RU2467316C1 - Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала - Google Patents

Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала Download PDF

Info

Publication number
RU2467316C1
RU2467316C1 RU2011125733/28A RU2011125733A RU2467316C1 RU 2467316 C1 RU2467316 C1 RU 2467316C1 RU 2011125733/28 A RU2011125733/28 A RU 2011125733/28A RU 2011125733 A RU2011125733 A RU 2011125733A RU 2467316 C1 RU2467316 C1 RU 2467316C1
Authority
RU
Russia
Prior art keywords
sample
contrast
porous material
component
concentration
Prior art date
Application number
RU2011125733/28A
Other languages
English (en)
Inventor
Дмитрий Николаевич Михайлов (RU)
Дмитрий Николаевич Михайлов
Александр Николаевич Надеев (RU)
Александр Николаевич НАДЕЕВ
Вадим Николаевич Хлебников (RU)
Вадим Николаевич Хлебников
Павел Михайлович Зобов (RU)
Павел Михайлович Зобов
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2011125733/28A priority Critical patent/RU2467316C1/ru
Priority to BR102012015101-4A priority patent/BR102012015101A2/pt
Priority to AU2012203555A priority patent/AU2012203555B2/en
Priority to NO20120718A priority patent/NO20120718A1/no
Priority to US13/531,338 priority patent/US8873701B2/en
Application granted granted Critical
Publication of RU2467316C1 publication Critical patent/RU2467316C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/404Imaging contrast medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/649Specific applications or type of materials porosity

