RU2468224C1 - Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения - Google Patents

Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения Download PDF

Info

Publication number
RU2468224C1
RU2468224C1 RU2011142200/06A RU2011142200A RU2468224C1 RU 2468224 C1 RU2468224 C1 RU 2468224C1 RU 2011142200/06 A RU2011142200/06 A RU 2011142200/06A RU 2011142200 A RU2011142200 A RU 2011142200A RU 2468224 C1 RU2468224 C1 RU 2468224C1
Authority
RU
Russia
Prior art keywords
piston
combustion chamber
energy
common external
external combustion
Prior art date
Application number
RU2011142200/06A
Other languages
English (en)
Inventor
Анатолий Александрович Рыбаков
Original Assignee
Анатолий Александрович Рыбаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Александрович Рыбаков filed Critical Анатолий Александрович Рыбаков
Priority to RU2011142200/06A priority Critical patent/RU2468224C1/ru
Application granted granted Critical
Publication of RU2468224C1 publication Critical patent/RU2468224C1/ru

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Изобретение относится к области энергомашиностроения. Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения включает общую внешнюю камеру сгорания, две поршневые расширительные машины, линейный электрогенератор и систему управления. Энергомодуль преобразует экзотермическую энергию моторного топлива в электроэнергию в одном режиме и в энергию газообразного рабочего тела с высокими параметрами температуры и давления в другом. Для перевода энергомодуля из одного режима в другой служит задвижка. В закрытом положении задвижки энергомодуль действует как электрогенератор. В открытом положении - как генератор газов и электрогенератор. Изобретение обеспечивает преобразование экзотермической энергии моторного топлива в электроэнергию и в энергию газообразного рабочего тела с высокими параметрами давления и температуры для привода расширительных машин. 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области энергомашиностроения.
УРОВЕНЬ ТЕХНИКИ
Ближайший прототип заявленного изобретения «Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей», патент №2422655 С1.
Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движение якорей (далее - энергомодуль) преобразует химическую энергию моторного топлива в электроэнергию. Действует он следующим образом.
Продукты сгорания из камеры сгорания 1 (фигура 1) по трубопроводу 2 через газораспределительный клапан 3 поступают в правую (по рисунку) полость поршня 4 левой расширительной машины 5, а по трубопроводу 6 и через газораспределительный клапан 7 - в левую полость поршня 8 правой расширительной машины 9. Под действием расширяющихся продуктов сгорания поршни расширительных машин 4, 8 и соединенные с ними якоря линейных генераторов 10, 11 начинают расходиться. Якоря могут представлять собой постоянные магниты либо электромагниты, намагничиваемые катушкой подмагничивания 12. Магнитный поток генератора замыкается по контуру - якорь 11, статорный магнит 13, якорь 10 и снова якорь 11. При расхождении якорей 10, 11 магнитные силовые линии их магнитных полей пересекаются, в результате чего в статорном магните 13 изменяется магнитный поток и, как следствие, в статорной катушке 14 генерируется импульс электроэнергии. При достижении поршнями и якорями точек крайнего расхождения система управления (на рисунке не показана) переводит газораспределительные клапаны 3, 7, 15, 16 в противоположные положения. Теперь продукты сгорания из камеры сгорания 1 по трубопроводу 2 и через газораспределительный клапан 15 поступают в левую полость поршня 17 левой расширительной машины 5, а по трубопроводу 6 и через газораспределительный клапан 16 - в правую полость поршня 18 правой расширительной машины 9. Поршни расширительных машин и соединенные с ними якоря генераторов начинают сходиться, и в статорной катушке 14 генерируется импульс противоположного знака. Отработавшие продукты сгорания при расхождении поршней выбрасываются в атмосферу через газораспределительные клапаны 15 и 16, а при схождении - через газораспределительные клапаны 3 и 7. В дальнейшем система управления, переводя газораспределительные клапаны 3, 7, 15, 16 из одного положения в другое, обеспечивает колебательные движения поршней и якорей. При этом из соответствующих полостей поршней расширительных машин 5 и 9 через обратные клапаны 19, 20, 21, 22 по трубопроводам 23, 24 в камеру сгорания 1 подается воздух, обеспечивающий процесс горения топлива, а через обратные клапаны 25, 26, 27, 28 из атмосферы засасывается воздух. В статорной катушке 14 генерируются импульсы электроэнергии.
ЦЕЛЬ ИЗОБРЕТЕНИЯ
Цель заявленного изобретения состоит в том, чтобы создать агрегат, преобразующий экзотермическую энергию моторного топлива в электроэнергию для широкого использования и в энергию газообразного рабочего тела с высокими параметрами давления и температуры для привода расширительных машин.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Сущность заявленного изобретения поясняется описанием принципа действия свободнопоршневого двухцилиндрового с общей внешней камерой сгорания и линейным электрогенератором энергомодуля двойного назначения. Он включает общую внешнюю камеру сгорания (камера сгорания), две поршневые расширительные машины (расширительная машина), линейный электрогенератор (генератор) и систему управления.
