RU2465729C2 - Международная аэрокосмическая система глобального мониторинга (максм) - Google Patents

Международная аэрокосмическая система глобального мониторинга (максм) Download PDF

Info

Publication number
RU2465729C2
RU2465729C2 RU2010149658/07A RU2010149658A RU2465729C2 RU 2465729 C2 RU2465729 C2 RU 2465729C2 RU 2010149658/07 A RU2010149658/07 A RU 2010149658/07A RU 2010149658 A RU2010149658 A RU 2010149658A RU 2465729 C2 RU2465729 C2 RU 2465729C2
Authority
RU
Russia
Prior art keywords
space
monitoring
information
earth
natural
Prior art date
Application number
RU2010149658/07A
Other languages
English (en)
Other versions
RU2010149658A (ru
Inventor
Игорь Анатольевич Кузьменко (RU)
Игорь Анатольевич Кузьменко
Сергей Романович Лысый (RU)
Сергей Романович Лысый
Михаил Иванович Макаров (RU)
Михаил Иванович Макаров
Валерий Александрович Меньшиков (RU)
Валерий Александрович Меньшиков
Юрий Георгиевич Пичурин (RU)
Юрий Георгиевич Пичурин
Сергей Васильевич Пушкарский (RU)
Сергей Васильевич Пушкарский
Александр Васильевич Радьков (RU)
Александр Васильевич Радьков
Сергей Викторович Черкасс (RU)
Сергей Викторович Черкасс
Original Assignee
Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" filed Critical Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority to RU2010149658/07A priority Critical patent/RU2465729C2/ru
Publication of RU2010149658A publication Critical patent/RU2010149658A/ru
Application granted granted Critical
Publication of RU2465729C2 publication Critical patent/RU2465729C2/ru

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Изобретение относится к области информационного обеспечения своевременного предупреждения о грозящих чрезвычайных ситуациях природного и техногенного характера и может быть использовано в сфере прикладного освоения космического пространства на основе использования передовых информационных и космических технологий в многофункциональных космических системах (МФКС). Технический результат заключается в обеспечении возможности предупреждения на основе прогноза о стихийных бедствиях и техногенных катастрофах, включая астероидную и кометную опасности, эффективное навигационное и телекоммуникационное обеспечение потребителей по всему миру, в частности, в интересах проведения мероприятий по ликвидации последствий чрезвычайных ситуаций природного и техногенного характера, создании и оптимизации системы транспортных коридоров. Для этого в структуру МАКСМ включена специализированная космическая система оперативного мониторинга астероидной и кометной опасности, в состав МАКСМ входят орбитальный, авиационный и наземный сегменты. МАКСМ спроектирована как система, обеспечивающая непрерывное поступление оперативной прогностической мониторинговой информации по возникновению природных и техногенных катастроф в глобальном масштабе, а также своевременное обнаружение астероидной и кометной опасности, доступность такой информации широкому кругу потребителей. 1 з.п. ф-лы, 7 ил.

