стенке 116 вблизи места L работ. Например, в варианте, где первый инструмент 118 включает в себя головку измерения давления или блок 302, измерение давления может быть получено и передано по каротажному кабелю 108 на блок 110 электронного оборудования и обработки данных.
Как показано на фиг.4, после завершения выполнения первым инструментом 118 операции (операций) на месте L работ, фиксирующая опора 300 и датчик, устройство отбора проб или образцов, керноотборное устройство, устройство закачки текучей среды и т.п. устройства 302 втягиваются, и вторая секция 104 скважинного инструмента 100 выдвигается от первой секции 102 вдоль продольной оси скважинного инструмента 100. Как показано на фиг.4, вторая секция 104 отодвинута на расстояние, по существу равное расстоянию 122 (фиг.1) между инструментами или устройствами 118 и 120, так, что второй инструмент или устройство 120 находится на глубине, по существу, для совмещения второго инструмента 120 с местом L работ (то есть местом работ, на котором первый инструмент 118 был ранее установлен). Вторую секцию 104 можно выдвигать и втягивать с использованием, например, гидравлического поршня, диафрагменной коробки, компоновки винта и двигателя и/или любого другого подходящего механизма (механизмов). Примеры таких механизмов описаны более подробно ниже, применительно к фиг.15 и 16.
Стабилизирующий упор 400 (например, пластинчатая пружина, выдвигающийся рычаг или фиксирующая опора и т.п.) можно использовать для обеспечения нахождения датчика, зонда, керноотборного устройства и т.п. устройства 402 в контакте со стенкой 116 вблизи места L работ. Таким образом, в данном способе второй инструмент 120 может выполнять свою операцию (операции), по существу, на том же месте работ, на котором первый инструмент 118 выполнил свою операцию (операции), без попытки корректировки места работ скважинного инструмента 100 изменением длины развертывания каротажного кабеля 108 в стволе 106 скважины на основе, например, нанесения отметок на каротажный кабель и/или корреляционной методики, такой как коррелирование с источником гамма-излучения.
Как показано на фиг.5, когда второй инструмент 120 уже завершил свою операцию (операции) на месте L работ, стабилизирующий упор 400 и пробоотборный зонд, испытательное устройство, керноотборное устройство и т.п. устройства 402 второго инструмента 120 втягиваются, и первая выдвижная фиксирующая опора 112 втягивается, оставляя скважинный инструмент 100 незакрепленным или свободным для перемещения. Скважинный инструмент 100 можно затем перемещать на новое место работ в стволе 106 скважины и/или удалять или извлекать из ствола 106 скважины на поверхность вместе с любыми образцами (например, образцами текучей среды, образцами керна и т.д.), собранными в операциях, выполненных инструментами 118 и 120.
На фиг.6-8 показан другой способ, которым являющийся примером скважинный инструмент 100 можно использовать в стволе 106 скважины для достижения увеличенных перемещений или смещений в стволе 106 скважины посредством многочисленных циклов закрепления/открепления и выдвижения/втягивания первой и второй секций 102 и 104. Первоначально, как показано на фиг.6, являющийся примером скважинный инструмент 100 развертывают в стволе 106 скважины на каротажном кабеле 108 на любой необходимой глубине. Затем, как показано на фиг.7, первую выдвижную фиксирующую опору 112 выдвигают в контакт со стенкой 116 для закрепления первой секции 102 к стенке 116 ствола 106 скважины. Когда первая секция 102 закреплена, вторую секцию 104 выдвигают на необходимое расстояние от первой секции 102 вдоль продольной оси скважинного инструмента 100. Затем, как показано на фиг.7, вторую выдвижную фиксирующую опору 114 выдвигают в контакт со стенкой 116 для закрепления или фиксирования второй секции 104 относительно стенки 116, первую фиксирующую опору 112 втягивают и первую секцию 102 втягивают ко второй секции 104. Приведенную выше последовательность или процесс можно повторять любое число раз для достижения необходимой величины перемещения или смещения вниз на забой или вверх с выходом из ствола 106 скважины в соответствии с конкретной операцией или рядом операций. Дополнительно, пример последовательности или процесс, описанный применительно к фиг.6-8, можно использовать для спуска скважинного инструмента 100 в наклонно-направленных или, по существу, горизонтальных стволах скважин, в которых иначе отсутствует возможность спуска развертываемого на каротажном кабеле скважинного инструмента или любого другого обычного скважинного инструмента. Еще дополнительно, когда скважинный инструмент 100 перемещается в стволе 106 скважины, один или оба инструмента или устройства 118 и 120 можно использовать для отбора проб или образцов, измерения давления, отбора керна и т.д. вдоль стенки 116 ствола 106 скважины. Альтернативно или дополнительно, один или оба инструмента или устройства 118 и 120 можно использовать для повторного сбора данных или информации на различных глубинах для обеспечения возможности выработки данных каротажа блоком 110 электронного оборудования и обработки данных (то есть информации по параметрам относительно глубины).