Перед пуском энергомодуля, фигура 2, в его камере сгорания 1 всегда присутствует некоторое количество воздуха. Если поршневая группа (поршни 2, 3, шток 4 и якорь генератора 5) находится в правом, по рисунку, крайнем положении, система управления форсункой 6 подает в камеру сгорания 1 дозу топлива и воспламеняет его свечой зажигания 7. Топливо горит, в результате чего температура и давление продуктов сгорания увеличиваются. Продукты сгорания из камеры сгорания 1 по каналу 8 через открытый клапан 9 поступают в правую полость поршня 3, и под их воздействием поршневая группа начинает движения справа налево. Так как площадь правой поверхности поршня 3 больше площади его левой поверхности, величина которой определяется соответственно разностью поперечных сечений штока 4 с левой и правой стороны поршня 3, то давление сжимаемого в левой полости поршня 3 воздуха больше, чем давление продуктов сгорания в его правой полости. Поэтому сжимаемый в левой полости поршня 3 воздух через обратный клапан 10 по каналу 11 подается в камеру сгорания 1, обеспечивая непрерывное горение периодически впрыскиваемого в нее топлива форсункой 6. Одновременно в правую полость поршня 2 через обратный клапан 12 засасывается воздух из атмосферы, а из его левой полости через открытый клапан 13 воздух выбрасывается в атмосферу. По прибытию поршневой группы в левую крайнюю точку движения система управления закрывает клапаны 9 и 13 и открывает клапаны 14 и 15. Давление и температура продуктов сгорания в камере сгорания 1 достигают максимального значения. Пусковой такт завершен и начинается рабочий такт. Под действием поступающих из внешней камеры сгорания 1 через открытый клапан 14 в левую полость поршня 2 продуктов сгорания поршневая группа начинает движение слева направо. Теперь сжимаемый в правой полости поршня 2 воздух через обратный клапан 16 по каналу 11 поступает в камеру сгорания 1, поддерживая непрерывное горение периодически подаваемого туда же топлива. Из правой полости поршня 3 отработавшие газы через открытый клапан 15 выбрасываются в атмосферу, а в его левую полость через обратный клапан 17 из атмосферы засасывается воздух. Если рабочий цикл будет протекать по сценарию пускового, преобразование энергии расширяющихся продуктов сгорания в кинетическую энергию поршневой группы будет малоэффективно в силу того, что давление продуктов сгорания в левой полости поршня 2 практически равно таковому в камере сгорания. Расширение продуктов сгорания при этом происходит только при выбросе их из цилиндра в конце пути поршневой группы через клапан 13, не производя никакой полезной работы. Поэтому для повышения кпд преобразования энергии необходимо организовать расширение продуктов сгорания непосредственно в цилиндре, в данном случае в левой полости поршня 2. По аналогии с двигателем внутреннего сгорания (ДВС) цилиндр энергомодуля можно представить условно разделенным на два объема. Первый соответствует камере сгорания ДВС - виртуальная камера сгорания. Остальной объем цилиндра, по сути дела, как и в ДВС, виртуальный рабочий объем. Итак, в начале рабочего такта, когда поршневая группа находится в исходной крайней точке движения, система управления открывает впускной клапан 14 и продукты сгорания из камеры сгорания 1 поступают в виртуальную камеру сгорания цилиндра (левая полость поршня 2), температура и давление которых практически равна таковым в камере сгорания 1. Поршневая группа начинает движение слева направо и, когда она пройдет путь соответствующий виртуальной камере сгорания, система управления закрывает впускной клапан 14. Доступ продуктов сгорания в цилиндр прекращается и начинается процесс их расширения. Сжимаемый в правой полости поршня 2 воздух продолжает поступать в камеру сгорания 1 до тех пор, пока давление и температура газов в ней не достигнет того уровня, который был до момента открытия клапана 14. Одновременно система управления энергомодуля отслеживает текущие значения скорости и ускорения поршневой группы, давления продуктов сгорания в камере сгорания 1 и левой рабочей полости поршня 2 и давления сжимаемого в его правой компрессорной полости воздуха. В соответствии с этими значениями система управления вырабатывает алгоритм определения момента времени открытия перепускного клапана 18, обеспечивающий максимальное расширение продуктов сгорания в рабочей полости поршня 2 к моменту времени прибытия поршневой группы в противоположную крайнюю точку движения, и подает команду на открытие перепускного клапана 18. В результате сжатый в компрессорной полости поршня 2 воздух перетекает в компрессорную полость поршня 3. Противодействие воздуха движению поршневой группе резко уменьшается, способствуя процессу расширения продуктов сгорания в виртуальной камере сгорания и в виртуальном рабочем объеме цилиндра. К этому моменту в левую компрессорную полость поршня 3 уже поступило некоторое количество воздуха из атмосферы. Поступающий туда же через клапан 18 до определенной степени сжатый в правой полости поршня 2 воздух дополнительно заряжает левую компрессорную полость поршня 3, засасывание воздуха из атмосферы через клапан 17 прекращается. При этом энергия, затрачиваемая на сжатие воздуха на данной фазе такта, также вместе с воздухом перебрасывается туда же. Поступающий сжатый