Description

Международная аэрокосмическая система глобального мониторинга (МАКСМ) - крупная организационно-техническая система, интегрирующая в своем составе, наряду со специально создаваемым, собственным специализированным космическим сегментом - группировкой малых космических аппаратов (МКА) и микроспутников с бортовой аппаратурой обнаружения ранних признаков стихийных бедствий разрушительного характера, ресурсы как существующих, так и перспективных национальных и международных авиационных и наземных средств, включая контактные и дистанционные датчики, космические системы дистанционного зондирования земли (ДЗЗ), связи и ретрансляции, метеорологического и навигационного обеспечения вместе с соответствующей наземной инфраструктурой выведения, управления и технического обслуживания космических аппаратов (КА), приема, обработки и распространения мониторинговой информации (фиг.1).
1. Область техники, к которой относится изобретение
1.1 Изобретение относится к области информационного обеспечения своевременного предупреждения руководства международных организаций, государственных органов Российской Федерации и других стран мира о грозящих чрезвычайных ситуациях природного и техногенного характера с использованием научно-технического потенциала средств наземного, воздушного, космического мониторинга в глобальном масштабе, дальнейшего развития и постепенной интеграции телекоммуникационных и навигационно-информационных ресурсов планеты в интересах решения гуманитарных проблем Человечества.
1.2 Изобретение расширяет сферу прикладного освоения космического пространства на основе использования передовых информационных и космических технологий, повышая эффективность многофункциональных космических систем (МФКС), описанных в поданных ранее заявках, которые являются прототипами настоящего изобретения:
«Система автоматизированного контроля состояния потенциально опасных объектов Российской Федерации в интересах обеспечения защиты от техногенных, природных и террористических угроз» - Патент RU 2296421;
«Многофункциональная космическая система автоматизированного управления и оперативного контроля (мониторинга) критически важных объектов и территорий Союзного государства «Россия-Беларусь» - Патент RU 2338233;
«Международная аэрокосмическая автоматизированная система мониторинга глобальных геофизических явлений и прогнозирования природных и техногенных катастроф» - Патент RU 2349513.
1.3 Для осуществления эффективного прогноза стихийных бедствий и техногенных катастроф МАКСМ должна обеспечить получение, интегрированную обработку и передачу органам, принимающим решения, специальной информации о динамике изменения параметров литосферы, атмосферы и ионосферы Земли, а также околоземного космического пространства, характеризующей угрозы глобального характера на Земле и из космоса в отношении Земли, за счет комплексного использования группировок малых и микроКА в областях низкой и геостационарной орбит, оснащаемых специализированной бортовой аппаратурой, в сочетании с привлекаемыми авиационными средствами, а также средствами наземного датчикового контроля и эффективной наземной инфраструктурой приема, обработки и анализа информации. Создание МАКСМ будет осуществляться под эгидой ООН на принципах скоординированного международного сотрудничества и долгосрочного партнерства в области технического проектирования, разработки и эксплуатации наземных и авиационно-космических средств для решения широкого комплекса прогностических задач.
2. Уровень техники
2.1 Анализ аналогов и прототипов МАКСМ
2.1.1 В последние годы во всем мире уделяется все большее внимание созданию космических систем мониторинга чрезвычайных ситуаций. За более чем пять десятилетий с момента запуска первого искусственного спутника земли (ИСЗ) разработано несколько поколений космических аппаратов и целевой аппаратуры наблюдения и связи, появились новые мультиспектральные и гиперспектральные устройства, многочастотные радиометры и радиолокаторы, лазеры, гелиогеофизическая аппаратура, вычислительные средства, средства связи и многое другое. Новые технические и технологические решения прошли летную отработку на малых и микроКА. Согласно существующей классификации космические аппараты, имеющие массу от 100 до 1000 кг, относятся к разряду малых КА (МКА), около 100 кг - микроКА. В результате современные спутники ДЗЗ, имея массу от 300 до 800 кг, эффективно решают задачи мониторинга атмосферы и поверхности планеты. Благодаря снижению массы и стоимости КА стало возможным создавать многоспутниковые системы, обеспечивая высокую оперативность, надежность и достоверность мониторинга различных объектов и процессов.
Соответствующие проекты и инициативы, находящиеся на различных стадиях осуществления, реализуются сегодня Соединенными Штатами Америки, Канадой, странами Евросоюза, государствами Южной и Юго-Восточной Азии. Активно развиваются как национальные, так и корпоративные космические системы мониторинга и обеспечения безопасности, которые включают в свой состав многоцелевые многоспутниковые космические системы дистанционного зондирования земли, связи и ретрансляции данных, навигационного, гидрометеорологического и топогеодезического обеспечения, а также технологического назначения. В последние годы сложилась мировая космическая индустрия и информационная инфраструктура наблюдения, в создании которой принимают участие практически все ведущие государства мира (США, Канада, Франция, Италия, Германия, Великобритания, Израиль, Индия, Китай, Россия и Япония), международные консорциумы и еще около 20 стран со всех континентов Земли. В 2007-2008 гг. доля КА связи, ретрансляции, навигации, гидрометеорологии и ДЗЗ превысила 85% от общего числа КА, выведенных мировым сообществом на орбиту Земли (92 из 113 КА в 2007 г. и 87 из 97 КА в 2008 г.).
Средства космического мониторинга принято условно делить на гидрометеорологические системы и системы ДЗЗ, хотя при решении прикладных мониторинговых задач комплексно используется информация, получаемая от обеих систем. Гидрометеорологические системы обычно развернуты на низких приполярных геосинхронных (на приполярных геосинхронных орбитах в настоящее время функционируют около десятка метеоспутников, принадлежащих США (NOAA-K, DMSP5D-3), ЕКА (Metop-А), Китаю (FY-1D, FY-3) и России (Метеор-М)) и геостационарной (на геостационарной орбите размещаются КА, созданные США (GOES), Евро союзом (Meteosat, MGS), Японией (MTSAT-1R), Индией (Metsat-1, Insat-3А), Китаем (FY-2C, D, E) и Россией (Электро-Л в 2010 г.)) орбитах, обеспечивая метеорологический мониторинг и прогноз опасных метеоявлений, и лишь частично могут быть использованы для решения задач мониторинга происходящих в литосфере геофизических процессов. Однако установленные на некоторых вновь запущенных низкоорбитальных метеорологических КА геофизические приборы способны регистрировать в атмосфере и ионосфере лишь отдельные гелиофизические аномалии, считающиеся предвестниками крупных землетрясений.
Космические средства ДЗЗ представлены сегодня весьма обширной номенклатурой КА: американскими (Landsat-7, EO-1, Ikonos-2, Quick Bird-2, Orb View-3, Geo Eye-1, World View-2, World View-3, USA-200); индийскими (IRS, Cartosat-2A, Risat, IMS-1); израильскими (EROS-B, EROS-C, TECSAR); французскими (Spot-5 и Jason-2); японскими (Adeos-1, Adeos-2, Alos); канадскими (Radarsat-1 и Radarsat-2); китайскими (HJ-1A, -1B, Yaogan-5); итальянскими (Cosmo-Skymed, Cosmo-3); европейскими (ERS-2, Envisat-1); малыми и микроКА Германии (TerraSar-X, Sar-Lupe, Rapid Eye); российским KA (Ресурс ДК). Алжир, Бразилия, Нигерия, Тайвань, Таиланд, Турция, Южная Корея и ряд других стран также располагают собственными спутниками наблюдения из космоса, созданными в кооперации с ведущими космическими державами.
МАКСМ как надгосударственную систему предполагается строить на основе использования всего потенциала современной космонавтики, в том числе международных проектов космического мониторинга стихийных бедствий. Анализ таких проектов показывает, что все они ориентированы преимущественно на выявление разрушительных последствий стихийных бедствий и чрезвычайных ситуаций. Так, конечным результатом реализуемого по инициативе США «Группой по наблюдениям Земли» (GEO) на основе 10-летнего Плана (2005-2015 гг.) международного проекта «Global Earth Observation System of Systems» (GEOSS) должна стать глобальная общедоступная инфраструктура, которая должна в масштабе времени, близком к реальному, обеспечить широкий круг пользователей всеобъемлющей, обработанной информацией космического мониторинга. При этом в GEOSS предполагается интегрировать разнообразную наземную датчиковую аппаратуру, метеостанции, метеозонды, сонары и радары, группировку из шестидесяти КА, включая навигационную группировку «NAVSTAR», мощный моделирующий комплекс для имитации и прогнозирования, а также средства раннего предупреждения населения подвергающихся опасности стран и регионов. Хотя благодаря инвестициям последних лет в рамках GEOSS стало возможным объединить разнородные средства наблюдения и программное обеспечение для измерения физических, химических и биологических параметров, характеризующих интегрированную картину происходящих на Земле потенциально опасных процессов, данный проект не предполагает создания собственной орбитальной группировки, что существенным образом ограничивает возможности по решению продекларированных GEOSS задач прогноза опасных природных и техногенных явлений.
Международная система космического мониторинга стихийных бедствий (Disaster Monitoring Constellation - DMC), для реализации которой в 2002 году был создан международный консорциум (Алжир, Великобритания, Нигерия, Китай, Таиланд и Турция), располагает низкоорбитальной группировкой на полярных орбитах из семи микроспутников британской разработки массой 80-130 кг, оснащенных многоспектральным оптико-электронным комплексом среднего разрешения 20-30 м. Микроспутниками в составе DMC владеют и управляют Великобритания, Алжир, Нигерия, Турция, Китай, Таиланд и другие государства, обмениваясь при необходимости космическими данными. Возможности такой системы весьма ограничены - она способна регистрировать лишь состоявшееся сейсмическое или крупное техногенное событие, ориентирована на получение информации только в видимом диапазоне спектра и предназначена для оперативного обеспечения информацией компетентных организаций и специалистов только тех стран, на чьей территории чрезвычайная ситуация возникает.