На фиг.9 и 10 показан другой пример скважинного инструмента 900, который можно развертывать на каротажном кабеле и который можно использовать для бурения с осевой нагрузкой или разбуривания уступов или других сужений в стволе скважины. В частности, являющийся примером скважинный инструмент 900 включает в себя первую секцию 902 и вторую секцию 904. Вторая секция 904 включает в себя вращающийся участок, который вращает буровое долото 910. На фиг.9 являющийся примером скважинный инструмент 900 развернут в стволе 906 скважины на каротажном кабеле 908. Выдвижную фиксирующую опору 912 выдвигают в контакт со стенкой 916 ствола 906 скважины для фиксирования или закрепления являющегося примером скважинного инструмента 900 над сужением 918 в стволе 906 скважины. Как показано на фиг.10, вторую секцию 904 можно выдвигать от первой секции 902 и к сужению 918 для обеспечения буровому долоту 910 контакта с осевой нагрузкой на сужение 918 и обеспечения разбуривания или расширения сужения 918 буровым долотом 910. Описанный выше процесс можно повторять любое число раз с поступательно увеличенными расстояниями или смещениями в стволе 906 скважины. Дополнительно, являющийся примером скважинный инструмент 900 можно также использовать для спуска инструментов в ствол скважины большого отклонения и/или, по существу, на горизонтальных участках ствола скважины. Еще дополнительно, являющийся примером скважинный инструмент 900 можно объединять с рядом инструментов или устройств для выполнения необходимого вида (видов) и числа операций в стволе 906 скважины.
На фиг.11-13 показан другой пример способа, в котором являющийся примером скважинный инструмент 1100 можно использовать для сдвига и извлечения или залавливания и вытаскивания прихваченного инструмента 1120, например, из сужения 1118 в стволе скважины 1106. Прихваченный инструмент 1120 включает в себя соединительное устройство 1121 в виде крюка, выполненное для сцепления или иного соединения с ловильным инструментом или соответствующим соединительным устройством 1122, описанным более подробно ниже. Соединительное устройство 1121 в виде крюка и ловильный инструмент или комплементарное соединительное устройство 1122 являются только примерами, и вместо них можно использовать механические соединительные устройства другого типа.
