RU2468968C1 - Формостабильная корпусная платформа из композиционного материала (варианты) - Google Patents

Формостабильная корпусная платформа из композиционного материала (варианты) Download PDF

Info

Publication number
RU2468968C1
RU2468968C1 RU2011125575/11A RU2011125575A RU2468968C1 RU 2468968 C1 RU2468968 C1 RU 2468968C1 RU 2011125575/11 A RU2011125575/11 A RU 2011125575/11A RU 2011125575 A RU2011125575 A RU 2011125575A RU 2468968 C1 RU2468968 C1 RU 2468968C1
Authority
RU
Russia
Prior art keywords
panel
cutouts
panels
end flanges
surface area
Prior art date
Application number
RU2011125575/11A
Other languages
English (en)
Inventor
Любовь Анатольевна Климакова
Александр Олегович Половый
Николай Васильевич Мухин
Андрей Васильевич Романов
Алексей Юрьевич Павлов
Олег Михайлович Гудков
Original Assignee
Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология"
Федеральное государственное унитарное предприятие "Конструкторское бюро "Арсенал" им. М.В. Фрунзе"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология", Федеральное государственное унитарное предприятие "Конструкторское бюро "Арсенал" им. М.В. Фрунзе" filed Critical Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология"
Priority to RU2011125575/11A priority Critical patent/RU2468968C1/ru
Application granted granted Critical
Publication of RU2468968C1 publication Critical patent/RU2468968C1/ru