Европейская инициатива «Глобальный мониторинг в интересах окружающей среды и безопасности» (Global Monitoring for Environment and Security - GMES), направленная на формирование собственного европейского мониторингового потенциала (в проекте участвуют Франция, Италия, Германия, Канада, Израиль и ряд профильных аэрокосмических компаний других стран), представляет собой вклад ЕС в GEOSS. В рамках GMES, куда функционально должны входить космические системы ДЗЗ, навигации и связи, наземные станции и аналитические центры, подразумевается создание глобальной системы экологического мониторинга планеты. Орбитальная группировка GMES включает 13 КА наблюдения, в том числе КА: Gelios-2, Pleiades, Cosmo-Skymed, SAR-Lupe, Spot-5, Rapid Eye, DMC2 (Topsat 2) и TerraSAR-X. С учетом того, что в 2008 году ЕКА приступило к развертыванию глобальной навигационной космической системы GALILEO, оно располагает собственными космическими системами гидрометеорологии (9 КА), связи и ретрансляции (16 КА), в составе группировки GMES в отдельные периоды смогут функционировать более 70 КА. В будущем ЕКА планирует создание целого семейства спутников (среди них - КА Sentinel, ERS, ENVISAT, GOCE, SMOS, CryoSat-2, Swarm, ADM-Aeolus, Earth CARE, MSG, MetOp, JASON-2, PLEIADES), которые предполагается оснастить радарами С-диапазона (для интерферометрической съемки), оптической камерой среднего пространственного разрешения (для картографирования и гиперспектральной съемки), оптической аппаратурой и радиолокационным высотомером (для детального мониторинга океанских акваторий, атмосферы Земли). Завершение формирования орбитальной группировки запланировано на 2012 год (бюджет программы утвержден в объеме 2,2 млрд Евро). Хотя Проект GMES и располагает собственной орбитальной группировкой, он не предусматривает решения задач выявления предвестников и прогнозирования природных и техногенных бедствий.
Инициированная в 2000 году ЕКА и Французским космическим агентством Международная хартия «Космос и крупные катастрофы» (International Charter «Space and Major Disasters»), к реализации которой присоединились космические агентства и организации Аргентины, Индии, Канады, США, Японии и России (заявка на присоединение к Хартии подана в январе 2010 года), направлена на создание единой системы космических данных, предназначенной для обеспечения необходимой информацией пострадавших в результате стихийных или антропогенных бедствий. Хотя орбитальный сегмент проекта и включает в себя национальные космические аппараты ДЗЗ государств-участников: ERS, ENVISAT (ЕКА), SPOT (Франция), RADARSAT (Канада), IRS (Индия), GOES (США), SAC-C (Аргентина), ALOS (Япония), ввиду своей специфичной целевой направленности (скоординированного использования космической техники в случае возникновения природных или техногенных катастроф и предоставление пострадавшим странам бесплатных данных космического мониторинга) хартия не решает широкого спектра задач прогнозирования происходящих на планете стихийных бедствий.
Предложенный в 2004 году проект «Страж Азии» (Sentinel Asia), участниками которого являются 51 организация, в том числе 44 агентства из 18 стран, предусматривает создание в Азиатско-тихоокеанском регионе (АТР) системы контроля и ликвидации последствий природных катастроф на основе использования возможностей космических технологий ДЗЗ в режиме времени, близком к реальному, в сочетании с ГИС-технологиями картографии и современными информационными технологиями глобальной сети «Интернет». Архитектура проекта разрабатывается с учетом возможности приема и обработки добровольно предоставляемой странами АТР видовой и текстовой информации, поступающей от спутниковых систем ДЗЗ, включая геостационарные платформы. Однако ввиду ограниченного состава бортовой аппаратуры используемых в проекте КА и специфики орбитального построения группировок решение задач прогнозирования природных и техногенных явлений в глобальном масштабе в рамках проекта вряд ли станет возможным.
Завершая анализ состояния и перспектив развития зарубежных космических средств и систем мониторинга чрезвычайных ситуаций, следует отметить полное отсутствие среди задач, решаемых с их использованием, задачи предупреждения о глобальных планетарных угрозах (связанных с метеороидно-астероидной опасностью, солнечной активностью и др.).
2.2 Проекты российских космических систем мониторинга и прогнозирования стихийных бедствий представлены в «Концепции развития российской космической системы дистанционного зондирования Земли на период до 2025 года». Поскольку к настоящему времени уже выявлен целый ряд аномальных явлений в атмосфере, ионосфере и на поверхности Земли, считающихся признаками приближающихся сейсмоопасных явлений (резкие изменения концентрации электронной компоненты и появление масштабных неоднородностей в слое F2 ионосферы, ультранизкочастотные и высокочастотные электромагнитные колебания; аномальные изменения квазипостоянного электрического поля и вектора магнитной индукции; вариации в составе, концентрации, скоростях течения и температуре ионосферной плазмы; интенсивные свечения атмосферы на частотах, соответствующих колебательным спектрам атомарного кислорода и гидроксила; эмиссия радона и металлизированных аэрозолей в приземной атмосфере; повышение поверхностной температуры Земли; выстраивание аэрозольных облаков над активными разломами земной коры и др. (всего по разным оценкам порядка 300)), для их фиксации уже созданы приборы (ионозонды, магнитометры, приемники низко- и высокочастотного радиоизлучения, детекторы элементарных частиц, ИК-радиометры, высокоточные радиолокационные средства, лазерные дальномерные системы и т.п.), которые могут размещаться на борту МКА массой до 500 кг. Начаты системные проработки путей аппаратной реализации задач выявления первичных признаков стихийных бедствий сейсмической природы, для чего разработан комплекс технологий и научно-технических решений, обеспечивающих проведение космических экспериментов (лимбовое зондирование атмосферы, измерение потоков космической радиации) и т.п.
Помимо небольшого (по массе, габаритам и энергопотреблению) комплекса аппаратуры выявления предвестников землетрясений на борту таких малых КА в интересах мониторинга чрезвычайных ситуаций и решения других задач ДЗЗ могут устанавливаться дополнительные съемочные и зондирующие приборы относительно невысокого пространственного разрешения, но обеспечивающие периодичность обзора не хуже 12 часов. В качестве таких приборов могут использоваться многоспектральные оптико-электронные съемочные системы со средним и повышенным разрешением (от 10 до 100 м) с полосой захвата до 500 км, а также микроволновые радиометры.
Реальность появления в России уже в ближайшие годы высокоинформативных малых КА и микроспутников мониторинга была наглядно продемонстрирована в рамках ОКР «Система», когда на уровне действующих образцов бортовых приборов были разработаны: панхроматическая камера массой около 12 кг, обеспечивающая получение снимков с разрешением 2,5 м в полосе захвата 16 км; трехканальная многоспектральная камера с массой ~3 кг для съемки с разрешением 10 м в полосе захвата 8,5 км; трехканальная широкозахватная камера с массой около 1 кг для многоспектральной съемки с разрешением 25 м в полосе захвата 35 км; 72-х канальный видеоспектрометр с массой ~25 кг для съемки с разрешением 50-100 м в полосе захвата 30 км.
Завершено эскизное проектирование микроспутника ДЗЗ «Союз-Сат-О» и разработана его габаритная модель для динамических испытаний. Создана аппаратура бортовых специальных и служебных систем микроспутника ДЗЗ нового поколения с разрешением до 2,5 м при более низких по сравнению с существующими аналогами массогабаритных характеристиках и эксплуатационным ресурсом 10-12 лет. Обеспечен значительный научно-технический задел в создании новых двигательных установок микроспутников, основанных на современных технических решениях: абляционного, лазерно-плазменного и кислородно-водородного типов, которые могут быть использованы для ориентации и стабилизации МКА, коррекции орбиты, осуществления межорбитальных переходов, а также в составе разгонных блоков и космических буксиров.
В России и Беларуси активно ведутся ОКР в рамках создания «Многофункциональной космической системы Союзного государства» как прообраза ключевых сегментов МАКСМ. В результате системно и конструктивно проработаны и доведены до завершающей стадии базовые элементы российского и белорусского сегментов двух межгосударственных информационных систем: системы обеспечения потребителей мониторинговой информацией и интегрированной информационно-навигационной системы. Создана телеметрическая аппаратура нового поколения, обеспечивающая высокоэффективный прием информации от МКА в необорудованных районах.
3. Отличительные признаки изобретения
3.1 В структуру МАКСМ в отличие от ее прототипов и аналогов предполагается включить специализированную космическую систему оперативного мониторинга астероидной и кометной опасности. Для эффективного предупреждения о неизвестных небесных телах, по крайней мере за 3-5 дней, достаточно будет создать в дальнем космосе группировку из трех крупных космических аппаратов с оптическими ИК-телескопами на борту (фиг.2). Вместо обзорного наблюдения всего космического пространства такие телескопы будут контролировать некоторую узкую т.н. «барьерную» зону, где будут регистрироваться потенциально опасные объекты, приближающиеся к Земле с произвольных направлений, в том числе и со стороны Солнца (невидимые с использованием наземных телескопов). «Барьерная зона» будет охватывать планету с расстояний, достаточных для заблаговременного предупреждения о факте приближения опасного объекта. Глубина этой зоны обеспечит оперативность регистрации опасного объекта, необходимую для приемлемо точного определения параметров его орбитального движения. Выбранный способ наблюдения обеспечит возможность использования ПЗС-линейки в режиме временной задержки и накопления заряда, благодаря этому достигается тысячекратное усиление полезного сигнала от далекого, неизвестного ранее, опасного космического объекта.