воздух, расширяясь, сообщает дополнительный импульс кинетической энергии поршневой группе. Энергия на преодоление динамического сопротивления в клапане 17 переносятся на клапан 18. То есть моменты времени открытия и закрытия газораспределительного клапана 14 и перепускного клапана 18 система управления определяет таким образом, чтобы обеспечить максимальную эффективность процесса расширения при движении поршневой группы в виртуальной камере сгорания и в виртуальном рабочем объеме цилиндра. Давление и температура газов в камере сгорания 1 поддерживается на некотором среднем оптимальной уровне периодической подачей сжатого воздуха и топлива. Моменты времени открытия и закрытия газораспределительного клапана 14 и перепускного клапана 18 система управления определяет с учетом температуры и давления продуктов сгорания в виртуальной камере сгорания таким образом, чтобы обеспечить максимальную эффективность процесса их расширения в момент прибытия поршневой группы в крайнюю правую точку движения. Таким образом, давление и температура газов в камере сгорания 1 поддерживается на некотором среднем оптимальной уровне периодической подачей сжатого воздуха и топлива.
В правой части фигуры изображена вторая расширительная машина. В ней одновременно протекают те же процессы, что и в рассмотренной расширительной машине. Особенность состоит в том, что движение ее поршневой группы организуется в противофазе относительно поршневой группы левой расширительной машины. Оппозитное движение поршневых групп энергомодуля позволяет компенсировать реакцию от их движений - исключить вибрацию корпуса энергомодуля и одновременно обеспечить действие линейного генератора. Статорный магнит генератора 19 может представлять собой постоянный магнит (в данном варианте) или электромагнит, намагничиваемый устанавливаемой на нее катушкой подмагничивания (на фигуре не показана). Магнитный поток замыкается по контуру: статорный магнит 19, якорь 5, якорь 20 и снова статорный магнит 19. При схождении и расхождении поршневых групп расширительных машин магнитные силовые линии якорей 5 и 20 пересекаются, магнитный поток в контуре увеличивается или уменьшается, в результате чего в статорной катушке 21 поочередно генерируются импульсы электроэнергии одного и другого знака. При этом скорость движения якорей относительно друг друга вдвое больше скорости каждого якоря относительно статорного магнита, что позволяет получить более короткую - в два раза - длительность импульсов, более крутые передний и задний фронты импульсов и их скважность. Следовательно, максимальная добротность колебательного контура линейного генератора (статорная катушка, статорный магнит и якоря) может быть достигнута при меньшей массе и габаритах генератора, что снижает его удельную массу и увеличивает удельную мощность энергомодуля в целом.
Задвижка 22 служит для использования энергомодуля в качестве генератора рабочего тела (продуктов сгорания с высокими параметрами температуры и давления) для привода в расширительных машинах различного назначения - расширительных машинах двигателей привода колес транспортных средств, отбойных молотков и др. Задвижка носит символический характер. Она условно изображает газораспределительные клапаны расширительных машин. Каналы подачи рабочего тела к расширительным машинам также, как и в предыдущем случае, будут являться продолжением камеры сгорания.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения, включающий общую внешнюю камеру сгорания, две поршневые расширительные машины, линейный электрогенератор и систему управления, отличающийся тем, что свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль оснащен задвижкой, перекрывающей канал поступления продуктов сгорания из общей внешней камеры сгорания, в закрытом положении которой свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль действует как преобразователь экзотермической энергии моторного топлива в электроэнергию, а в открытом положении - как преобразователь экзотермической энергии моторного топлива в энергию газообразного рабочего тела с высокими параметрами температуры и давления.
ТЕХНИЧЕСКАЯ ПРИМЕНИМОСТЬ ИЗОБРЕТЕНИЯ
Затраты на НИОКР заявленного изобретения не могут значительно отличаться от таковых при проектировании и отработки классических преобразователей экзотермической энергии моторного топлива в электроэнергию и энергии моторного топлива в энергию газообразного рабочего тела с высокими параметрами температуры и давления. Стоимость агрегата при отлаженном автоматизированном производстве будут существенно ниже стоимости аналогичных агрегатов при пересчете на единицу мощности.
ГРАФИЧЕСКИЙ МАТЕРИАЛ
Фигура 1. Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей.
1 - камера сгорания, 2, 6, 21, 22 - трубопровод, 3, 7, 15, 16 - газораспределительный клапан, 4, 5, 8, 9 - поршень расширительной машины, 10, 11 - якорь, 12 - катушка подмагничивания якорей, 14 - статорная катушка, 17, 18, 19, 20, 23, 24, 25, 26 - обратный клапан.
Фигура 2. Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения
1 - камера сгорания, 2, 3 - поршень, 4 - шток, 5, 20 - якорь, 6 - форсунка, 7 - свеча зажигания, 8, 11 - канал, 9, 13, 14, 15 - газораспределительный клапан, 10, 12, 16, 17 - обратный клапан, 18 - перепускной клапан, 19 - статорный магнит, 21 - статорная катушка, 22 - задвижка.