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

Изобретения относятся к вариантам выполнения формостабильных корпусных платформ из композиционного материала, которые могут применяться в космической технике в качестве несущих платформ, в том числе размещаемых вне корпуса космического аппарата. Формостабильная корпусная платформа по первому варианту выполнена в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами. Вырезы второй панели расположены несимметрично по отношению к вырезам первой. Площадь поверхности второй панели меньше площади поверхности первой. Торцевые фланцы содержат узлы навески и выполнены из металлического сплава. Толщина второй панели больше толщины первой, или модуль упругости второй панели больше модуля упругости первой, при одинаковой величине термических коэффициентов линейного расширения панелей, близкой к нулевому значению. Формостабильная корпусная платформа по второму варианту выполнена в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами. Вырезы второй панели расположены несимметрично по отношению к вырезам первой. Площадь поверхности второй панели меньше площади поверхности первой. Торцевые фланцы содержат узлы навески и выполнены из металлического сплава. Термический коэффициент линейного расширения первой панели близок к нулевому значению, а термический коэффициент линейного расширения второй панели отрицателен при одинаковой величине толщины и модуля упругости панелей. Достигается уменьшение пространственных термических деформаций платформы. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к высокоточным конструкциям из полимерных композиционных материалов и может применяться в космической технике в качестве несущих платформ, в том числе внешнего размещения относительно корпуса космического аппарата (КА).
Реализация заданных целевых характеристик космического аппарата в значительной степени определяется эксплуатационной точностью позиционирования приборов бортового специального оснащения, которая обеспечивается размеро-, формостабильностью и жесткостью платформ, предназначенных для их размещения. Для космических платформ требования стабильности задаются угловыми отклонениями фокальных осей и относительными линейными перемещениями целевой аппаратуры, определяемыми плоскостными и пространственными деформациями несущей конструкции в штатном режиме теплового нагружения.
Вследствие функционирования в условиях широких диапазонов изменения температуры окружающей среды, больших габаритов, а также дополнительного силового нагружения в рабочем положении при консольной схеме заделки и термических возмущений от металлических элементов перестыка с узлами навески к корпусу аппарата, подвижные платформы КА внешнего размещения отличаются повышенными требованиями жесткости, определяющими предпочтительность использования конструкций корпусного типа, и термической стабильности.
Известна корпусная антенная платформа КА внешнего размещения, выполненная из алюминиевого сплава в виде сварной конструкции, которая содержит продольные уголковые профили, составляющие силовой каркас платформы; образованные плоскими листами нижнюю плоскость с несимметрично расположенными вырезами под приборы и боковые стенки; систему тавровых профилей, ориентированных в диагональных и поперечных направлениях и формирующих рамную структуру верхней плоскости; а также торцевые фланцы, предназначенные для крепления узлов навески (Гудков О.М., Павлов А.Ю. Особенности расчета температурных деформаций крупногабаритных трансформируемых антенных платформ для КА ДЗЗ // Пятые Уткинские чтения: Труды Международной научн.-техн. конф. - СПб: Балт. гос. техн. ун-т., 2011. - С.27-31).
При низкой массовой эффективности антенная платформа характеризуется недостаточной размерной стабильностью из-за больших термических деформаций, обусловленных высоким термическим коэффициентом линейного расширения (ТКЛР) алюминия. Достижимая размерная точность платформы для типового диапазона изменения температуры штатной эксплуатации (~100°С) составляет 2,4 мм/м, что исключает возможность ее эффективного применения в космических аппаратах с повышенными требованиями прецизионности, современный уровень которых определяется величиной менее 0,1 мм/м.
Наиболее близким по технической сущности к заявляемому решению является углепластиковая корпусная оптическая платформа космического телескопа, выполненная в виде сборной пространственно замкнутой конструкции в форме неправильного шестигранника из углесотовых пластин, образованной двумя панелями с вырезами, боковыми стенками и торцевыми фланцами, причем вырезы одной панели расположены несимметрично по отношению к вырезам другой, и площади поверхностей панелей имеют разную величину (Development of a Lightweight, Near Zero CTE Optical Bench for the Wide-Field Camera 3 Instrument / J.M. Holz, C. Kunt, C. Lashley, D.McGuffey // Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation: Proc. of SPIE. - 2003. - Vol.4854. - P.435-446).
Конструкция платформы в целом характеризуется высокими показателями размерной стабильности за счет близких к нулю значений ТКЛР в плоскости каждой из образующих ее углесотовых пластин, а также конструктивной жесткости. Вместе с тем, конструктивно-жесткостная несимметрия платформы, обусловленная наличием в панелях несимметрично расположенных вырезов при разной площади поверхностей панелей (из-за разной суммарной площади вырезов), приводит к появлению изгибных и крутильных деформаций и, как следствие, угловых отклонений фокальных осей приборов. Кроме того, исполнение из композиционных материалов торцевых фланцев платформы, предназначенной для эксплуатации в составе корпуса КА, не позволяет использовать данное техническое решение для варианта наружной навески ввиду специфических особенностей композитов по передаче трансверсальных силовых нагрузок (Карпов Я.С. Соединения деталей и агрегатов из композиционных материалов. - Харьков: Нац. аэрокосм, ун-т "Харьк. авиац. ин-т", 2006. - С.9).
Задачей настоящего изобретения является обеспечение минимальных пространственных термических деформаций при минимальных линейных перемещениях формостабильной корпусной платформы КА внешнего размещения, выполненной из композиционного материала и имеющей конструктивно-жесткостную несимметрию, посредством управления жесткостными параметрами и термическими свойствами конструкции.
Технический эффект достигается тем, что в формостабильной корпусной платформе из композиционного материала, выполненной в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами, причем вырезы второй панели расположены несимметрично по отношению к вырезам первой, и площадь поверхности второй панели меньше площади поверхности первой, согласно предлагаемому изобретению, торцевые фланцы содержат узлы навески и выполнены из металлического сплава, а толщина второй панели больше толщины первой, или модуль упругости второй панели больше модуля упругости первой, при одинаковой величине термических коэффициентов линейного расширения панелей, близкой к нулевому значению.