Систему предупреждения об астероидной опасности предполагается построить в два эшелона. Первый эшелон из двух КА-телескопов будет развернут на орбите обращения Земли вокруг Солнца в точках перед Землей и за ней на расстояниях ~0,1 а.е. и 0,7 а.е., соответственно, что обеспечит наблюдение при больших углах между оптической осью телескопа и возможными направлениями движения к Земле опасных астероидов размером не менее 50 м. Орбитальный телескоп на каждом таком КА с постоянной угловой скоростью сканирует барьерную зону за счет закрутки спутника-платформы вокруг оси «КА-Земля». Узкое поле зрения телескопа ~6° будет достаточным для проведения нескольких сеансов наблюдения опасного астероида в процессе его захвата в последовательных циклах сканирования барьерной зоны. Второй эшелон системы состоит из спутника-платформы с длиннофокусным телескопом размещаемого в лагранжевой точке либрации между Землей и Солнцем. При этом с использованием информации обнаружения от первого эшелона обеспечивается наведение узкого (~40 угловых мин) поля зрения длиннофокусного телескопа на опасные астероиды, их захват и последующее сопровождение. Оптические оси телескопов КА обнаружения и КА сопровождения образуют значительные углы с направлением движения опасного астероида и между собой. Малая погрешность в определении углового положения астероида относительно оптической оси телескопа сопровождения достигается за счет большого фокусного расстояния (~17 м). Телескопы обнаружения с диаметром входного зрачка 1,5 м будут способны регистрировать с вероятностью более 0,95 астероиды крупнее 50 м, время подлета которых к Земле после прохождения астероидом барьерной зоны регистрации составит трое суток и более в зависимости от направления движения. Аналогами элементов подобной системы могут стать космические платформы российских КА «Коронас-Фотон» и «Спектр», а также американские КА «Hubble Space Telescope» и космический ИК-телескоп WISE (только в течение января-февраля 2010 года этот спутник обнаружил около 1500 новых астероидов, 15 из которых являются сближающимися с Землей, а также две новых кометы).
3.2 В отличие от прототипов и аналогов МАКСМ элементы ее орбитальной и наземной инфраструктуры предполагается привлекать и широко использовать национальными службами медицины катастроф и аналогичными структурами для определения местоположения попавших в экстремальную ситуацию людей, дистанционного диагностирования и контроля их физического состояния, оказания первой медицинской помощи, доврачебной и врачебной помощи, включая лечение (фиг.3). Потенциальных пользователей подсистемы экстренной медицины в структуре МАКСМ можно разделить на три группы. Первая группа - раненые и больные участники экстремальных экспедиций, находящиеся в любой точке земного шара (океан, высокогорье, тропические леса, ледовые пространства, экстремальные температурные режимы и т.п.). Вторая группа - пострадавшие в зонах стихийных бедствий и техногенных катастроф. Третья группа - лица (включая VIP-персон), которым в силу тех или иных причин необходим постоянный контроль по жизненно важным показателям.
В зависимости от принадлежности к той или иной группе могут меняться средства и способы, используемые для мониторинга состояния здоровья людей. Так, пользователи первой группы могут использовать легкие мобильные терминалы и индивидуальные датчики. Для этой группы характерной является необходимость привлечения космических телекоммуникационных и навигационных ресурсов МАКСМ не только для установления и поддержания надежного двустороннего обмена данными, но и для определения местоположения потерпевших.
Для второй группы пользователей вполне приемлемо использование мобильных терминалов с широким набором диагностической аппаратуры, позволяющих проводить более углубленное обследование потерпевших. Для мобильных госпиталей, разворачиваемых в зоне катастроф, обеспечивается полный набор телемедицинских услуг, включая видеоконференцсвязь и эффективный двусторонний обмен всей необходимой медицинской информацией.
Третья группа пользователей будет экипироваться наборами датчиков, контролирующих физиологические и медицинские параметры (показатели текущего состояния здоровья), которые являются критичными для того или иного вида заболевания пациента. Для таких пациентов, находящихся в удаленных местах, или VIP-персон необходим выход на спутниковые телекоммуникационные (телематические) системы.
Одной из профилактических мер в отношении возникновения техногенных катастроф, непосредственно связанных с действием человеческого фактора, может стать дистанционный контроль физического и эмоционально-психологического состояния управляющего персонала сложных инженерно-технических и транспортных систем, а также потенциально опасных производств. Прообразом подобных решений может стать разрабатываемый российскими предприятиями аппаратно-программный комплекс перманентного дистанционного контроля психосоматического состояния человека. Его контрольный контур включает в свой состав датчики параметров состояния интересующих органов, носимые аппаратные средства для управления датчиками и предварительной обработки сигнала, сопрягаемые с ними мобильные приемопередающие устройства, стационарная аппаратура сбора, обработки информации. Комплекс указанных средств должен обеспечить оперативный контроль физического и морально-психологического состояния персонала, осуществляющего управление общественным транспортом (водители международных автоперевозок, машинисты локомотивов, летчики гражданской авиации и т.п.), потенциально опасными процессами и производствами (например, в атомной и химической промышленности, энергетике) непосредственно на рабочих местах. Получаемая информация через различные телекоммуникационные сети передается заинтересованным потребителям как для непосредственного контроля, так и последующего использования. Для труднодоступных и особо важных объектов можно использовать прямые спутниковые каналы связи. Методы и средства системы перманентного дистанционного контроля психосоматического состояния человека могут использоваться и непосредственно в ходе оказания помощи участникам экстремальных экспедиций, пострадавшим в зонах стихийных бедствий и техногенных катастроф, пациентам, требующим непрерывного контроля по жизненно важным показателям.
4. Предназначение, цель и принципы создания МАКСМ, задачи, решаемые с использованием средств в составе системы
4.1 Предназначение МАКСМ - глобальный и эффективный прогноз возникновения на Земле и в космосе потенциально опасных ситуаций природного и техногенного характера на основе комплексного использования всемирного космического мониторингового потенциала.
4.2 Цель создания МАКСМ - своевременное предупреждение мирового сообщества о грозящих стихийных бедствиях и чрезвычайных ситуациях техногенного характера, обеспечение мероприятий по ликвидации их последствий; дальнейшее развитие и интеграция навигационно-телекоммуникационных и информационных ресурсов планеты в интересах парирования глобальных угроз и решения гуманитарных проблем Человечества.
4.3 Принципы создания МАКСМ
В основу построения МАКСМ закладываются следующие основные принципы:
безусловное соблюдение норм и принципов международного космического права, а также соответствующих односторонних и многосторонних государственных обязательств в области космической деятельности;
максимально широкое использование и обеспечение преемственности результатов профильных исследований и разработок, проводимых в рамках международных космических программ аэрокосмического мониторинга;
этапность создания компонентов системы с учетом приоритетности задач прогнозирования глобальных природных и техногенных явлений, достигнутых технологических наработок в области аэрокосмического мониторинга и привлекаемых ресурсов;
первоочередное развитие наземной инфраструктуры системы на основе натурной отработки (практической апробации) базовых технологий и программно-аппаратных средств прогнозного аэрокосмического мониторинга;
широкое информационное и организационно-технологическое взаимодействие собственного орбитального сегмента МАКСМ с наземными и авиационными средствами мониторинга, а также с уже действующими космическими системами ДЗЗ, навигации, связи и ретрансляции данных.
При реализации этих принципов будет обеспечен глобальный охват, комплексность наблюдения за возникновением и развитием опасных событий, происходящих на Земле и в околоземном космическом пространстве, приемлемо достоверное прогнозирование их наступления в целях принятия мировым сообществом необходимых мер по предотвращению или ослаблению разрушительных последствий, своевременной эвакуации людей, максимально возможному спасению материальных ресурсов и культурных ценностей, наряду с широким использованием навигационных, телекоммуникационных и информационных ресурсов мирового сообщества для решения всего спектра современных гуманитарных проблем человечества.
4.3 Задачи, решаемые с использованием наземных, авиационных и космических средств в составе МАКСМ:
постоянный и непрерывный космический мониторинг литосферы, атмосферы и ионосферы Земли, околоземного космического пространства с целью выявления ранних признаков происходящих опасных природных и техногенных процессов;
сбор, первичная обработка на борту КА и передача данных мониторинга на наземные станции приема космической информации;
обобщение и комплексная обработка в национальных, региональных и международных кризисных центрах данных глобального мониторинга, полученных от космических, авиационных и наземных средств, ее интерпретация, хранение и отображение;
оперативное доведение информации о выявленных угрозах природного и техногенного характера до соответствующих организаций подвергающихся опасности государств, а также специализированных структур ООН;
гарантированное навигационное и телекоммуникационное обеспечение потребителей по всему миру (телематика) в интересах проведения мероприятий в чрезвычайных ситуациях, медицины катастроф, осуществления гуманитарных операций; оптимизации перемещения людей и грузов; ликвидации неграмотности, развития дистанционного обучения, сохранения культурных ценностей;
предупреждение о глобальных угрозах в космосе и из космоса: астероидно-метеороидная опасность, а также аномальные явления различной природы;
поэтапное формирование единого общепланетарного «информационного пространства безопасности» в интересах снижения глобальных рисков и парирования возникающих угроз.
Космические и авиационные средства МАКСМ будут также использоваться и для получения данных об обстановке в зонах широкомасштабных разрушений (о состоянии энергосистем, магистральных трубопроводов, дорожной сети и т.п.) в целях последующего прогнозирования неблагоприятных климатических и метеорологических условий, сейсмических возмущений (движений земной коры, обвалов и обрушений горных пород, карстовых образований, селей, снежных лавин и др.), которые могут угрожать целостности технических объектов. Самостоятельное значение будет иметь задача регистрации различного рода аномалий, допускаемых при строительстве и эксплуатации объектов (выбросы в воздух или водоемы ядовитых, радиоактивных веществ, горючих газов, пыли, аэрозолей и др., несанкционированный доступ к трубопроводам, нарушения в работе транспортных систем и др.).
5. Состав, структура и описание процесса функционирования МАКСМ
На фиг.4 схематично представлены состав, структура и организация функционирования МАКСМ (стрелками со сплошной линией показаны магистральные управляющие связи, стрелками с пунктирной линией - информационные).