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: для определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала. Сущность: заключается в том, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; T1+; Rb+…}, а М- выбирают из группы {Cln; NOn; OHn; CH3COO; SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде, по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент, проводят компьютерную рентгеновскую микротомографию образца и определяют пространственное распределение и концентрацию исследуемого компонента путем анализа полученного компьютерного томографического изображения. Технический результат: повышение рентгеновской контрастности слабоконтрастных компонент, содержащихся в поровом пространстве, при проведении компьютерной томографии образцов пористых материалов. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для анализа распределения остаточной нефти, а также определения концентрации естественной глины в образце керна или глины, проникшей в керн в ходе закачки бурового раствора.
Пространственное распределение компонент (остаточная жидкость, адсорбированные пленки на поверхности пор, глина или иной твердый заполнитель порового пространства), содержащихся в поровом пространстве пористого материала, является важной информацией для различных технических приложений в медицине, петрофизике, гражданском строительстве и материаловедении, разработке нефтяных и газовых месторождений.
Так, существует проблема повреждения пласта под воздействием бурового раствора (или промывочной жидкости), особенно для длинных горизонтальных скважин, т.к. заканчивание большинства из них производится в необсаженном состоянии, т.е. без цементированной и перфорированной эксплуатационной колонны.
Буровые растворы представляют собой сложные смеси глины, мелких частиц (размером от нескольких миллиметров до менее одного микрона) и органических добавок (полимеры, поверхностно активные вещества и т.д.), содержащихся в "несущей" жидкости - "основе" бурового раствора, в качестве которой может выступать вода, нефть или какая-либо синтетическая жидкость.
В процессе бурения под воздействием избыточного давления фильтрат бурового раствора, а также содержащиеся в нем мелкие частицы и глина проникают в околоскважиную зону пласта и вызывают значительное снижение ее проницаемости (для характеризации этого явления обычно используется термин "повреждение призабойной зоны пласта" или просто "повреждение пласта").
Во время технологической процедуры очистки скважины (путем постепенного вывода на добычу) эти компоненты частично вымываются из околоскважинной зоны, и ее проницаемость частично восстанавливается. Однако часть компонентов остается удержанной в поровом пространстве породы (абсорбируются на поверхности пор, захватываются поровыми сужениями и т.д.), что приводит к существенному различию между исходной проницаемостью и проницаемостью, восстановленной после проведения технологической процедуры очистки (обычно восстановленная проницаемость не превышает 50-70% от начальной).
Общепринятым лабораторным методом проверки качества бурового раствора является его прямая и обратная фильтрации через образец керна, в ходе которой замеряется динамика ухудшения / восстановления проницаемости как функция от количества закачанных поровых объемов бурового раствора или нефти (последнее - при обратной прокачке, моделирующей процесс очистки).
Однако распределение и концентрация глины и других компонентов бурового раствора, удерживаемых в поровом пространстве, по длине образца керна представляет собой важную информацию для понимания механизма повреждения пласта и выбора соответствующего метода повышения коэффициента продуктивности скважины (минимизации повреждения призабойной зоны пласта). Данные параметры не замеряются в рамках указанной выше традиционной процедуры проверки качества бурового раствора.
Одним из наиболее распространенных неразрушающих методов исследования структуры образца является рентгеновская компьютерная томография.
В патенте США №4540882 описывается метод определения глубины проникновения бурового раствора при помощи рентгеновской компьютерной томографии керна с добавлением контрастного агента. Первый материал добавляется к буровому раствору с целью обнаружения первого флюида, обладающего средним атомным номером, отличающимся от среднего атомного номера остаточных флюидов, содержащихся в околоскважинной зоне пласта. Сохраненный образец керна отбирается из скважины для сканирования компьютерным осевым рентгеновским томографом с целью определения коэффициентов поглощения рентгеновского излучения во множестве точек, лежащих в поперечном сечении образца керна. Образец керна сканируется при помощи рентгеновских лучей на первой и второй энергии. Полученные значения коэффициентов поглощения во множестве точек, лежащих на поперечном сечении при каждом значении энергии, используются для определения атомного номера элементов в изображении. Затем по атомному номеру элементов в изображении определяется глубина проникновения первого флюида, и полученное значение является индикатором глубины проникновения бурового раствора в образец керна.
Еще один метод раскрывается в патенте США №4722095, который основан на использовании высокого коэффициента поглощения рентгеновского излучения в барите, широко применяемым в качестве утяжеляющей добавки для бурового раствора. Сначала фильтрат бурового раствора удаляется из образца керна, после чего с помощью рентгеновской компьютерной томографии измеряется поровый и суммарный объемы образца керна, а также объем частиц барита, проникших в образец.
К сожалению, использование барита в качестве контрастного агента для оценки глубины проникновения бурового раствора не всегда обосновано, поскольку размер данных частиц сопоставим с размером поровых сужений и, следовательно, большая их часть будет захвачена в малых порах вблизи от входа в образец.
Другие компоненты бурового раствора (глина, полимеры, вода и т.д.) имеют, как правило, слабый контраст к рентгеновскому излучению и не могут быть пространственно разрешены с требуемой точностью.
Использование контрастного агента, растворимого в "несущей жидкости", как это предлагалось в патенте США №5027379, не позволяет оценить глубину проникновения и концентрацию глины и иных слабоконтрастных добавок, содержащихся в буровом растворе, поскольку глубина проникновения фильтрата бурового раствора и указанных добавок в общем случае различна.
Технический результат, достигаемый при реализации изобретения, заключается в повышении рентгеновской контрастности слабоконтрастных компонент, содержащихся в поровом пространстве, при проведении компьютерной томографии образцов пористых материалов. Указанные компоненты могут быть как природными (например, природная глина, пленочная нефть и т.д.), так и внедренными в ходе фильтрационных экспериментов (например, компоненты бурового раствора).
Указанный технический результат обеспечивается тем, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом. В общем виде формула для водорастворимой соли металла может быть записана в виде: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Тl+; Tb+…}, а М- выбирают из группы {Сln; NOn; OHn; СН3СОО, SO4; …}. Вещества R+ и М- выбираются в соответствии с таблицей растворимости неорганических веществ в воде.
По окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент, проводят компьютерную рентгеновскую микротомографию образца и определяют пространственное распределение и концентрацию рассматриваемого компонента путем анализа полученного компьютерного томографического изображения.
Изобретение поясняется чертежом, где на фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины, а на фиг.2 - пример компьютерной рентгеновской микротомографии образца после применения контрастного агента.
Основным критерием применимости метода является устойчивость исследуемых компонентов к процессу закачки контрастного агента.
При использовании в качестве контрастного рентгеновского вещества водорастворимой соли металла с высоким атомным весом, обладающей способностью вступать в селективную ионно-обменную реакцию с исследуемым компонентом, ионы тяжелых металлов аккумулируются на слабоконтрастной компоненте, увеличивая тем самым ее контраст к рентгеновскому излучению. В результате закачки в образец неконтрастного вытесняющего агента по окончании реакции селективного ионного обмена остатки соли тяжелого металла и продукты реакции вымываются из образца. Из анализа полученного компьютерного томографического изображения (см., например, Gonzalez R.С., Woods R.E. Digital Image Processing. Addison-Wessley, New York (1992)) определяют пространственное распределение и концентрацию рассматриваемого компонента.
В качестве первого примера реализации изобретения рассмотрим использование заявленного метода для увеличения контрастности к рентгеновскому излучению и последующего определения концентрации глины, удерживаемой в поровом пространстве после цикла прямая - обратная фильтрация модельного бурового раствора - 2% водного раствора бентонитовой глины - через образец керна.
Выполняют фильтрационный эксперимент по закачке 2% водного раствора бентонитовой глины и последующей отмывке проникшей глины из пористой среды (обратная прокачка). После окончания эксперимента в поровом пространстве образца сохраняется только глина, прочно удерживаемая в сужениях пор.
Выбирают растворимую в воде соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемой глиной.
Принимая во внимание состав бентонитовой глины Al2[Si4O10](OH)2·nH2O и следуя стандартной таблице растворимости неорганических веществ в воде (например, Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем, Государственное научно-техническое издательство химической литературы. Ленинград, т.1-2, 1954), в качестве соли металла выбирают ВаСl2.
Для иллюстрации на Фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины (т.е. глины, подвергшейся ионно-обменной реакции с солью ВаСl2).
Образец насыщают водным раствором контрастного агента (ВаСl2) и выдерживают некоторое время, зависящее от скорости реакции.
После окончания реакции через образец прокачивается 3-4 поровых объема модельного неконтрастного флюида (солевой раствор) для удаления продуктов реакции и остатков контрастного агента.
Скорости закачки не должны превышать скорость обратной прокачки в фильтрационном эксперименте.
Исследуют образец с помощью компьютерной рентгеновской микротомографии.
Пример компьютерной рентгеновской микротомографии образца после применения патентуемого контрастного агента приведен на Фиг.2. Аккумуляция ионов бария в глине, как результат ионно-обменной реакции, ведет к значительному увеличению ее контрастности (модифицированная глина соответствует белым областям на снимке).
Другим примером реализации изобретения является исследование содержания углеводородов в образце. Алканы при нагревании взаимодействуют с раствором брома в органическом растворителе, вступая в реакцию замещения. Это можно показать на примере взаимодействия н-додекана СН3(СН2)10СН3 с бромом, растворенным в четыреххлористом углероде СCl4.
Figure 00000001
Эту реакцию можно использовать для селективной модификации углеводородов в пористой среде. Образец, содержащий углеводороды, насыщается раствором брома, затем нагревается и выдерживается при заданной температуре. Температура и время реакции зависят от состава углеводородной смеси. После окончания реакции через образец необходимо прокачать 3-4 поровых объема модельного флюида (солевой раствор) для удаления продуктов реакции. Введение брома позволяет увеличить контраст углеводородов в порах образца при исследовании с помощью компьютерной рентгеновской микротомографии.