Технический эффект достигается также и тем, что в формостабильной корпусной платформе из композиционного материала, выполненной в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами, причем вырезы второй панели расположены несимметрично по отношению к вырезам первой, и площадь поверхности второй панели меньше площади поверхности первой, согласно предлагаемому изобретению, торцевые фланцы содержат узлы навески и выполнены из металлического сплава, термический коэффициент линейного расширения первой панели близок к нулевому значению, а термический коэффициент линейного расширения второй панели отрицателен при одинаковой величине толщины и модуля упругости панелей.
Выполнение торцевых фланцев с узлами навески из металлического сплава позволяет реализовать крепление платформы к корпусу КА, а также обеспечить передачу сосредоточенных нагрузок в трансверсальном направлении и необходимую прочность соединительного узла при сложном комбинированном нагружении.
Конструктивно-жесткостная несимметрия платформы, обусловленная наличием в панелях вырезов, суммарные площади которых различны, и несимметричностью расположения вырезов одной панели относительно вырезов другой, при различии ТКЛР металлических фланцев и углепластика в условиях теплового нагружения приводит к появлению изгибных и крутильных деформаций конструкции и ее повороту относительно начального положения даже при практически нулевых значениях ТКЛР композитных элементов.
Повышение жесткости панели с меньшей площадью поверхности за счет увеличения ее толщины или модуля упругости позволяет уравновесить жесткостные параметры панелей и, при их одинаковых термических коэффициентах линейного расширения, снизить эффекты искажения формы конструкции, а условие близкого к нулевому значению ТКЛР панелей - обеспечить минимум линейных перемещений платформы в плоскости.
При одинаковой величине толщины и модуля упругости панелей, то есть для разных по жесткости панелей, требование отрицательного ТКЛР в отношении панели с меньшей площадью поверхности направлено на компенсацию положительного ТКЛР металлических фланцев и снижение долевого вклада панели в деформации платформы, которые в данном случае определяются преимущественно деформациями более жесткой панели (с большей площадью поверхности), имеющей близкий к нулю ТКЛР.
Соотношения жесткостей (толщины и модуля упругости) и ТКЛР панелей, необходимые для компенсации влияния конструктивно-жесткостной несимметрии на формостабильность конструкции, определяются расчетным путем для каждого конкретного случая.
Совокупность существенных признаков, указанных в первом и втором вариантах, позволяет обеспечить получение нового технического результата, заключающегося в достижении высокой размере- и формостабильности корпусной платформы КА внешнего размещения, реализующей высокую точность позиционирования размещаемых на ней целевых устройств при наличии конструктивно-жесткостной несимметрии.
Панели и боковые стенки платформы могут быть выполнены в виде трехслойных или конструктивно однослойных конструкций, изготовленных из композиционного материала на основе углеродных волокон и термореактивных полимерных связующих, например эпоксидных, эпоксифенольных или цианатных. В качестве заполнителя для трехслойных элементов конструкции могут применяться сотовые заполнители из алюминиевой фольги или углеродных тканей. Соединение обшивок с заполнителем может выполняться совместным формованием или склейкой посредством клеевых композиций горячего и холодного отверждения. Торцевые фланцы могут быть выполнены из титанового сплава, инвара или суперинвара. Сборка платформы может осуществляться клеевым или механическим способом.
Повышение жесткости панели, имеющей меньшую площадь поверхности, с целью компенсации конструктивно-жесткостной несимметрии платформы на практике может быть реализовано как увеличением площади поперечного сечения панели, так и ее упругих свойств, например, за счет применения модифицированных схем армирования слоев, использования материала с повышенным модулем упругости, а также - для сотового варианта исполнения - сотозаполнителя большей плотности.
На фиг.1 представлен общий вид формостабильной корпусной платформы из композиционного материала, на фиг.2 - схемное изображение поперечного сечения платформы.
Формостабильная корпусная платформа из композиционного материала (фиг.1), выполненная в виде сборной пространственно замкнутой конструкции, образована двумя панелями 1 и 2, боковыми стенками 3 и 4, торцевыми фланцами 5 и 6, которые содержат узлы навески 7 и выполнены из металлического сплава.
Панели 1 и 2 (фиг.2) содержат вырезы 8 и 9, причем вырезы 9 панели 2 расположены несимметрично по отношению к вырезам 8 панели 1, и площадь поверхности S2 панели 2 меньше площади поверхности S1 панели 1 (S2<S1).
При одинаковой величине термических коэффициентов линейного расширения α1 и α2 панелей 1 и 2, близкой к нулевому значению, толщина t2 панели 2 больше толщины t1 панели 1, или модуль упругости Е2 панели 2 больше модуля упругости E1 панели 1, то есть при (α12)~0 действуют условия t2>t1 или Е2>E1.
При одинаковой величине толщины t1 и t2 панелей 1 и 2 и модуля упругости E1 и E2 панелей 1 и 2 термический коэффициент линейного расширения α1 панели 1 близок к нулевому значению, а термический коэффициент линейного расширения α2 панели 2 отрицателен, то есть при t1=t2 и E12 выполняются условия α1=0 и α2 <0.
С использованием заявляемого технического решения изготовлены формостабильные корпусные платформы габаритами 750×200×3500 мм, выполненные из углепластика на основе препрега П-4УН-НТS-5631 и связующего ЭНФБ (раствор эпоксидных и фенолформальдегидных смол в спирто-ацетоновой смеси) на базе трехслойных панелей с сотозаполнителем из алюминиевым фольги 5056, соединяемых с боковыми швеллерными стенками клеем холодного отверждения ВК-9 эпоксидного типа, и механически стыкуемых торцевых фланцев из титанового сплава.
Для платформ указанного конструктивного исполнения, соотношения площадей поверхностей панелей 2 и 1 которых составляет S2/S1=0,63 и S2/S1=0,81, справедливы следующие утверждения:
- при ТКЛР α1 и α2 панелей 1 и 2, близких к нулевому значению, t2/t12/E1=1,6 для S2/S1=0,63 и 1,2 для S2/S1=0,81; где t1 и t2 - толщина обшивок панелей 1 и 2; E1 и Е2 - продольные модули упругости обшивок панелей 1 и 2;
- при одинаковой толщине t1 и t2 обшивок панелей 1 и 2 и одинаковом модуле упругости E1 и Е2 обшивок панелей 1 и 2 ТКЛР α1 панели 1 близок к нулевому значению, а ТКЛР α2 панели 2 равен -0,4×10-61/°С.
Изготовленные платформы, размеро- и формостабильность которых обеспечивалась посредством управления термическими свойствами панелей, показали отсутствие изгибных и крутильных деформаций при улучшенных в 20 раз линейных перемещениях и 25% снижении массы по отношению к аналогам, выполненным из алюминиевого сплава.
Таким образом, заявляемое техническое решение является воспроизводимым в условиях производства, обеспечивает достижение качественно нового технического результата и соответствует критерию "промышленная применимость".