Специализированный орбитальный (космический) сегмент МАКСМ (1) будет состоять из группировок малых КА и микроспутников КА, размещаемых соответственно в областях низких, солнечно-синхронных (приполярных) (1.1) и геостационарной (1.2) орбит, а также двух эшелонов КА-телескопов в дальнем космосе (1.3). На низких орбитах будут развернуты малые КА и микроспутники, оснащенные унифицированными средствами наблюдения и специализированной геофизической аппаратурой (радиолокаторами бокового обзора, а также интерферометрическими, мультичастотными, поляриметрическими и многопозиционными радиолокаторами с антеннами с синтезированной апертурой). В области геостационарной орбиты будут размещены унифицированные платформы микроспутников для решения задач гелиофизического наблюдения, экспериментов с перспективной научной аппаратурой, а также связи и ретрансляции. В области дальнего космоса будут развернуты два эшелона КА-телескопов системы предупреждения об астероидной и метеорной опасности.
Космический сегмент МАКСМ (фиг.5) обеспечит получение:
фоновых распределений и возмущений параметров тепловых, магнитных, гравитационных полей и плазмы в ионосфере, изменений в озоновом слое и характеристиках атмосферы, в геодинамике земной коры и гидродинамике грунтовых вод, являющихся возможными предвестниками стихийных бедствий и техногенных катастроф;
информации о состоянии «барьерной» зоны дальнего космоса, где будут регистрироваться любые приближающиеся к Земле с произвольных направлений (в том числе и со стороны Солнца) потенциально опасные объекты;
информации в интересах дистанционного обучения и «телемедицины катастроф».
В космический сегмент МАКСМ будут привлечены ресурсы навигационных (1.4) и телекоммуникационных (1.5), и мониторинговых (1.6) космических систем национальной и международной принадлежности. Навигационное обеспечение должно быть точным, непрерывным во времени и глобальным в пространстве. Таким требованиям в наибольшей степени отвечают системы ГЛОНАСС, GPS НАВСТАР и ГАЛЛЕЛЕО. Совместное использование навигационных определений от указанных систем позволит повысить точность и надежность позиционирования малых и
микроКА, что необходимо для обеспечения выполнения полного перечня мониторинговых и прогнозных задач. В интересах телекоммуникационного обеспечения (связи и передачи данных) МАКСМ и подсистем дистанционного обучения и медицины катастроф будут привлекаться существующие и перспективные космические системы различной принадлежности. Широкий выбор в организации каналов связи предоставляется отечественным космическим сегментом фиксированной спутниковой связи - КА «Горизонт» и «Экспресс» (в перспективе «Экспресс-Д», «Экспресс-АМ» (SESAT) и «Ямал»).
С учетом использования возможностей привлекаемых систем специализированный орбитальный сегмент МАКСМ будет иметь в своем составе следующую специальную аппаратуру:
средства геофизического мониторинга солнечной активности и выявления физических аномалий магнитосферы, ионосферы и атмосферы Земли;
радиолокаторы S и Х диапазонов с несколькими поляризациями;
микроволновые радиометры (от 10 до 200 и более ГГц) для регистрации малых газовых составляющих температуры, влажности и других параметров атмосферы;
оптико-электронные приборы с высоким и средним пространственным и радиометрическим разрешением для регистрации температуры поверхности Земли;
приборы радиотомографии ионосферы, использующей сигналы низкоорбитальных навигационных КА и наземных приемных станций;
гелиофизические приборы для регистрации аномалий солнечной активности;
мощные оптические телескопы для мониторинга астероидной и метеороидной угроз. В дальнем космосе предполагается развернуть три спутника-телескопа: два из которых размещаются на орбите обращения Земли вокруг Солнца, обеспечивая обнаружение крупных астероидов на расстояниях до 10 млн км, а третий - с длиннофокусным телескопом (17 м), размещается в лагранжевой точке либрации между Землей и Солнцем, обеспечивая высокоточное определение параметров движения выявленных, несущих угрозу планете объектов и заблаговременность прогноза их опасного сближения с Землей (не менее трех суток).
Таким образом, собственная группировка специализированного орбитального сегмента МАКСМ и привлекаемые информационные ресурсы существующих космических систем, обладая возможностью мониторинга земной поверхности, атмосферы и околоземного пространства, обеспечат предупреждение в глобальном масштабе об опасных явлениях геофизического и метеорологического характера и оперативную передачу данных мониторинга их предвестников практически в любую точку земного шара.
Авиационный сегмент МАКСМ (2) предполагается составить из средств национальной принадлежности: самолетов (2.1), вертолетов (2.2), дирижаблей (2.3), шаров-зондов (2.4) и беспилотных летательных аппаратов (2.6), где важное место займут интенсивно разрабатываемые в последние годы авиационные средства выведения КА (2.5) и беспилотные авиационные комплексы дистанционного зондирования земли, особенно при решении задач прогнозирования бедствий техногенного характера. В связи с тем, что авиационный сегмент не будет иметь международного статуса его технический облик, аппаратурный состав мониторинговых средств и управление их созданием будут определяться по согласованию с государствами-участниками МАКСМ.
Наземный сегмент МАКСМ (3) будет включать в свой состав комплекс средств выведения КА (3.1), комплекс средств управления КА (3.2), подсистему обеспечения потребителей мониторинговой информацией (3.3) с необходимой инфраструктурой (фиг.6), спецкомплекс навигационно-информационной подсистемы МАКСМ (3.4).
Комплекс средств выведения МАКСМ обеспечит возможность одиночного, попутного и пакетного выведения малых и микроКА в интересах развертывания и поддержания собственного космического сегмента системы с использованием средств наземного, морского и авиационного базирования. Наземный комплекс управления МАКСМ обеспечит сбор поступающей с МКА в составе собственного орбитального сегмента системы телеметрической информации, проведение сеансов управления, разработку долгосрочных и оперативных планов целевого применения орбитальных группировок, закладку рабочих программ, корректирующих команд бортовой аппаратуры и т.п.
Наземная глобальная подсистема обеспечения потребителей мониторинговой информацией (3.3), предназначенная для приема, обработки, хранения и распространения всех видов получаемых мониторинговых данных, а также планирования целевого применения системы, будет представлять собой совокупность взаимосвязанных, топологически распределенных наземных средств (пункты и центры) приема, многоуровневой обработки, хранения и распространения всей совокупности мониторинговой и прогнозной информации, получаемой от космических и наземных информационных источников. Эта основная подсистема в составе МАКСМ будет иметь иерархическую, трехуровневую структуру с радиальной топологией, объединяющей международные (3.3.1) и региональные центры управления в кризисных ситуациях (3.3.2), региональные центры сбора и обработки мониторинговой информации (3.3.3), а также пункты ее приема (3.3.4) и средства мониторинга (3.3.5).
Верхний уровень подсистемы (фиг.7) составят международные центры управления в кризисных ситуациях, размещаемые в Европе, Азии и Северной Америке. Средний по иерархии уровень подсистемы составят региональные центры сбора и обработки мониторинговой информации, а также региональные центры управления в кризисных ситуациях, сопряженные с международными центрами верхнего уровня. Нижний уровень подсистемы составят пункты приема космической мониторинговой информации национальной и международной принадлежности, осуществляющие также сбор датчиковых данных от наземных и авиационных средств. Для эффективного функционирования МАКСМ необходимо будет развернуть пять таких станций с международным статусом, разнесенных по территории Земного шара. В интересах непосредственного обеспечения данными национальных центров управления в кризисных ситуациях государства-участники Проекта могут разворачивать такие станции на своих территориях с использованием собственных финансовых средств.
Наземный спецкомплекс навигационно-информационной подсистемы (3.4) в составе МАКСМ предназначен для формирования единого навигационно-информационного пространства, в пределах которого для неограниченного числа мобильных и стационарных объектов будет обеспечена возможность автоматического высокоточного определения координат местоположения по сигналам спутниковых навигационных систем ГЛОНАСС, GPS NAVSTAR и ГАЛЛИЛЕО. В его состав войдет «интегрированная телематическая система транспортных коридоров» (в состав системы войдут информационные и программные средства, обеспечивающие объединение современных информационных и телекоммуникационных технологий с алгоритмами организации движения транспортных потоков, на базе единого территориально-распределенного защищенного информационного ресурса государств-участников проекта), предназначенная для проведения эвакуационных мероприятий в случаях возникновения стихийных бедствий, повышения пропускной способности дорожной сети, обеспечения безопасности движения, охраны окружающей среды, повышения эффективности перемещения людей и грузов.
Таким образом, наземная составляющая МАКСМ обеспечит сбор поступающей с космических и авиационных средств целевой, телеметрической и навигационной информации (навигационное и телекоммуникационное обеспечение МАКСМ должно быть непрерывным во времени, глобальным и достаточно точным как для контроля текущего местоположения мобильных объектов в составе системы, так и ее многочисленных пользователей), развертывание и восполнение космического эшелона МАКСМ с использованием ракетно-космических комплексов наземного, морского и авиационного базирования.
Важными самостоятельными элементами использования информационных и телекоммуникационных ресурсов МАКСМ станут терминалы дистанционного обучения (4) и медицины катастроф (5), которые обеспечат качественное расширение возможностей по получению гражданами государств-участников МАКСМ различных видов образования непосредственно по месту нахождения, а также экстренной медицинской помощи в случае возникновения стихийных бедствий природного и техногенного характера.
6. Технический результат
6.1 Техническим результатом, который может быть достигнут при реализации предлагаемого изобретения, является:
своевременное предупреждение (на основе их прогноза) о стихийных бедствиях и техногенных катастрофах, включая астероидную и кометную опасности;
эффективное навигационное и телекоммуникационное обеспечение потребителей по всему миру в интересах проведения мероприятий по ликвидации последствий чрезвычайных ситуаций природного и техногенного характера, медицины катастроф, осуществления гуманитарных операций;
создания системы транспортных коридоров, оптимизации перемещения людей и грузов; ликвидации неграмотности, сохранения культурных ценностей, развития дистанционного обучения и подготовки специалистов в различных областях.