Claims (2)

1. Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала, в соответствии с которым
- в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Т1+; Rb+…}, a M- выбирают из группы {Сln; NOn; OHn; CH3COO, SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде,
- по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент,
- проводят компьютерную рентгеновскую микротомографию образца и
определяют пространственное распределение и концентрацию исследуемого компонента путем анализа полученного компьютерного томографического изображения.
2. Способ по п.1, в соответствии с которым в качестве вытесняющего агента используют водный солевой раствор.
RU2011125733/28A 2011-06-23 2011-06-23 Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала RU2467316C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011125733/28A RU2467316C1 (ru) 2011-06-23 2011-06-23 Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала
BR102012015101-4A BR102012015101A2 (pt) 2011-06-23 2012-06-19 Método para determinar a distribuição espacial e concentração de um componente em um volume de poro de um material poroso
AU2012203555A AU2012203555B2 (en) 2011-06-23 2012-06-19 Method for determining spatial distribution and concentration of a component in a pore volume of a porous material
NO20120718A NO20120718A1 (no) 2011-06-23 2012-06-21 Metode for a bestemme romlig fordeling og konsentrasjon av en komponent i et porevolum til et porost materiale
US13/531,338 US8873701B2 (en) 2011-06-23 2012-06-22 Method for determining spatial distribution and concentration of a component in a pore volume of a porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011125733/28A RU2467316C1 (ru) 2011-06-23 2011-06-23 Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала

Publications (1)

Publication Number Publication Date
RU2467316C1 true RU2467316C1 (ru) 2012-11-20

Family

ID=47323326

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011125733/28A RU2467316C1 (ru) 2011-06-23 2011-06-23 Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала

Country Status (5)

Country Link
US (1) US8873701B2 (ru)
AU (1) AU2012203555B2 (ru)
BR (1) BR102012015101A2 (ru)
NO (1) NO20120718A1 (ru)
RU (1) RU2467316C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525093C1 (ru) * 2013-07-30 2014-08-10 Шлюмберже Текнолоджи Б.В. Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора
RU2654975C1 (ru) * 2017-05-02 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184021A1 (en) * 2012-06-09 2013-12-12 Schlumberger, Holdings Limited A method for estimating porosity of a rock sample
RU2507510C1 (ru) 2012-09-03 2014-02-20 Шлюмберже Текнолоджи Б.В. Способ измерения весовой концентрации глины в образце пористого материала
RU2613903C2 (ru) 2015-06-11 2017-03-21 Шлюмберже Текнолоджи Б.В. Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации
US9989482B2 (en) * 2016-02-16 2018-06-05 General Electric Company Methods for radiographic and CT inspection of additively manufactured workpieces
CN117169259B (zh) * 2023-09-11 2024-04-09 四川大学 利用盐溶液为造影剂的金属结构内部积碳的透视成像方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1122951A1 (ru) * 1983-08-29 1984-11-07 Научно-исследовательский институт медицинской радиологии АМН СССР Способ рентгенографического исследовани структуры пустотного пространства материалов
US4540882A (en) * 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4722095A (en) * 1986-06-09 1988-01-26 Mobil Oil Corporation Method for identifying porosity and drilling mud invasion of a core sample from a subterranean formation
US4982086A (en) * 1988-07-14 1991-01-01 Atlantic Richfield Company Method of porosity determination in porous media by x-ray computed tomography
US5027379A (en) * 1990-02-22 1991-06-25 Bp America Inc. Method for identifying drilling mud filtrate invasion of a core sample from a subterranean formation
SU1679294A1 (ru) * 1989-07-19 1991-09-23 Московский Институт Нефти И Газа Им.И.М.Губкина Способ определени структуры пустотного пространства пористых твердых тел
RU2207808C2 (ru) * 1998-04-09 2003-07-10 Амершем Хелт АС Применение контрастных агентов в форме частиц в диагностической визуализации для изучения физиологических параметров
RU2360233C1 (ru) * 2007-12-19 2009-06-27 Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании" ОАО "ТомскНИПИнефть ВНК" Способ определения нефтенасыщенности породы

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649483A (en) 1984-10-01 1987-03-10 Mobil Oil Corporation Method for determining fluid saturation in a porous media through the use of CT scanning
US4688238A (en) 1986-05-30 1987-08-18 Mobil Oil Corporation Method for determining lithological characteristics of a porous material
US4799382A (en) 1987-06-01 1989-01-24 Mobil Oil Corporation Method for determining reservoir characteristics of a porous material
JP3478566B2 (ja) 1993-09-16 2003-12-15 株式会社東芝 X線ctスキャナ
WO2004086972A2 (en) 2003-03-25 2004-10-14 Imaging Therapeutics, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
RU2467315C1 (ru) * 2011-06-23 2012-11-20 Шлюмберже Текнолоджи Б.В. Способ определения пространственного распределения и концентрации глины в образце керна