Claims (2)

1. Формостабильная корпусная платформа из композиционного материала, выполненная в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами, причем вырезы второй панели расположены несимметрично по отношению к вырезам первой и площадь поверхности второй панели меньше площади поверхности первой, отличающаяся тем, что торцевые фланцы содержат узлы навески и выполнены из металлического сплава, а толщина второй панели больше толщины первой или модуль упругости второй панели больше модуля упругости первой при одинаковой величине термических коэффициентов линейного расширения панелей, близкой к нулевому значению.
2. Формостабильная корпусная платформа из композиционного материала, выполненная в виде сборной пространственно замкнутой конструкции, образованной двумя панелями, содержащими вырезы, боковыми стенками и торцевыми фланцами, причем вырезы второй панели расположены несимметрично по отношению к вырезам первой и площадь поверхности второй панели меньше площади поверхности первой, отличающаяся тем, что торцевые фланцы содержат узлы навески и выполнены из металлического сплава, термический коэффициент линейного расширения первой панели близок к нулевому значению, а термический коэффициент линейного расширения второй панели отрицателен при одинаковой величине толщины и модуля упругости панелей.
RU2011125575/11A 2011-06-21 2011-06-21 Формостабильная корпусная платформа из композиционного материала (варианты) RU2468968C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011125575/11A RU2468968C1 (ru) 2011-06-21 2011-06-21 Формостабильная корпусная платформа из композиционного материала (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011125575/11A RU2468968C1 (ru) 2011-06-21 2011-06-21 Формостабильная корпусная платформа из композиционного материала (варианты)

Publications (1)