Вначале, как показано на фиг.11, инструмент 1120 может быть прихвачен в сужении 1118 ствола 1106 скважины. Являющийся примером скважинный инструмент 1100 тогда спускают в ствол 1106 скважины на каротажном кабеле 1108. Когда являющийся примером скважинный инструмент 1100 достиг места работ или глубины, выдвижную фиксирующую опору 1112, которая может являться аналогичной выдвижным фиксирующим опорам, описанным выше применительно к другим скважинным инструментам, являющимся примерами, выдвигают в контакт со стенкой 1116 ствола 1106 скважины для фиксирования или закрепления первой секции 1102 скважинного инструмента 1100 к стенке 1116 ствола 1106 скважины. Вторую секцию 1104 скважинного инструмента 1100 затем перемещают или выдвигают от первой секции 1102 вдоль продольной оси скважинного инструмента 1100 и в контакт с прихваченным инструментом 1120. Вторая секция 1104 скважинного инструмента 1100 включает в себя ловильный инструмент 1122 (например, инструмент типа овершота или ловильный инструмент любого другого типа), захватывающий соединительное устройство 1121 прихваченного инструмента 1120, когда ловильный инструмент 1122 с осевой нагрузкой сцепляется с прихваченным инструментом 1120. Затем, как показано на фиг.13, вторую секцию 1104 втягивают к первой секции 1102 для сдвига и удаления прихваченного инструмента 1120 из сужения 1118. В примере фиг.11-13 прихваченный инструмент 1120 и/или инструмент 1100 могут быть оборудованы (например, в инструментах, аналогичных инструментам 118 и 120 фиг.1B) для выполнения дополнительных операций (например, каротажа, отбора проб, керноотбора и т.д.) при выполнении залавливания и вытаскивания прихваченного инструмента 1120.
На фиг.14 показан другой являющийся примером скважинный инструмент 1400, имеющий первую секцию 1402 и вторую секцию 1404, перемещающуюся вдоль продольной оси являющегося примером скважинного инструмента 1400 относительно первой секции 1402. Дополнительно, вторая секция 1404 является вращающейся относительно первой секции 1402 и вокруг продольной оси скважинного инструмента 1400. Как показано на фиг.14, являющийся примером скважинный инструмент 1400 можно спускать на необходимую глубину в ствол 1406 скважины и фиксировать или закреплять к стенке 1416 ствола 1406 скважины выдвижением фиксирующей опоры 1412 в контакт со стенкой 1416 ствола 1406 скважины. Вторую секцию 1404 можно затем выдвигать на необходимое расстояние от первой секции 1402 вдоль продольной оси скважинного инструмента 1400. Инструмент 1418, имеющий датчик или зонд 1420, можно затем вращать посредством вращения второй секции 1404 вокруг продольной оси скважинного инструмента 1400. Датчик или зонд 1420 может являться датчиком изображения, датчиком температуры, датчиком давления, пробоотборным зондом, или любым другим датчиком, зондом, или комбинацией датчиков и/или зондов. Таким способом, являющийся примером скважинный инструмент 1400 можно использовать для сбора информации по периметру стенки 1416 ствола 1406 скважины на любой глубине, представляющей интерес. Например, в варианте, где датчик или зонд 1420 является датчиком изображения, являющийся примером скважинный инструмент 1400 можно использовать для выполнения каротажной диаграммы полного изображения (например, магниторезонансного изображения, изображения удельного сопротивления, и т.д.) ствола 1406 скважины на любой глубине или глубинах, подлежащих детектированию, например, аномалий (то есть дефектов обсадной колонны, анизотропии, разрывов и т.д.), применительно к стволу 1406 скважины. В варианте, где датчик или зонд 1420 является датчиком давления, вращение датчика 1420 обеспечивает выполнение вертикальных испытаний на интерференцию, а также оценку изменения горизонтальных проницаемостей. Положение при вращении или угловое положение или ориентацию датчика или зонда 1420 можно определять и отслеживать, например, с помощью магнитометра (не показано) или любого другого аналогичного устройства, соединенного со второй секцией 1404.
На фиг.15 показан являющийся примером механизм выдвижения/втягивания 1500, который можно использовать в являющихся примерами скважинных инструментах, описанных в данном документе, для обеспечения выдвижения одной секции скважинного инструмента от другой секции скважинного инструмента и втягивания к ней вдоль продольной оси скважинного инструмента. Как показано на фиг.15, корпус или несущий участок 1502 первой секциии 1504 скважинного инструмента (не показано) соединен со стержнем или упорным элементом 1506, который может быть соединен со второй секцией (не показано) посредством винта или резьбовой штанги 1508. Двигатель 1510, связанный со стержнем или упорным элементом 1506, соединен с возможностью вращения с винтом или резьбовой штангой 1508, которая также имеет резьбовое соединение с корпусом или несущим участком 1502. Таким образом, когда двигатель 1510 работает и вращает винт 1508, стержень или упорный элемент 1506, соединенный со второй секцией скважинного инструмента, выдвигается от первой секции 1504 или втягивается к ней.