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1122951A1 (ru) * 1983-08-29 1984-11-07 Научно-исследовательский институт медицинской радиологии АМН СССР Способ рентгенографического исследовани структуры пустотного пространства материалов
US4540882A (en) * 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4722095A (en) * 1986-06-09 1988-01-26 Mobil Oil Corporation Method for identifying porosity and drilling mud invasion of a core sample from a subterranean formation
US4982086A (en) * 1988-07-14 1991-01-01 Atlantic Richfield Company Method of porosity determination in porous media by x-ray computed tomography
SU1679294A1 (ru) * 1989-07-19 1991-09-23 Московский Институт Нефти И Газа Им.И.М.Губкина Способ определени структуры пустотного пространства пористых твердых тел
US5027379A (en) * 1990-02-22 1991-06-25 Bp America Inc. Method for identifying drilling mud filtrate invasion of a core sample from a subterranean formation
RU2207808C2 (ru) * 1998-04-09 2003-07-10 Амершем Хелт АС Применение контрастных агентов в форме частиц в диагностической визуализации для изучения физиологических параметров
RU2360233C1 (ru) * 2007-12-19 2009-06-27 Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании" ОАО "ТомскНИПИнефть ВНК" Способ определения нефтенасыщенности породы

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525093C1 (ru) * 2013-07-30 2014-08-10 Шлюмберже Текнолоджи Б.В. Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора
RU2654975C1 (ru) * 2017-05-02 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред

Also Published As

Publication number Publication date
US8873701B2 (en) 2014-10-28
NO20120718A1 (no) 2012-12-24
AU2012203555B2 (en) 2016-02-18
US20130010918A1 (en) 2013-01-10
BR102012015101A2 (pt) 2014-05-20
AU2012203555A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
RU2467316C1 (ru) Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала
Akin et al. Imbibition studies of low-permeability porous media
Cai et al. Monitoring oil displacement and CO2 trapping in low-permeability media using NMR: A comparison of miscible and immiscible flooding
Bageri et al. Evaluation of secondary formation damage caused by the interaction of chelated barite with formation rocks during filter cake removal
Zhao et al. Visualization of CO 2 and oil immiscible and miscible flow processes in porous media using NMR micro-imaging
RU2467315C1 (ru) Способ определения пространственного распределения и концентрации глины в образце керна
Bageri et al. Evaluating drilling fluid infiltration in porous media–comparing NMR, gravimetric, and X-ray CT scan methods
Li et al. A magnetic resonance study of low salinity waterflooding for enhanced oil recovery
Zhang et al. Numerical Investigation of EOR Applications in Unconventional Liquid Reservoirs through Surfactant-Assisted Spontaneous Imbibition SASI and Gas Injection Following Primary Depletion
Li et al. Multi-scale rock characterization and modeling for surfactant EOR in the Bakken
RU2580177C1 (ru) Способ определения изменений параметров пористой среды под действием загрязнителя
Kumar et al. Wettability of carbonate reservoirs: effects of fluid and aging
Vega et al. Steady-state relative permeability measurements, temperature dependency and a reservoir diatomite core sample evolution
De Beer et al. Neutron radiography imaging, porosity and permeability in porous rocks
RU2613903C2 (ru) Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации
RU2507500C1 (ru) Способ измерения весовой концентрации глинистого материала в образце пористой среды
Saraf et al. Analysis of the effect of residual oil on particle trapping during produced-water reinjection using X-ray tomography
Kułynycz et al. The application of X-Ray Computed Microtomography for estimation of petrophysical parameters of reservoir rocks
Ali et al. Measurement of the particle deposition profile in deep-bed filtration during produced water re-injection
Yonebayashi et al. Higher-Resolution Monitoring of Saturation Distribution in Carbonate Plug Core by Micro Computed Tomography Technology—Proper Core Restoration For EOR Laboratory Experiments
RU2507501C1 (ru) Способ измерения весовой концентрации глинистого материала в образце пористой среды
Yerramilli et al. A novel water injectivity model and experimental validation using ct scanned core-floods
RU2507510C1 (ru) Способ измерения весовой концентрации глины в образце пористого материала
Cense et al. How reliable is in situ saturation monitoring (ISSM) using X-ray?
Mikhailov et al. An integrated experimental approach to determining how invaded mud components modify near-wellbore properties