RU2468420C1 - Способ функционирования распределенных измерительно-управляющих систем - Google Patents

Способ функционирования распределенных измерительно-управляющих систем Download PDF

Info

Publication number
RU2468420C1
RU2468420C1 RU2011125878/08A RU2011125878A RU2468420C1 RU 2468420 C1 RU2468420 C1 RU 2468420C1 RU 2011125878/08 A RU2011125878/08 A RU 2011125878/08A RU 2011125878 A RU2011125878 A RU 2011125878A RU 2468420 C1 RU2468420 C1 RU 2468420C1
Authority
RU
Russia
Prior art keywords
task
tasks
measuring
state
network server
Prior art date
Application number
RU2011125878/08A
Other languages
English (en)
Inventor
Владимир Александрович Комаров
Александр Семенович Глинченко
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу)
Priority to RU2011125878/08A priority Critical patent/RU2468420C1/ru
Application granted granted Critical
Publication of RU2468420C1 publication Critical patent/RU2468420C1/ru

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Изобретение относится к области информационно-измерительной техники и может быть использовано для построения распределенных измерительно-управляющих систем с удаленным доступом к объектам исследования и средствам управления и измерения с повышенной пропускной способностью. Технический результат - повышение пропускной способности системы. Он достигается за счет сокращения среднего времени обслуживания поблочно формируемой очереди заданий путем оптимизации порядка выбора их в пределах блока и исполнения исходя из минимально необходимого времени на изменение состояния объекта относительного его текущего состояния. 1 ил.