На фиг.16 показан другой пример механизма 1600, который можно использовать в являющихся примерами скважинных инструментах, описанных в данном документе, для обеспечения выдвижения одной секции скважинного инструмента от другой секции скважинного инструмента и втягивания к ней вдоль продольной оси скважинного инструмента. Как показано на фиг.16, являющийся примером механизм 1600 включает в себя корпус или несущий участок 1602, связанный с первой секцией 1604 скважинного инструмента. Являющийся примером механизм 1600 также включает в себя стержень или упорный элемент 1606, который может быть соединен со второй секцией (не показано) скважинного инструмента. Корпус или несущий участок 1602 и стержень или упорный элемент 1606 включают в себя соответствующие противостоящие зубчатые рейки 1608 и 1610, соединенные друг с другом шестерней 1612. Дополнительно, стержень или упорный элемент 1606 соединен с возможностью скольжения с корпусом или несущим участком 1602 скользящим механизмом 1614. Таким образом, когда шестерню 1612 вращают (например, двигателем, который не показан), стержень или упорный элемент 1606 может выдвигаться от первой секции 1604 или втягиваться к ней. Хотя шестерня 1612 показана сцепленной с двумя зубчатыми рейками (то есть рейками 1608 и 1610), взамен можно использовать комбинацию одной рейки и шестерни с получением аналогичного или идентичного результата.
На фиг.17 показан пример способа, которым скважинный инструмент 1700, имеющий первую секцию 1702 и вторую секцию 1704, выдвигающуюся и втягивающуюся относительно первой секции 1702, может создавать измеренное линейное смещение. В частности, вторая секция 1704 может включать в себя линейный потенциометр 1706, который можно использовать для точного определения и управления смещением второй секции 1704 относительно первой секции 1702. Величину сопротивления можно передавать на поверхность (например, на блок электронного оборудования и обработки данных, такой как блок 110 фиг.1) для обеспечения управления смещением второй секции 1704 (например, посредством системы управления с обратной связью и т.п.). В некоторых примерах смещение второй секции 1704 можно изменять так, как нужно для выполнения необходимой операции в стволе скважины или ряда операций. Например, в операциях каротажа потенциометр 1706 можно использовать для перемещения второй секции 1704 с управляемыми приращениями или, альтернативно, непрерывно с некоторой скоростью.
На фиг.18 показано являющееся примером механическое закрепляющее устройство 1800, которое можно использовать для исполнения выдвижных фиксирующих опор, описанных в данном документе. В частности, закрепляющее устройство 1800 включает в себя рычаги 1802 и 1804, которые можно выдвигать наружу в контакт со стенкой 1806 ствола скважины. Рычаги 1802 и 1804 можно выдвигать и/или втягивать с использованием пружин, механизмов бесконечного винта, гидравлически или любым другим способом. Дополнительно, хотя показаны два рычага (то есть рычаги 1802 и 1804), взамен можно использовать любое другое число рычагов.
На фиг.19 показано другое являющееся примером закрепляющее устройство 1900, которое можно использовать для исполнения выдвижных фиксирующих опор, описанных в данном документе. Более конкретно, являющееся примером закрепляющее устройство 1900 включает в себя множество поршней 1902, 1904, 1906 и 1908 с гидравлическим управлением, которые можно выдвигать наружу в контакт со стенкой 1910 ствола 1912 скважины. Масло или другую текучую среду 1914 можно прокачивать под давлением для приведения в движение поршней 1902, 1904, 1906 и 1908 наружу в контакт со стенкой 1910 с необходимым установленным давлением.