Claims (2)

1. Международная аэрокосмическая система глобального мониторинга (МАКСМ), содержащая в своем составе космический сегмент из малых и микрокосмических аппаратов на низких солнечно-синхронных и геостационарной орбитах, оснащенных аппаратурой регистрации предвестников стихийных бедствий и техногенных катастроф, а также трех космических аппаратов-телескопов в области дальнего космоса, два из которых расположены на орбите обращения Земли вокруг Солнца и один - в лагранжевой точке либрации между Землей и Солнцем, и предназначенный для обеспечения заблаговременного предупреждения об астероидной и метеорной опасностях и сопряженный космическими каналами связи и передачи данных со стационарными пунктами приема и обработки мониторинговой информации, получаемой на основе автоматизированного сбора и обработки данных дистанционного зондирования, аэросъемки и наземного контроля физических параметров, характеризующих процессы, протекающие в литосфере, атмосфере и ионосфере Земли, для последующего выявления прогностических особенностей их развития во времени и в пространстве, причем стационарные пункты приема и обработки мониторинговой информации, имеющие доступ к региональным и международным центрами управления, совместно с этими центрами управления составляют глобальную подсистему обеспечения потребителей мониторинговой информацией; наземные комплексы управления и технического обеспечения космических аппаратов (КА); стационарные наземные и мобильные средства выведения КА, авиационные средства, выполненные с возможностью доступа к навигационным, телекоммуникационным и информационным ресурсами зарубежных и международных космических систем для получения данных об обстановке в зонах широкомасштабных разрушений; средства спутниковой связи (VSAT) и наземных интерактивных сетей передачи данных (Internet) выполнены с возможностью прогнозирования природных и техногенных катастроф, причем в космический сегмент МАКСМ введена дополнительная орбитальная группировка из трех КА-телескопов с диаметром входного зрачка 1,5 м, способных регистрировать с вероятностью более 0,95 астероиды крупнее 50 м, время подлета которых к Земле после прохождения барьерной зоны регистрации составит трое суток и более в зависимости от направления движения; при этом структура космического сегмента МАКСМ выполнена с возможностью непрерывного поступления оперативной прогностической мониторинговой информации по возникновению природных и техногенных катастроф в глобальном масштабе, а также заблаговременного обнаружения астероидной и кометной опасностей, и передачи такой информации потребителям; система МАКСМ снабжена аппаратно-программным комплексом для дистанционного контроля физического и эмоционально-психологического состояния управляющего персонала потенциально опасных производств, инженерно-технических и транспортных систем, включающим датчики параметров состояний и предварительной обработки сигнала, сопрягаемые по телекоммуникационным сетям с мобильными приемопередающими устройствами и стационарными пунктами приема и обработки мониторинговой информации.
2. Система по п.1, отличающаяся тем, что авиационными средствами являются самолеты, вертолеты, дирижабли, шары-зонды и беспилотные летательные аппараты, оснащенные датчиковой аппаратурой.
RU2010149658/07A 2010-12-07 2010-12-07 Международная аэрокосмическая система глобального мониторинга (максм) RU2465729C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010149658/07A RU2465729C2 (ru) 2010-12-07 2010-12-07 Международная аэрокосмическая система глобального мониторинга (максм)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010149658/07A RU2465729C2 (ru) 2010-12-07 2010-12-07 Международная аэрокосмическая система глобального мониторинга (максм)