Description

Изобретение относится к области информационно-измерительной техники и может быть использовано для построения распределенных измерительно-управляющих систем с удаленным доступом к объектам исследования и средствам управления и измерения.
Известен способ функционирования распределенной измерительно-управляющей системы (РИУС), решающий задачи автоматизации экспериментальных исследований с удаленным доступом (см. A.M.Зимин. Автоматизированный лабораторный практикум с удаленным доступом в техническом университете: Информационные технологии, №2, 2002, с.39-43), который включает передачу задания на управление объектом с персональной ЭВМ через компьютерную сеть на сетевой сервер системы, запись его в очередь заданий других пользователей, передачу очередного задания с сетевого сервера на измерительно-управляющий сервер, сопряженный с объектом, формирование с его помощью сигналов управления, их вывод на объект, измерение параметров объекта и передачу результатов измерения через сетевой сервер на ПЭВМ пользователя.
Недостатком данного способа, в котором задания выполняются в порядке их поступления на сетевой сервер, является большое время обслуживания пользователей, в случаях, когда доминирующей составляющей времени обслуживания является время управления изменением состояния объекта, что приводит к снижению пропускной способности системы.
Наиболее близким к заявляемому является «Способ тестирования территориально удаленных объектов» по патенту РФ №2406140, который включает передачу сформированного задания на тестирование объекта с персональной ЭВМ пользователя через компьютерную сеть на сетевой сервер системы, запись его в очередь заданий других пользователей, передачу очередного задания с сетевого сервера на измерительный сервер, сопряженный с тестируемым объектом, измерение под его управлением значений откликов объекта на выводимое тестовое воздействие и передачу результатов измерения через сетевой сервер на персональную ЭВМ пользователя. Данный способ реализуется с помощью распределенной измерительно-управляющей системы и определяет способ функционирования таких систем.
Недостатком данного способа является то, что он решает задачу повышения пропускной способности РИУС только за счет оптимизации времени измерений и не учитывает ее зависимость от времени управления изменением состояния объекта, которое во многих случаях может иметь доминирующее влияние.
В основу изобретения положена задача повышения пропускной способности РИУС.
Поставленная задача решается тем, что в способе функционирования распределенных измерительно-управляющих систем, включающем формирование на персональной ЭВМ пользователя задания на управление объектом и измерения, передачу задания с персональной ЭВМ пользователя через компьютерную сеть на сетевой сервер системы, запись его в очередь заданий других пользователей в порядке их поступления, передачу задания с сетевого сервера на измерительно-управляющий сервер, сопряженный с объектом, формирование с его помощью сигналов управления и при необходимости - сигналов тестирования, вывод их через средства сопряжения на объект, проведение измерений и передачу их результатов через сетевой сервер на персональную ЭВМ пользователя, согласно изобретению дополнительно на сетевом сервере очередь заданий разбивают на последовательно выполняемые блоки заданий фиксированной длины и выбирают из очередного блока для передачи на измерительно-управляющий сервер задание с наименьшим временем на изменение состояния объекта относительно его текущего состояния.
На фигуре 1 приведена возможная структурная схема системы, реализующей заявляемый способ.
Система содержит персональные ЭВМ пользователей 11, 12, …, 1m, соединенные через компьютерную сеть с сетевым сервером 2, к которому подключен измерительно-управляющий сервер 3, соединенный через устройство сопряжения 4 и исполнительное устройство 5 с объектом 6.
Функционирование РИУС по предлагаемому способу осуществляется следующим образом.
С персональной ЭВМ пользователя 11, 12, …, 1m (m - число пользователей системы) через компьютерную сеть на сетевой сервер 2 передается представленное в цифровом виде задание на измерения и управление объектом 6, которое в порядке поступления записывается сетевым сервером 2 в очередь заданий других пользователей, формируемую им в виде блоков заданий постоянной длины L. Состояние объекта 6 определяется значением его управляемого параметра (одномерное управление) или совокупности параметров (многомерное управление). В задании указываются управляемые параметры объекта и их значения, необходимые для изменения его состояния, вид и параметры тестового воздействия. Максимальное число состояний Z объекта 6 определяется сочетанием всех возможных значений параметров управления и их количеством.
Примерами заданий на управление объектом 6 могут быть:
- изменение конфигурации (структуры и архитектуры) коммутируемых электрических цепей и электронных устройств или значений их элементов с временем установления переходных процессов, вызываемых коммутацией, существенно большим времени измерения исследуемых характеристик;
- изменение электрического режима работы элементов при наличии физических ограничений на скорость изменения;
- изменение температурного режима работы, скорость которого ограничивается тепловой инерционностью объекта;
- изменение механических характеристик объектов, например скорости и направления вращения вала и др.
Каждому из L заданий в формируемом сетевым сервером 2 блоке заданий соответствует одно из возможных состояний объекта 6
Figure 00000001
, где n=1, 2, …, L - номер задания в порядке его поступления, i=0, 1, 2, …, Z-1 - номер состояния объекта 6 в соответствии с n-м заданием.
Сетевой сервер 2 на основе информации о текущем состоянии Sk объекта 6, поступающей с измерительно-управляющего сервера 3 (k=0, 1, 2, …, Z-1 - номер текущего состояния объекта), выбирает из очередного исполняемого блока заданий то, которому отвечает минимальное время на изменение состояния объекта 6, т.е. на приведение его в новое состояние, определяемое этим заданием. Математически алгоритм поиска номера q очередного извлекаемого из очереди задания можно представить выражением:
Figure 00000002
где t(Sk,
Figure 00000001
) - время перевода объекта из текущего состояния Sk в состояние
Figure 00000001
, при котором это время минимально (время перехода Sk
Figure 00000003
).
Под управлением измерительно-управляющего сервера 3 в соответствии с извлекаемым заданием синтезируются в цифровом виде управляющее и тестовое воздействия. Цифровое управляющее воздействие выводится на исполнительное устройство 5, которое преобразует его в физическое воздействие на объект 6, изменяющее его (объекта 6) состояние, например, с помощью управляемых ключей, приводов, нагревателей и т.п. Цифровое тестовое (измерительное) воздействие выводится на устройство сопряжения 4 и преобразуется с помощью встроенного в это устройство цифроаналогового преобразователя (ЦАП) в последовательность аналоговых тестовых сигналов, воздействующих на объект 6.
Одновременно с выводом последовательности тестовых воздействий через устройство сопряжения 4 осуществляется синхронизированный ввод в измерительно-управляющий сервер 3 откликов объекта 6 с одной или нескольких точек съема, оцифрованных встроенным в устройство сопряжения 4 аналого-цифровым преобразователем (АЦП).
Полученные результаты измерений, проводимых под управлением измерительно-управляющего сервера 3, через сетевой сервер 2 передаются на персональную ЭВМ пользователя 11, 12, …, 1m и несут информацию о параметрах и характеристиках объекта 6, отвечающих его установленному состоянию.
Технический результат изобретения поясним на конкретном примере. Предположим, что время перехода объекта 6 из произвольного состояния Si в состояние Si+1 и обратно из состояния Si+1 в состояние Si не зависит от i и равно Δt. Тогда время перевода объекта из текущего состояния Sk в состояние Si, определяемое извлекаемым из очереди заданием, определяется как:
Figure 00000004
.
Предположим, что в очередном блоке длиною L=5 в текущий момент времени содержатся задания, определяющие состояния объекта 6
Figure 00000005
, которые поступили в сетевой сервер 2 в последовательности n=1, 2, 3, 4, 5, а объект 6 на начало обработки данного блока заданий находится в состоянии Sk=S0; время измерения требуемых параметров и/или характеристик объекта 6 равно tизм.
Если выбирать для передачи на измерительно-управляющий сервер 3 задания в порядке их поступления (q=n), то время исполнения или обслуживания первого извлекаемого задания будет равно:
Figure 00000006
Для второго извлекаемого задания исходным является состояние, определяемое первым заданием, поэтому время обслуживания второго задания равно:
Figure 00000007
Для третьего и последующих заданий имеем:
Figure 00000008
Figure 00000009
Figure 00000010
Среднее время обслуживания рассмотренных в очереди составит:
Figure 00000011
Критерию выбора заданий из очереди в соответствии с заявляемым способом (1) соответствует порядок их извлечения
Figure 00000012
(q=1, 5, 4, 3, 2). Время обслуживания заданий при этом определяется как:
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Среднее время обслуживания заданий при применении заявляемого способа составит:
Figure 00000018
Отношение среднего времени обслуживания заданий в РИУС, функционирующей по известному способу и по предлагаемому способу, составляет:
Figure 00000019
Для отмеченных выше видов управления выполняется условие: Δt>>tизм, при котором для оценки эффективности заявляемого способа значением tизм можно пренебречь. С учетом этого определяемый сокращением среднего времени обслуживания выигрыш для рассмотренного примера составляет:
Figure 00000020
Сокращение среднего времени обслуживания приводит к повышению в R раз пропускной способности системы, т.е. к увеличению в R раз числа обслуживаемых заданий в единицу времени, что говорит о более эффективном функционировании РИУС и о решении положенной в основу изобретения задачи.
После обработки текущего (очередного) блока заданий система (РИУС) автоматически переходит к обслуживанию заданий, размещенных в порядке поступления их в следующем блоке. От выбора длины блока L также может зависеть эффективность способа.
Эффект сокращения среднего времени обслуживания заданий объясняется тем, что промежуточные состояния, получающиеся в процессе изменения состояния исследуемого объекта при выполнении очередного задания, могут отвечать одним или нескольким состояниям, определяемым другими заданиями, стоящими в очереди. Выполняя эти внеочередные задания (в смысле порядка их поступления) в процессе установки соответствующих им промежуточных состояний объекта 6, и достигают сокращения суммарного времени обслуживания заданий.
Особенно ощутим данный эффект при исследованиях, связанных с изменением теплового режима работы объекта или его элементов. При их последовательном нагреве или охлаждении до заданной температуры объект или его элемент принимают промежуточные значения температуры, которые отвечают другим заданиям на исследования, имеющимся в очереди. Они могут быть обслужены в соответствии с порядком, определяемым по заявляемому способу и не совпадающим в общем случае с порядком их поступления на сетевой сервер 2. Таким образом, достигается минимизация перекрестных дублирующих операций перестройки объекта, сокращающая среднее время обслуживания заданий и, как следствие, увеличивающая пропускную способность распределенных измерительно-управляющих систем.
Эффективность предлагаемого способа проверена при использовании в распределенных измерительно-управляющих системах автоматизации лабораторного эксперимента в ФГАОУ ВПО «Сибирский федеральный университет».