Описанные выше являющиеся примерами скважинные инструменты, имеющие одну или несколько перемещающихся секций, могут также включать в себя один или несколько динамометрических датчиков для измерения или детектирования усилия, используемого для перемещения одной секции относительно другой секции. Измерение, например, усилия выдвижения и/или усилия втягивания обеспечивает исключение повреждения инструментов и/или спуско-подъемной системы (например, каротажного кабеля, гибкой насосно-компрессорной трубы и т.д.), используемой для развертывания являющихся примерами скважинных инструментов, описанных в данном документе. Дополнительно, являющиеся примерами скважинные инструменты, описанные в данном документе, могут использовать один или несколько магнитометров для определения ориентации одного или нескольких инструментов или устройств, составляющих являющиеся примерами скважинные инструменты. Дополнительно, являющиеся примерами закрепляющие устройства, описанные в данном документе применительно к являющимся примерами скважинным инструментам, могут использовать динамометрические датчики и/или датчики смещения для измерения прочности горных пород для лучшей регулировки установки давления прилагаемого механизмами крепления.
Хотя некоторые являющиеся примерами способы и устройства описаны в данном документе, объем охвата данного патента ими не ограничивается. Наоборот, данный патент охватывает все устройства и позиции, ясно подпадающие под объем прилагаемой формулы изобретения как буквально, так и по доктрине эквивалентов.

Claims (16)

1. Способ выполнения операций отбора проб и отбора кернов, согласно которому
спускают скважинный инструмент на каротажном кабеле в ствол скважины, проходящий в подземный пласт;
закрепляют скважинный инструмент в стволе скважины, выдвигая фиксирующую опору из скважинного инструмента в контакт со стенкой ствола скважины на первом месте работ в стволе скважины;
выполняют операцию отбора проб или образцов пластовой текучей среды с использованием инструмента отбора проб, связанного с первой секцией, при этом операцию отбора проб или образцов выполняют на втором месте работ в стволе скважины, когда скважинный инструмент остается закрепленным в стволе скважины на первом месте работ, и при этом второе место работ разнесено с первым местом работ в направлении, параллельном продольной оси скважинного инструмента; и
перемещают первую секцию скважинного инструмента и вторую секцию скважинного инструмента так, что первая секция скважинного инструмента переводится от второго места работ в направлении, параллельном продольной оси скважинного инструмента, и вторая секция скважинного инструмента переводится ко второму месту работ в направлении, параллельном продольной оси скважинного инструмента, и затем выполняют операцию отбора керна на втором месте работ с использованием инструмента отбора керна, связанного со второй секцией.
2. Способ по п.1, дополнительно содержащий выполнение операции испытания с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
3. Способ по п.1, дополнительно содержащий выполнение операции градиентного измерения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
4. Способ по п.2, дополнительно содержащий выполнение операции градиентного измерения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
5. Способ по п.1, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
6. Способ по п.2, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
7. Способ по п.3, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
8. Способ по п.4, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
9. Способ выполнения операций отбора проб и отбора кернов, согласно которому
спускают скважинный инструмент на бурильной колонне в ствол скважины, проходящий в подземный пласт;
закрепляют скважинный инструмент в стволе скважины, выдвигая фиксирующую опору из скважинного инструмента в контакт со стенкой ствола скважины на первом месте работ в стволе скважины;
выполняют операцию отбора проб или образцов пластовой текучей среды с использованием инструмента отбора проб, связанного с первой секцией, при этом операцию отбора проб или образцов выполняют на втором месте работ в стволе скважины, когда скважинный инструмент остается закрепленным в стволе скважины на первом месте работ, и при этом второе место работ разнесено с первым местом работ в направлении, параллельном продольной оси скважинного инструмента; и
перемещают первую секцию скважинного инструмента и вторую секцию скважинного инструмента так, что первая секция скважинного инструмента переводится от второго места работ в направлении, параллельном продольной оси скважинного инструмента, и вторая секция скважинного инструмента переводится ко второму месту работ в направлении, параллельном продольной оси скважинного инструмента, и затем выполняют операцию отбора керна на втором месте работ с использованием инструмента отбора керна, связанного со второй секцией.