Publications (2)

Publication Number Publication Date
RU2010149658A RU2010149658A (ru) 2012-06-27
RU2465729C2 true RU2465729C2 (ru) 2012-10-27

Family

ID=46681457

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149658/07A RU2465729C2 (ru) 2010-12-07 2010-12-07 Международная аэрокосмическая система глобального мониторинга (максм)

Country Status (1)

Country Link
RU (1) RU2465729C2 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517800C1 (ru) * 2012-12-17 2014-05-27 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Способ обзора небесной сферы с космического аппарата для наблюдения небесных объектов и космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения тел солнечной системы, реализующая указанный способ
RU2564450C1 (ru) * 2014-03-31 2015-10-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ приема и комплексной обработки данных от спутниковых навигационных приемников космических аппаратов для диагностики возмущения ионосферы и аппаратно-программный комплекс для его реализации
RU2570009C1 (ru) * 2014-08-06 2015-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ предупреждения об опасных ситуациях в околоземном космическом пространстве и на земле и автоматизированная система для его осуществления
RU2573509C1 (ru) * 2014-08-06 2016-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ мониторинга астероидно-кометной опасности
RU2582595C1 (ru) * 2015-04-06 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс
RU2606958C1 (ru) * 2016-01-28 2017-01-10 Федеральное государственное казенное военное образовательное учреждение высшего образования "Академия Федеральной службы охраны Российской Федерации" (Академия ФСО России) Способ определения местоположения станции сети связи vsat
RU2609728C1 (ru) * 2015-09-14 2017-02-02 Акционерное общество "Концерн "Гранит-Электрон" Система аэромониторинга залежек морских животных
RU2626031C1 (ru) * 2016-03-11 2017-07-21 Евгений Тимофеевич Дюндиков Способ осуществления глобального комплексного мониторинга с функциями адаптивного дистанционного управления состоянием макрообъекта с изменяемым составом и структурой его составных частей
RU2650196C1 (ru) * 2017-05-03 2018-04-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Система дистанционного зондирования трансионосферного распространения радиоволн для метеорной радиосвязи
RU2660090C1 (ru) * 2017-10-05 2018-07-04 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ построения космической системы обзора небесной сферы для обнаружения небесных тел, приближающихся со стороны Солнца и угрожающих столкновением с Землей
RU2747240C1 (ru) * 2020-09-30 2021-04-29 Акционерное Общество Научно-Производственный Концерн "Барл" Космическая система дистанционного зондирования земли
RU2753200C1 (ru) * 2020-05-25 2021-08-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Способ наблюдения за астероидами по всей небесной сфере
RU2753368C1 (ru) * 2021-01-21 2021-08-13 Акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») Способ формирования архитектуры орбитальной группировки космических аппаратов дистанционного зондирования Земли и информационно-аналитическая система для его осуществления
RU2779783C2 (ru) * 2020-12-23 2022-09-13 Акционерное общество "Ракетно-космический центр "Прогресс" (АО "РКЦ "Прогресс") Ракетно-космическая система высокодетального дистанционного зондирования земли в видимом и (или) инфракрасном диапазоне наблюдения

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573593C2 (ru) * 2014-06-10 2016-01-20 Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Станция радиомониторинга сигналов геостационарных спутниковых систем
CN113392287B (zh) * 2021-06-13 2024-02-02 国家卫星气象中心(国家空间天气监测预警中心) 一种多星空间环境风险预报及实时预警分系统以及相关装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2112718C1 (ru) * 1996-08-16 1998-06-10 Александр Анатольевич Расновский Способ достижения устойчивого развития и защиты земли от опасных космических объектов и система для достижения устойчивого развития цивилизации
RU2122239C1 (ru) * 1998-03-27 1998-11-20 Закрытое акционерное общество "Гео Спектрум Интернэшнл" Система безопасности, навигации и мониторинга
WO2001080158A1 (en) * 2000-04-18 2001-10-25 Carmel Systems Llc Space weather prediction system and method
JP2002220099A (ja) * 2001-01-26 2002-08-06 National Aerospace Laboratory Of Japan Mext 飛翔物体の自働監視・検出方法と装置
RU2247412C2 (ru) * 2003-05-15 2005-02-27 Московский государственный университет леса Глобальная система определения вероятности предстоящего землетрясения
RU58735U1 (ru) * 2006-08-29 2006-11-27 Государственное Учреждение "Арктический и антарктический научно-исследовательский институт" Система дистанционного зондирования
RU2296421C1 (ru) * 2005-06-22 2007-03-27 Валерий Александрович Меньшиков Система автоматизированного контроля состояния потенциально опасных объектов российской федерации в интересах обеспечения защиты от техногенных, природных и террористических угроз
RU2338233C2 (ru) * 2006-12-13 2008-11-10 Валерий Александрович Меньшиков Многофункциональная космическая система автоматизированного управления и оперативного контроля (мониторинга) критически важных объектов и территорий союзного государства "россия-беларусь"
RU2349513C2 (ru) * 2007-04-13 2009-03-20 Валерий Александрович Меньшиков Международная аэрокосмическая автоматизированная система мониторинга глобальных геофизических явлений и прогнозирования природных и техногенных катастроф (макасм)
RU2369533C1 (ru) * 2008-04-01 2009-10-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ изменения траектории движения опасного космического тела и устройство для его реализации