Claims (1)

  1. Способ функционирования распределенных измерительно-управляющих систем, включающий формирование на персональной ЭВМ пользователя задания на управление объектом и измерения, передачу задания с персональной ЭВМ пользователя через компьютерную сеть на сетевой сервер системы, запись его в очередь заданий других пользователей в порядке их поступления, передачу задания с сетевого сервера на измерительно-управляющий сервер, сопряженный с объектом, формирование с его помощью сигналов управления и при необходимости - сигналов тестирования, вывод их через средства сопряжения на объект, проведение измерений и передачу их результатов через сетевой сервер на персональную ЭВМ пользователя, отличающийся тем, что дополнительно на сетевом сервере очередь заданий разбивают на последовательно выполняемые блоки заданий фиксированной длины и выбирают из очередного блока для передачи на измерительно-управляющий сервер задание с наименьшим временем на изменение состояния объекта относительно его текущего состояния.
RU2011125878/08A 2011-06-23 2011-06-23 Способ функционирования распределенных измерительно-управляющих систем RU2468420C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011125878/08A RU2468420C1 (ru) 2011-06-23 2011-06-23 Способ функционирования распределенных измерительно-управляющих систем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011125878/08A RU2468420C1 (ru) 2011-06-23 2011-06-23 Способ функционирования распределенных измерительно-управляющих систем