10. Способ по п.9, дополнительно содержащий выполнение операции испытания с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
11. Способ по п.9, дополнительно содержащий выполнение операции градиентного измерения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
12. Способ по п.10, дополнительно содержащий выполнение операции градиентного измерения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
13. Способ по п.9, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
14. Способ по п.10, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
15. Способ по п.11, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
16. Способ по п.12, дополнительно содержащий выполнение операции отображения с использованием, по меньшей мере, участка скважинного инструмента, установленного на втором месте работ.
RU2010106628/03A 2007-07-25 2008-07-15 Способ выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями (варианты) RU2471067C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/782,819 2007-07-25
US11/782,819 US7784564B2 (en) 2007-07-25 2007-07-25 Method to perform operations in a wellbore using downhole tools having movable sections
PCT/US2008/070030 WO2009014932A2 (en) 2007-07-25 2008-07-15 Apparatus and methods to perform operations in a wellbore using downhole tools having movable sections

Publications (2)

Publication Number Publication Date
RU2010106628A RU2010106628A (ru) 2011-08-27
RU2471067C2 true RU2471067C2 (ru) 2012-12-27

Family

ID=40282084

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010106628/03A RU2471067C2 (ru) 2007-07-25 2008-07-15 Способ выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями (варианты)

Country Status (5)

Country Link
US (1) US7784564B2 (ru)
CN (1) CN101353962B (ru)
CA (1) CA2693370C (ru)
RU (1) RU2471067C2 (ru)
WO (1) WO2009014932A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705666C2 (ru) * 2015-03-03 2019-11-11 Веллтек А/С Скважинный толкающий инструмент

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464003B2 (en) 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
US8245796B2 (en) * 2000-12-01 2012-08-21 Wwt International, Inc. Tractor with improved valve system
US7392859B2 (en) * 2004-03-17 2008-07-01 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
US7624808B2 (en) 2006-03-13 2009-12-01 Western Well Tool, Inc. Expandable ramp gripper
US7748476B2 (en) 2006-11-14 2010-07-06 Wwt International, Inc. Variable linkage assisted gripper
US8550184B2 (en) * 2007-11-02 2013-10-08 Schlumberger Technology Corporation Formation coring apparatus and methods
US8991245B2 (en) * 2008-07-15 2015-03-31 Schlumberger Technology Corporation Apparatus and methods for characterizing a reservoir
US8430186B2 (en) 2009-05-08 2013-04-30 Schlumberger Technology Corporation Sealed core
WO2010141028A1 (en) * 2009-06-06 2010-12-09 Ziebel (Us) Inc. Guide tool for guiding downhole tools through wellbore restrictions
CA2707236C (en) * 2009-06-15 2014-10-28 Schlumberger Canada Limited Formation coring apparatus and methods
US8471560B2 (en) * 2009-09-18 2013-06-25 Schlumberger Technology Corporation Measurements in non-invaded formations
US8485278B2 (en) * 2009-09-29 2013-07-16 Wwt International, Inc. Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US9664004B2 (en) * 2009-12-24 2017-05-30 Schlumberger Technology Corporation Electric hydraulic interface for a modular downhole tool
US9086348B2 (en) * 2010-04-06 2015-07-21 Varel Europe S.A.S. Downhole acoustic emission formation sampling
US9297731B2 (en) 2010-04-06 2016-03-29 Varel Europe S.A.S Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard material inserts
