RU2467526C1 - Импульсная ускорительная нейтронная трубка - Google Patents

Импульсная ускорительная нейтронная трубка Download PDF

Info

Publication number
RU2467526C1
RU2467526C1 RU2011124101/07A RU2011124101A RU2467526C1 RU 2467526 C1 RU2467526 C1 RU 2467526C1 RU 2011124101/07 A RU2011124101/07 A RU 2011124101/07A RU 2011124101 A RU2011124101 A RU 2011124101A RU 2467526 C1 RU2467526 C1 RU 2467526C1
Authority
RU
Russia
Prior art keywords
source
accelerating
deuteron
target
deuterons
Prior art date
Application number
RU2011124101/07A
Other languages
English (en)
Inventor
Андрей Николаевич Диденко (RU)
Андрей Николаевич Диденко
Константин Иванович Козловский (RU)
Константин Иванович Козловский
Дмитрий Дмитриевич Пономарев (RU)
Дмитрий Дмитриевич Пономарев
Александр Степанович Цыбин (RU)
Александр Степанович Цыбин
Дамир Рюрикович Хасая (RU)
Дамир Рюрикович Хасая
Александр Евгениевич Шиканов (RU)
Александр Евгениевич Шиканов
Валентин Иванович Рыжков (RU)
Валентин Иванович Рыжков
Original Assignee
федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) filed Critical федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ)
Priority to RU2011124101/07A priority Critical patent/RU2467526C1/ru
Application granted granted Critical
Publication of RU2467526C1 publication Critical patent/RU2467526C1/ru