Publication Number Publication Date
RU2468968C1 true RU2468968C1 (ru) 2012-12-10

Family

ID=49255692

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011125575/11A RU2468968C1 (ru) 2011-06-21 2011-06-21 Формостабильная корпусная платформа из композиционного материала (варианты)

Country Status (1)

Country Link
RU (1) RU2468968C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544827C1 (ru) * 2014-01-13 2015-03-20 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Сотовая панель из полимерного композиционного материала и способ ее изготовления
RU183218U1 (ru) * 2018-03-13 2018-09-13 Александр Витальевич Лопатин Силовая конструкция космического аппарата

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291231A (ja) * 2002-03-29 2003-10-14 Mitsubishi Electric Corp 複合材パネル
RU2296675C1 (ru) * 2005-08-25 2007-04-10 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Интегральная рамная конструкция из слоистого полимерного композиционного материала
RU2006105063A (ru) * 2006-02-17 2007-08-27 Федеральное государственное унитарное предпри тие"Обнинское научно-производственное предпри тие "Технологи " (RU) Композитная размеростабильная платформа
US7381459B1 (en) * 2004-02-12 2008-06-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291231A (ja) * 2002-03-29 2003-10-14 Mitsubishi Electric Corp 複合材パネル
US7381459B1 (en) * 2004-02-12 2008-06-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite
RU2296675C1 (ru) * 2005-08-25 2007-04-10 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Интегральная рамная конструкция из слоистого полимерного композиционного материала
RU2006105063A (ru) * 2006-02-17 2007-08-27 Федеральное государственное унитарное предпри тие"Обнинское научно-производственное предпри тие "Технологи " (RU) Композитная размеростабильная платформа

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544827C1 (ru) * 2014-01-13 2015-03-20 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Сотовая панель из полимерного композиционного материала и способ ее изготовления
RU183218U1 (ru) * 2018-03-13 2018-09-13 Александр Витальевич Лопатин Силовая конструкция космического аппарата

Similar Documents

Publication Publication Date Title
EP3044624B1 (en) Optimal kinematic mount for large mirrors
JP6433129B2 (ja) 開放側面を有する宇宙機
CN110186564B (zh) 一种大口径全谱段高光谱载荷高稳定性探测系统
US7993727B2 (en) Advanced grid structure
EP2941796B1 (en) Configurable backing structure for a reflector antenna and corrective synthesis for mechanical adjustment thereof
RU2468968C1 (ru) Формостабильная корпусная платформа из композиционного материала (варианты)
JP5574835B2 (ja) ハニカムコアサンドイッチ構造体
Kihm et al. Optomechanical analysis of a 1-m light-weight mirror system
Utsunomiya et al. CFRP composite mirrors for space telescopes and their micro-dimensional stability
Neill et al. LSST secondary mirror system final design
Lake et al. Deployable primary mirror for space telescopes
RU2312771C1 (ru) Композитная размеростабильная платформа
Kuo et al. Composite materials application on FORMOSAT-5 remote sensing instrument structure
Wei et al. Ultra-high-precision reflectors-design concepts, structural optimization and zero-expansion composites
Pfeiffer et al. Compact and stable earth deck multi-beam Ka-Band antenna structure and dual gridded reflector
Telkamp et al. Design considerations for composite materials used in the Mars Observer Camera
Daye et al. Optimal Cable-Stayed Configurations for Pretensioned Space Structures
Antebi et al. A deformable subreflector for the Haystack radio telescope
Strafford et al. Development of lightweight stiff stable replicated glass mirrors for the Cornell Caltech Atacama Telescope (CCAT)
Stumm et al. Graphite/epoxy material characteristics and design techniques for airborne instrument application
Olds et al. Composite structures for the Advanced X-ray Astrophysics Facility (AXAF) telescope
Ozaki et al. Composite materials for extremely large mirrors and optical structures
Pryor Hygrothermal stability of laminated CFRP composite mirrors
Valsecchi et al. A segmented subreflector with electroformed Nickel laminated panels for the Large Millimeter Telescope
Kunt et al. Development and sizing of the JWST Integrated Science Instrument Module (ISIM) metering structure

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20170901

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180622