CN102486087A (zh) * 2010-12-06 2012-06-06 淮南矿业(集团)有限责任公司 瓦斯抽排孔录井固定装置
US9127507B2 (en) 2010-12-14 2015-09-08 Schlumberger Technology Corporation Rotatable wireline tool of enhanced hydraulic drive consistency
DK2505773T3 (da) * 2011-03-30 2013-06-10 Welltec As Trykudligningsanordning
EP2505768B1 (en) * 2011-03-30 2016-03-30 Welltec A/S Modular downhole tool
EP3106604A1 (en) * 2011-08-31 2016-12-21 Welltec A/S Downhole system and method for fastening upper and lower casings via expandable metal sleeve
US9447648B2 (en) 2011-10-28 2016-09-20 Wwt North America Holdings, Inc High expansion or dual link gripper
CA2865446C (en) 2012-03-22 2016-11-29 B/E Aerospace, Inc. Vehicle refrigeration equipment having a vapor cycle system
US9249059B2 (en) 2012-04-05 2016-02-02 Varel International Ind., L.P. High temperature high heating rate treatment of PDC cutters
US9689256B2 (en) 2012-10-11 2017-06-27 Schlumberger Technology Corporation Core orientation systems and methods
US20140262334A1 (en) * 2013-03-14 2014-09-18 Saudi Arabian Oil Company Prevention of wireline damage at a downhole window
US9488020B2 (en) 2014-01-27 2016-11-08 Wwt North America Holdings, Inc. Eccentric linkage gripper
US9540927B2 (en) 2014-04-04 2017-01-10 Micro-G Lacoste, Inc. High resolution continuous depth positioning in a well bore using persistent casing properties
US8851193B1 (en) * 2014-04-09 2014-10-07 Cary A. Valerio Self-centering downhole tool
CN106223935B (zh) * 2016-09-05 2019-08-16 深圳市奈士迪技术研发有限公司 一种用于石油勘探的油井温度监测系统
US10941656B2 (en) * 2017-02-02 2021-03-09 Schlumberger Technology Corporation Downhole configurable testing apparatus and methods
CA2959911C (en) * 2017-03-06 2022-12-13 Coastline Technologies Inc. Device, system and method for correlating core sample zones with actual subterranean depth
CN108756874B (zh) * 2018-06-11 2021-09-10 中国海洋石油集团有限公司 一种测井仪器及取心取样方法
GB2572834B8 (en) 2018-08-16 2021-08-11 Darkvision Tech Inc Downhole imaging device and method of using same
US10920511B2 (en) 2018-12-27 2021-02-16 Saudi Arabian Oil Company Tool positioning devices for oil and gas applications
US11078740B2 (en) 2019-02-07 2021-08-03 Saudi Arabian Oil Company Wellbore radial positioning apparatus
CN110424914B (zh) * 2019-06-28 2021-10-26 中国石油天然气集团有限公司 用于套管井的液压支撑装置
CN110952974A (zh) * 2019-11-11 2020-04-03 东华理工大学 一种超声井周成像测井仪
CN111157701B (zh) 2020-01-03 2021-12-10 中国海洋石油集团有限公司 一种取心取样一体化测井仪器
CN112962703B (zh) * 2021-02-07 2023-07-14 安徽九华水安集团有限公司 一种水利工程淤泥处理用水下清淤装置
CN113294099A (zh) * 2021-06-23 2021-08-24 中勘资源勘探科技股份有限公司 一种大口径钻头扶正装置
CN113494257B (zh) * 2021-06-25 2023-09-15 中海油田服务股份有限公司 一种取心取样一体化短节及井下仪器
CN113279744A (zh) * 2021-06-25 2021-08-20 中国海洋石油集团有限公司 一种测井系统及其测井控制方法
EP4276272A1 (en) * 2022-05-11 2023-11-15 Welltec A/S Downhole tool string
WO2023203078A1 (en) * 2022-04-20 2023-10-26 Welltec A/S Downhole tool string

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1087658A1 (ru) * 1983-01-03 1984-04-23 Северо-Кавказский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Пробоотборное устройство дл испытател пластов
RU2112952C1 (ru) * 1996-01-26 1998-06-10 Акционерное общество закрытого типа "Экрос" Телескопическое устройство для отбора проб жидкости
RU2183269C2 (ru) * 1998-08-04 2002-06-10 Шлюмбергер Холдингз Лимитед Скважинный инструмент для сбора данных из приповерхностного пласта (варианты) и способ измерения свойств флюида, присутствующего в приповерхностном пласте
US6655458B2 (en) * 2001-11-06 2003-12-02 Schlumberger Technology Corporation Formation testing instrument having extensible housing