Links

Abstract

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями. Заявленное устройство содержит вакуумно-дуговой источник дейтронов, состоящий из соосно расположенных кольцевых катода и анода, насыщенных дейтерием, разделенных кольцевым изолятором, ускоряющие электроды, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, расположенную между источником дейтронов и мишенью. При этом заявленное устройство снабжено дополнительными, идентичными указанным выше, мишенью, ускоряющими электродами и магнитной линзой, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно источника дейтронов. Возможен также другой конструктивный вариант, при котором источник дейтронов содержит между катодом и анодом дополнительный кольцевой электрод поджига, отделенный от них кольцевыми изоляторами. Технический результат заключается в повышении эффективности генерации нейтронов. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.
Известны нейтронные генераторы на основе ускорительных трубок (УТ) [1], в которых осуществляется ускорение дейтронов и (или) тритонов к твердой мишени, содержащей тритий и (или) дейтерий, где в результате ядерных реакций синтеза образуется поток быстрых нейтронов. Недостатком такого нейтронного генератора является наличие электронной проводимости при генерации больших нейтронных потоков (≥109 н/с), соответствующих большим токам ионов, ускоряемых в диодной системе УТ. Ее наличие приводит к сильному уменьшению КПД ускорения, т.к. большая часть электрической мощности идет на ускорение электронов, а также деструктивному влиянию ускоренных электронов, попадающих на электроды ионного источника, что приводит к уменьшению ресурса УТ. Обычно подавление электронной проводимости осуществляется с помощью электродов (сетки или кольца) для создания электрического смещения в прикатодной области, не позволяющего электронам, эмитируемым с поверхности мишени, попадать в ускоряющий зазор. Однако при больших ионных токах и (или) ускоряющих напряжениях сам электрод смещения становится эмиттером электронов и указанный способ подавления электронной проводимости перестает работать.
Для ликвидации деструктивного воздействия электронов на элементы конструкции ионного источника в работе [2] предлагается УТ с вакуумно-дуговым источником дейтронов, катод и анод которого выполнены в виде двух соосных кольцевых электродов, насыщенных дейтерием, а в области между ионным источником и мишенью УТ расположена магнитная линза, создающая продольное магнитное поле, фокусирующее электронный поток, чтобы он мог беспрепятственно пройти через полость, охватываемую электродами ионного источника, и поглотиться специальным охлаждаемым массивным коллектором, расположенным за ионным источником. Указанное техническое решение может быть выбрано в качестве прототипа.
Недостатками указанного устройства является низкий КПД ускорения дейтронов, т.к. в УТ-прототипе паразитический электронный компонент не подавляется и значительная часть электрической мощности уходит на его ускорение. Кроме того, при этом возникает проблема эффективного отвода тепла с коллектора, где эта часть мощности выделяется.
Техническим результатом предлагаемого устройства является увеличение КПД ускорения дейтронов.
Этот результат достигается тем, что импульсная ускорительная нейтронная трубка, содержащая вакуумно-дуговой источник дейтронов, состоящий из расположенных соосно кольцевых катода и анода, разделенных кольцевым изолятором, электроды ускоряющей системы, соединенные с генератором импульсного высокого напряжения, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, снабжена дополнительными, идентичными указанным выше, мишенью, электродами ускоряющей системы, соединенными с генератором импульсного напряжения и магнитной электронной линзой с продольным магнитным полем, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно аналогичных элементов конструкции, указанных выше.
В частном случае возможен конструктивный вариант устройства, при котором вакуумно-дуговой источник дейтронов содержит дополнительный кольцевой электрод поджига дугового разряда, отделенный от катода и анода источника кольцевыми изоляторами.
На Фиг.1 представлен пример конструктивной реализации предлагаемого устройства в виде схемы УТ в разрезе. Устройство содержит вакуумно-дуговой источник дейтронов, состоящий из дополнительного электрода 1 (для поджига разряда в источнике дейтронов); кольцевых изоляторов 2, катода и анода 3; электроды ускоряющей системы 4 и 5; магнитную линзу 6; мишени 7, насыщенные тяжелым изотопом водорода.
Устройство работает следующим образом. При подаче импульса напряжения на дополнительный электрод поджига 1 возникает разряд заряженной накопительной емкости, подсоединенной между анодом и катодом 3, через кольцевые изоляторы 2. Из электродных пятен образовавшейся вакуумной дуги испускаются плазменные потоки, содержащие дейтроны, т.к. электроды источника 3 содержат дейтерий в окклюдированном состоянии. При этом дейтериевая плазма со скоростью порядка скорости звука заполняет полость внутренних электродов ускоряющей системы (4) в обоих направлениях.