Claims (1)

  1. Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения, включающий общую внешнюю камеру сгорания, две поршневые расширительные машины, линейный электрогенератор и систему управления, отличающийся тем, что свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль оснащен задвижкой, перекрывающей канал поступления продуктов сгорания из общей внешней камеры сгорания, в закрытом положении которой свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль действует как преобразователь экзотермической энергии моторного топлива в электроэнергию, а в открытом положении - как преобразователь экзотермической энергии моторного топлива в энергию газообразного рабочего тела с высокими параметрами температуры и давления.
RU2011142200/06A 2011-10-18 2011-10-18 Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения RU2468224C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011142200/06A RU2468224C1 (ru) 2011-10-18 2011-10-18 Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011142200/06A RU2468224C1 (ru) 2011-10-18 2011-10-18 Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения

Publications (1)

Publication Number Publication Date
RU2468224C1 true RU2468224C1 (ru) 2012-11-27

Family

ID=49254930

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011142200/06A RU2468224C1 (ru) 2011-10-18 2011-10-18 Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения

Country Status (1)

Country Link
RU (1) RU2468224C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525766C1 (ru) * 2013-10-02 2014-08-20 Анатолий Александрович Рыбаков Способ рециркуляции выхлопных газов во внешнюю камеру сгорания свободнопоршневого энергомодуля с внешней камерой сгорания
RU2545258C1 (ru) * 2014-02-11 2015-03-27 Анатолий Александрович Рыбаков Способ рециркуляции выхлопных газов во внешнюю камеру сгорания свободнопоршневого с оппозитным движением поршней энергомодуля, соединенных с поршнями компрессора сжатия газов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835824A (en) * 1973-01-22 1974-09-17 Donald R Mac Free piston engine
GB1392827A (en) * 1971-04-09 1975-04-30 Jarret J H Free piston internal combustion engines
US4270054A (en) * 1980-04-25 1981-05-26 Dowd Norton W Power plant
SU1740727A1 (ru) * 1990-05-31 1992-06-15 Войсковая часть 19163 Свободнопоршневой двухтактный двигатель-электрогенератор с противоположно движущимис поршн ми
RU2342546C2 (ru) * 2007-01-15 2008-12-27 Анатолий Александрович Рыбаков Электрогенератор на основе свободнопоршневого двигателя с вынесенной камерой сгорания
RU2422655C1 (ru) * 2010-04-09 2011-06-27 Анатолий Александрович Рыбаков Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392827A (en) * 1971-04-09 1975-04-30 Jarret J H Free piston internal combustion engines
US3835824A (en) * 1973-01-22 1974-09-17 Donald R Mac Free piston engine
US4270054A (en) * 1980-04-25 1981-05-26 Dowd Norton W Power plant
SU1740727A1 (ru) * 1990-05-31 1992-06-15 Войсковая часть 19163 Свободнопоршневой двухтактный двигатель-электрогенератор с противоположно движущимис поршн ми
RU2342546C2 (ru) * 2007-01-15 2008-12-27 Анатолий Александрович Рыбаков Электрогенератор на основе свободнопоршневого двигателя с вынесенной камерой сгорания