US20040140102A1 (en) * 2002-12-03 2004-07-22 Stig Bakke Apparatus and method for orientating a downhole control tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1430473A (en) * 1921-07-25 1922-09-26 Forest R Stoll Electromagnetic well-drilling machine
US3329209A (en) 1965-01-04 1967-07-04 Schlumberger Technology Corp Multiple purpose well tools
US4600059A (en) 1985-02-04 1986-07-15 Halliburton Company Line moving apparatus for wireline supported tools
BR9610373A (pt) 1995-08-22 1999-12-21 Western Well Toll Inc Ferramenta de furo de tração-empuxo
US6003606A (en) 1995-08-22 1999-12-21 Western Well Tool, Inc. Puller-thruster downhole tool
GB2412939B (en) 2003-02-18 2006-07-12 Baker Hughes Inc Radially adjustable downhole devices & methods for same
US7195063B2 (en) 2003-10-15 2007-03-27 Schlumberger Technology Corporation Downhole sampling apparatus and method for using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1087658A1 (ru) * 1983-01-03 1984-04-23 Северо-Кавказский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Пробоотборное устройство дл испытател пластов
RU2112952C1 (ru) * 1996-01-26 1998-06-10 Акционерное общество закрытого типа "Экрос" Телескопическое устройство для отбора проб жидкости
RU2183269C2 (ru) * 1998-08-04 2002-06-10 Шлюмбергер Холдингз Лимитед Скважинный инструмент для сбора данных из приповерхностного пласта (варианты) и способ измерения свойств флюида, присутствующего в приповерхностном пласте
US6655458B2 (en) * 2001-11-06 2003-12-02 Schlumberger Technology Corporation Formation testing instrument having extensible housing
US20040140102A1 (en) * 2002-12-03 2004-07-22 Stig Bakke Apparatus and method for orientating a downhole control tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705666C2 (ru) * 2015-03-03 2019-11-11 Веллтек А/С Скважинный толкающий инструмент

Also Published As

Publication number Publication date
CA2693370C (en) 2012-01-24
WO2009014932A3 (en) 2011-01-06
WO2009014932A2 (en) 2009-01-29
CN101353962A (zh) 2009-01-28
CN101353962B (zh) 2014-08-13
US20090025941A1 (en) 2009-01-29
US7784564B2 (en) 2010-08-31
RU2010106628A (ru) 2011-08-27
CA2693370A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
RU2471067C2 (ru) Способ выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями (варианты)
CA2593959C (en) Apparatus and methods to perform downhole measurements associated with subterranean formation evaluation
US8210284B2 (en) Coring apparatus and methods to use the same
US7637321B2 (en) Apparatus and method for unsticking a downhole tool
US8905128B2 (en) Valve assembly employable with a downhole tool
US8919460B2 (en) Large core sidewall coring
US10641080B2 (en) Method and apparatus for ranging to a nearby well from ahead of a drill bit
MX2012008363A (es) Deteccion y medicion de una meustra de corazonamiento.
US20110297371A1 (en) Downhole markers
CA2705931A1 (en) In-situ formation strength testing
US20130062073A1 (en) Packer Assembly with a Standoff
AU2015384820B2 (en) Blade-mounted sensor apparatus, systems, and methods
US20140224511A1 (en) Pump Drain Arrangements For Packer Systems And Methods For Sampling Underground Formations Using Same
US20140174759A1 (en) Downhole Tool Centralizing Pistons
US8499831B2 (en) Mud cake probe extension apparatus and method
US20100064794A1 (en) Method and apparatus for formation evaluation after drilling
US9441425B2 (en) Drilling tool system and method of manufacture
US20150027216A1 (en) Method and apparatus for formation testing and sampling when performing subterranean operations

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170716