Синхронно с этим процессом на внешние электроды ускоряющей системы (5) от генератора импульсного напряжения подается отрицательный импульс с амплитудой ≥100 кВ. В результате происходит извлечение дейтронов из плазмы ионного источника и последующее их ускорение к мишеням 7 УТ, где осуществляются ядерные реакции T(d,n)4He или D(d,n)3He, сопровождаемые генерацией быстрых нейтронов.
Электроны, испускаемые с поверхностей мишени и внешних ускоряющих электродов в результате ионно-электронной, авто-электронной или взрывной эмиссии, ускоряются в диодных зазорах и фокусируются магнитной линзой 6 в первом ускоряющем зазоре, а затем замедляются во втором ускоряющем зазоре, где электрическое поле имеет противоположенный знак. При этом фокусное расстояние магнитной линзы подбирается таким образом, чтобы электронный поток беспрепятственно проходил через полость источника дейтронов.
Таким образом, электронный компонент не участвует в замыкании электрической цепи, состоящей из генератора импульсного высокого напряжения и двух соединенных параллельно ускоряющих зазоров, в которых электронные токи протекают в противоположенных направлениях и взаимно компенсируют друг друга.
Объемный заряд электронов частично компенсирует объемный заряд дейтронов. По сравнению с обычным биполярным диодом, используемым, например, в прототипе, эта компенсация является двукратной, т.к. электронная плотность в данном случае превышает плотность электронов в обычном биполярном диоде в два раза. Это обеспечивает значительное увеличение первеанса диодных зазоров, по сравнению с диодным зазором прототипа, а следовательно, и излучаемого нейтронного потока.
В процессе генерации нейтронов проявляются еще два важных побочных положительных эффекта.
Первый из них состоит в дополнительной ионизации электронным ударом плазмы ионного источника ускоренными эмиссионными электронами с мишени и ускоряющих электродов. Это приводит к увеличению концентрации дейтронов в плазме ионного источника, а следовательно, и его эмиссионной способности.
Второй эффект связан с возможными потерями энергии электронов на столкновениях при прохождении через плазму ионного источника. Если электрон при этом теряет энергию, превышающую его начальную кинетическую энергию инжекции в ускоряющий зазор, то он в силу закона сохранения энергии уже не может сесть на поверхность противоположной мишени или ускоряющего электрода, а захватывается в потенциальную яму между внешними ускоряющими электродами и начинает в ней осциллировать, создавая дополнительную ионизацию плазмы, а также обеспечивая еще большую компенсацию объемного заряда дейтронов и увеличение диодных первеансов.
Таким образом, увеличение КПД ускорения дейтронов за счет выключения электронной составляющей тока в цепи импульсного генератора высокого напряжения, увеличение первеанса диодных зазоров в результате дополнительной компенсации объемного заряда дейтронов и увеличение концентрации дейтронов в плазме ионного источника за счет столкновений эмиссионных электронов с нейтральными атомами дейтерия создают сверхсуммарный положительный эффект, существенно отличающий заявляемое устройство от прототипа и других возможных аналогов.
Оценка параметров магнитной линзы осуществлялась в результате компьютерного эксперимента, в процессе которого проводился численный анализ динамики электронов в предлагаемом устройстве в параксиальном приближении путем численного решения следующей системы дифференциальных уравнений [3]:
Figure 00000001
в которой координата z откладывается вдоль центральной оси УТ, функции φ(z) и B(z) определяют соответственно распределения потенциала электрического поля и индукции магнитного поля на центральной оси УТ, рассчитываемые по специальным компьютерным программам, е, m - соответственно заряд и масса электронов. В качестве магнитной линзы рассматривался постоянный кольцевой магнит с продольной намагниченностью.
Рассмотрим пример конкретной реализации устройства с учетом результатов проведенного математического эксперимента, соответствующий следующей геометрии устройства: радиус электродов ускоряющей системы R=2.5·10-2 м; внутренний радиус электродов ионного источника r=2.5·10-3 м; ширина ускоряющего зазора d=5·10-3 м; толщина кольцевого магнита H=5·10-3 м. При этом в качестве генератора импульсных напряжений могут быть использованы импульсный трансформатор с ферромагнитным сердечником или генератор Аркадьева-Маркса, позволяющие формировать на диодных зазорах УТ импульсы напряжения с амплитудой 150 кВ и длительностью около 3 мкс на полувысоте. Энергия, запасаемая в цепи ионного источника, может составлять величину до 0.5 Дж.
Расчеты показывают, что для указанных параметров при частоте следований нейтронных вспышек 25 Гц поток нейтронов, излучаемый мишенями УТ, может достигать 1010 н/с.
Разработка и внедрение предлагаемого устройства должны повысить КПД производства исследований горных пород, содержащих продуктивные углеводороды, уран и драгоценные металлы, методом нейтронного элементного анализа, а также работ, связанных с поиском и идентификацией скрытых опасных предметов нейтронными методами.
Источники информации
1. Сб. трудов Международной научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе». М., ВНИИА, 2005, с.72-94.
2. Walko R.J., Rochau G.E. IEEE Trans. on Nucl. Sci., vol. NS-28, No2, 1981, pp.1531-1534.
3. Молоковский С.И., Сушков А.Д. Интенсивные электронные и ионные пучки. Энергоатомиздат, М., 1991, 304 с.