Publications (1)

Publication Number Publication Date
RU2468420C1 true RU2468420C1 (ru) 2012-11-27

Family

ID=49254997

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011125878/08A RU2468420C1 (ru) 2011-06-23 2011-06-23 Способ функционирования распределенных измерительно-управляющих систем

Country Status (1)

Country Link
RU (1) RU2468420C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575410C2 (ru) * 2014-06-16 2016-02-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ функционирования распределенных измерительно-управляющих систем
RU2620596C1 (ru) * 2015-12-16 2017-05-29 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Распределенная измерительно-управляющая система
RU2681516C1 (ru) * 2017-11-20 2019-03-07 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система испытаний земных станций спутниковой связи
RU2695539C1 (ru) * 2018-06-22 2019-07-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ функционирования системы испытаний земных станций спутниковой связи

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2256296C2 (ru) * 2001-02-28 2005-07-10 Тин Филм Электроникс Аса Способ передачи классифицированной информации с заданной приоритетностью
US6917976B1 (en) * 2000-05-09 2005-07-12 Sun Microsystems, Inc. Message-based leasing of resources in a distributed computing environment
US6954800B2 (en) * 2000-04-07 2005-10-11 Broadcom Corporation Method of enhancing network transmission on a priority-enabled frame-based communications network
RU2406140C1 (ru) * 2009-09-30 2010-12-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ) Способ тестирования территориально удаленных объектов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954800B2 (en) * 2000-04-07 2005-10-11 Broadcom Corporation Method of enhancing network transmission on a priority-enabled frame-based communications network
US6917976B1 (en) * 2000-05-09 2005-07-12 Sun Microsystems, Inc. Message-based leasing of resources in a distributed computing environment
RU2256296C2 (ru) * 2001-02-28 2005-07-10 Тин Филм Электроникс Аса Способ передачи классифицированной информации с заданной приоритетностью
RU2406140C1 (ru) * 2009-09-30 2010-12-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ) Способ тестирования территориально удаленных объектов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575410C2 (ru) * 2014-06-16 2016-02-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ функционирования распределенных измерительно-управляющих систем
RU2620596C1 (ru) * 2015-12-16 2017-05-29 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Распределенная измерительно-управляющая система
RU2681516C1 (ru) * 2017-11-20 2019-03-07 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система испытаний земных станций спутниковой связи
RU2695539C1 (ru) * 2018-06-22 2019-07-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ функционирования системы испытаний земных станций спутниковой связи

Similar Documents

Publication Publication Date Title
CA2757259C (en) Cloud computing as a basis for equipment health monitoring service
RU2468420C1 (ru) Способ функционирования распределенных измерительно-управляющих систем
US9229871B2 (en) Cache device, communication apparatus, and computer program product
AU2016225917A1 (en) Cloud computing as a basis for a process historian
WO2010120444A2 (en) Cloud computing for a manufacturing execution system
JP6753278B2 (ja) 制御システムおよび制御装置
JP2018528511A (ja) 生産システムにおける出力効率の最適化
RU2481621C1 (ru) Способ функционирования распределенной измерительно-управляющей системы
JP2012175376A (ja) 管理装置及びデータ収集装置
JP4959312B2 (ja) 遠隔監視制御システム及び遠隔監視制御方法
JP2016146020A (ja) データ分析システム及び分析方法
CN106776032B (zh) 分布式块存储的io请求的处理方法和装置
CN101403894A (zh) 状态指示方法和状态指示系统
WO2010001481A1 (ja) 情報収集装置、情報収集プログラム及び方法
EP3021490A1 (en) Digitizer auto aperture with triggering spacing
WO2016075924A1 (ja) 情報処理システム及び遅延計測方法
RU2575410C2 (ru) Способ функционирования распределенных измерительно-управляющих систем
US20220147005A1 (en) Combinatorics of digital output data for autonomous determination of process cycles and of individual process steps
JP2007121065A (ja) 材料試験システム
Chamroo et al. Oberving and controlling plants using their delayed and sampled outputs
EP4046368B1 (en) A method for configuring an intelligent electronic device
US20240146679A1 (en) Method for providing core conversation preview of unread conversations, and apparatus for implementing the same
RU2695539C1 (ru) Способ функционирования системы испытаний земных станций спутниковой связи
Sharma1a et al. Evolution and Implementation of Loss-Less Data Acquisition for Steady State Tokamak
JP3649097B2 (ja) 生産実績管理システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160624