RU2422655C1 (ru) * 2010-04-09 2011-06-27 Анатолий Александрович Рыбаков Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525766C1 (ru) * 2013-10-02 2014-08-20 Анатолий Александрович Рыбаков Способ рециркуляции выхлопных газов во внешнюю камеру сгорания свободнопоршневого энергомодуля с внешней камерой сгорания
RU2545258C1 (ru) * 2014-02-11 2015-03-27 Анатолий Александрович Рыбаков Способ рециркуляции выхлопных газов во внешнюю камеру сгорания свободнопоршневого с оппозитным движением поршней энергомодуля, соединенных с поршнями компрессора сжатия газов

Similar Documents

Publication Publication Date Title
RU2422655C1 (ru) Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей
JP2013526677A (ja) フリーピストン内燃エンジン
Jia et al. Investigation of the starting process of free-piston engine generator by mechanical resonance
US9038581B2 (en) Linear alternator assembly with four-stroke working cycle and vehicle having same
Jia et al. Development approach of a spark-ignited free-piston engine generator
RU2476699C1 (ru) Способ продувки камеры сгорания свободнопоршневого двухцилиндрового энергомодуля с общей внешней камерой сгорания и линейным электрогенератором
RU2468224C1 (ru) Свободнопоршневой двухцилиндровый с общей внешней камерой сгорания и линейным электрогенератором энергомодуль двойного назначения
RU2479733C1 (ru) Способ увеличения эффективности процесса расширения продуктов сгорания перепуском воздуха между компрессорными полостями расширительных машин в свободнопоршневом двухцилиндровом энергомодуле с общей внешней камерой сгорания и линейным электрогенератором
US10781770B2 (en) Cylinder system with relative motion occupying structure
RU2328608C1 (ru) Энергомодуль с ускорителем якоря
JP2018062902A (ja) フリーピストンエンジン発電機
RU2537324C1 (ru) Способ генерирования сжатого воздуха свободнопоршневым энергомодулем с общей внешней камерой сгорания
JP2020045903A (ja) エンジン
RU2411379C2 (ru) Линейный электрогидродинамический двигатель внутреннего сгорания кущенко в.а.
CN112673160B (zh) 具有相对运动占据结构的缸系统
RU2520727C1 (ru) Способ управления фазами электроэнергии полимодульного электрогенератора на базе свободнопоршневого энергомодуля с внешней камерой сгорания
Kock et al. A high efficient energy converter for a hybrid vehicle concept-gas spring focused
RU2328607C1 (ru) Нагрузочный способ синхронизации движения поршней свободнопоршневого двигателя внутреннего сгорания
RU2525766C1 (ru) Способ рециркуляции выхлопных газов во внешнюю камеру сгорания свободнопоршневого энергомодуля с внешней камерой сгорания
RU2641997C1 (ru) Способ пневматического привода двухклапанного газораспределителя свободнопоршневого энергомодуля с общей внешней камерой сгорания
RU2426900C1 (ru) Способ оптимизации процесса расширения продуктов сгорания свободнопоршневого энергомодуля с внешней камерой сгорания
RU2340783C1 (ru) Блок поршней и якоря энергомодуля
RU2809423C1 (ru) Поршневой двигатель внутреннего сгорания с линейным генератором
RU2825688C2 (ru) Четырехтактный цилиндр относительного движения со специальной камерой сжатия
Rinderknecht et al. A high efficient energy converter for a hybrid vehicle concept