Claims (2)

1. Импульсная ускорительная нейтронная трубка, содержащая вакуумно-дуговой источник дейтронов, состоящий из соосно расположенных кольцевых катода и анода, насыщенных дейтерием, разделенных кольцевым изолятором, ускоряющие электроды, соединенные с генератором импульсного высокого напряжения, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, расположенную между источником дейтронов и мишенью, отличающаяся тем, что она снабжена дополнительными идентичными указанным выше мишенью ускоряющими электродами и магнитной линзой, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно источника дейтронов.
2. Импульсная ускорительная нейтронная трубка по п.1, отличающаяся тем, что источник дейтронов содержит между катодом и анодом дополнительный кольцевой электрод поджига, отделенный от них кольцевыми изоляторами.
RU2011124101/07A 2011-06-14 2011-06-14 Импульсная ускорительная нейтронная трубка RU2467526C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011124101/07A RU2467526C1 (ru) 2011-06-14 2011-06-14 Импульсная ускорительная нейтронная трубка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011124101/07A RU2467526C1 (ru) 2011-06-14 2011-06-14 Импульсная ускорительная нейтронная трубка

Publications (1)

Publication Number Publication Date
RU2467526C1 true RU2467526C1 (ru) 2012-11-20

Family

ID=47323417

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011124101/07A RU2467526C1 (ru) 2011-06-14 2011-06-14 Импульсная ускорительная нейтронная трубка

Country Status (1)

Country Link
RU (1) RU2467526C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521050C1 (ru) * 2012-12-28 2014-06-27 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Ускорительная нейтронная трубка
RU2588263C1 (ru) * 2015-03-05 2016-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Источник ионов для нейтронной трубки

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2511630A1 (de) * 1974-03-18 1975-09-25 Tdn Inc Verfahren und einrichtung zum erzeugen von hochenergieneutronen
SU1448993A1 (ru) * 1986-08-29 1992-08-30 Научно-исследовательский институт ядерной физики при Томском политехническом институте им.С.М.Кирова Импульсный источник нейтронов
UA8564U (en) * 2005-01-04 2005-08-15 Univ Vinnytsia Nat Tech Device for checking the service life of a group of high-voltage air circuit breakers
RU2316835C1 (ru) * 2006-04-21 2008-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Вакуумная нейтронная трубка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2511630A1 (de) * 1974-03-18 1975-09-25 Tdn Inc Verfahren und einrichtung zum erzeugen von hochenergieneutronen
SU1448993A1 (ru) * 1986-08-29 1992-08-30 Научно-исследовательский институт ядерной физики при Томском политехническом институте им.С.М.Кирова Импульсный источник нейтронов
UA8564U (en) * 2005-01-04 2005-08-15 Univ Vinnytsia Nat Tech Device for checking the service life of a group of high-voltage air circuit breakers
RU2316835C1 (ru) * 2006-04-21 2008-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Вакуумная нейтронная трубка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521050C1 (ru) * 2012-12-28 2014-06-27 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Ускорительная нейтронная трубка
RU2588263C1 (ru) * 2015-03-05 2016-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Источник ионов для нейтронной трубки

Similar Documents

Publication Publication Date Title
Dudnikov Development and Applications of Negative Ion Sources
Didenko et al. Small-size magnetically insulated plasma diodes for neutron generation
RU2316835C1 (ru) Вакуумная нейтронная трубка
RU161783U1 (ru) Импульсный генератор нейтронов
US7501640B2 (en) Low energy electron cooling system and method for increasing the phase space intensity and overall intensity of low energy ion beams
RU168025U1 (ru) Импульсный генератор нейтронов
Wang et al. Mechanism of electron cloud clearing in the accumulator ring of the Spallation Neutron Source
JP2004132718A (ja) 慣性静電閉じ込め核融合装置
RU149963U1 (ru) Ионный триод для генерации нейтронов
RU2467526C1 (ru) Импульсная ускорительная нейтронная трубка
Rashchikov et al. Compact plasma reflex triode for neutron generation
RU132240U1 (ru) Импульсный генератор нейтронов
JP2003270400A (ja) 中性子発生管用pig型負イオン源
RU2683963C1 (ru) Импульсный генератор термоядерных нейтронов
Masuda et al. Numerical study of ion recirculation in an improved spherical inertial electrostatic confinement fusion scheme by use of a multistage high voltage feedthrough
Mazarakis et al. Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current
Isaev et al. Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field
Reijonen et al. Compact neutron source development at LBNL
RU2461151C1 (ru) Ионный диод для генерации нейтронов
Didenko et al. Application of a Reflective Ion Triode Circuit for Increasing the Efficiency of Neutron Generation in Vacuum Accelerating Tubes
RU140351U1 (ru) Ионный диод для генерации нейтронов
RU2521050C1 (ru) Ускорительная нейтронная трубка
Rashchikov et al. VACUUM ACCELERATING TUBE WITH TWO SYMMETRICALLY LO-CATED TARGETS FOR NEUTRON GENERATION
RU2523026C1 (ru) Импульсный генератор нейтронов
SU814260A1 (ru) Импульсный генератор нейтронов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190615