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2112718C1 (ru) * 1996-08-16 1998-06-10 Александр Анатольевич Расновский Способ достижения устойчивого развития и защиты земли от опасных космических объектов и система для достижения устойчивого развития цивилизации
RU2122239C1 (ru) * 1998-03-27 1998-11-20 Закрытое акционерное общество "Гео Спектрум Интернэшнл" Система безопасности, навигации и мониторинга
WO2001080158A1 (en) * 2000-04-18 2001-10-25 Carmel Systems Llc Space weather prediction system and method
JP2002220099A (ja) * 2001-01-26 2002-08-06 National Aerospace Laboratory Of Japan Mext 飛翔物体の自働監視・検出方法と装置
RU2247412C2 (ru) * 2003-05-15 2005-02-27 Московский государственный университет леса Глобальная система определения вероятности предстоящего землетрясения
RU2296421C1 (ru) * 2005-06-22 2007-03-27 Валерий Александрович Меньшиков Система автоматизированного контроля состояния потенциально опасных объектов российской федерации в интересах обеспечения защиты от техногенных, природных и террористических угроз
RU58735U1 (ru) * 2006-08-29 2006-11-27 Государственное Учреждение "Арктический и антарктический научно-исследовательский институт" Система дистанционного зондирования
RU2338233C2 (ru) * 2006-12-13 2008-11-10 Валерий Александрович Меньшиков Многофункциональная космическая система автоматизированного управления и оперативного контроля (мониторинга) критически важных объектов и территорий союзного государства "россия-беларусь"
RU2349513C2 (ru) * 2007-04-13 2009-03-20 Валерий Александрович Меньшиков Международная аэрокосмическая автоматизированная система мониторинга глобальных геофизических явлений и прогнозирования природных и техногенных катастроф (макасм)
RU2369533C1 (ru) * 2008-04-01 2009-10-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ изменения траектории движения опасного космического тела и устройство для его реализации

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517800C1 (ru) * 2012-12-17 2014-05-27 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Способ обзора небесной сферы с космического аппарата для наблюдения небесных объектов и космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения тел солнечной системы, реализующая указанный способ
RU2564450C1 (ru) * 2014-03-31 2015-10-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ приема и комплексной обработки данных от спутниковых навигационных приемников космических аппаратов для диагностики возмущения ионосферы и аппаратно-программный комплекс для его реализации
RU2570009C1 (ru) * 2014-08-06 2015-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ предупреждения об опасных ситуациях в околоземном космическом пространстве и на земле и автоматизированная система для его осуществления
RU2573509C1 (ru) * 2014-08-06 2016-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ мониторинга астероидно-кометной опасности
RU2582595C1 (ru) * 2015-04-06 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс
RU2609728C1 (ru) * 2015-09-14 2017-02-02 Акционерное общество "Концерн "Гранит-Электрон" Система аэромониторинга залежек морских животных
RU2606958C1 (ru) * 2016-01-28 2017-01-10 Федеральное государственное казенное военное образовательное учреждение высшего образования "Академия Федеральной службы охраны Российской Федерации" (Академия ФСО России) Способ определения местоположения станции сети связи vsat
RU2626031C1 (ru) * 2016-03-11 2017-07-21 Евгений Тимофеевич Дюндиков Способ осуществления глобального комплексного мониторинга с функциями адаптивного дистанционного управления состоянием макрообъекта с изменяемым составом и структурой его составных частей
RU2650196C1 (ru) * 2017-05-03 2018-04-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Система дистанционного зондирования трансионосферного распространения радиоволн для метеорной радиосвязи
RU2660090C1 (ru) * 2017-10-05 2018-07-04 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ построения космической системы обзора небесной сферы для обнаружения небесных тел, приближающихся со стороны Солнца и угрожающих столкновением с Землей
RU2753200C1 (ru) * 2020-05-25 2021-08-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Способ наблюдения за астероидами по всей небесной сфере
RU2747240C1 (ru) * 2020-09-30 2021-04-29 Акционерное Общество Научно-Производственный Концерн "Барл" Космическая система дистанционного зондирования земли
WO2022071830A1 (ru) * 2020-09-30 2022-04-07 Акционерное Общество Научно-Производственный Концерн "Барл" Космическая система дистанционного зондирования земли
RU2779783C2 (ru) * 2020-12-23 2022-09-13 Акционерное общество "Ракетно-космический центр "Прогресс" (АО "РКЦ "Прогресс") Ракетно-космическая система высокодетального дистанционного зондирования земли в видимом и (или) инфракрасном диапазоне наблюдения
RU2753368C1 (ru) * 2021-01-21 2021-08-13 Акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») Способ формирования архитектуры орбитальной группировки космических аппаратов дистанционного зондирования Земли и информационно-аналитическая система для его осуществления
RU2823428C1 (ru) * 2023-12-27 2024-07-23 Александр Васильевич Тертышников Способ определения начала цикла солнечной активности

Also Published As

Publication number Publication date
RU2010149658A (ru) 2012-06-27

Similar Documents

Publication Publication Date Title
RU2465729C2 (ru) Международная аэрокосмическая система глобального мониторинга (максм)
RU2349513C2 (ru) Международная аэрокосмическая автоматизированная система мониторинга глобальных геофизических явлений и прогнозирования природных и техногенных катастроф (макасм)
Li et al. Overview of the Chang’e-4 mission: Opening the frontier of scientific exploration of the lunar far side
Bobrinsky et al. The space situational awareness program of the European Space Agency.
Zurek et al. Assessment of a 2016 mission concept: the search for trace gases in the atmosphere of Mars
Denardini et al. Review on space weather in Latin America. 2. The research networks ready for space weather
RU2360848C1 (ru) Многоцелевая космическая система
Laas-Bourez et al. A robotic telescope network for space debris identification and tracking
Watters et al. The Scientific Investigation of Unidentified Aerial Phenomena (UAP) using multimodal ground-based observatories
Baker-McEvilly et al. A comprehensive review on Cislunar expansion and space domain awareness
RU2711554C1 (ru) Способ формирования группировки искусственных спутников земли для мониторинга потенциально опасных угроз в околоземном космическом пространстве в режиме, близком к реальному времени
Walter The uses of satellite technology in disaster management
Ilčev Global Satellite Meteorological Observation (GSMO) Applications: Volume 2
Rice et al. The Case for a Large-scale Occultation Network
Guo et al. Chinese earth observation satellites
Bogari Exploring the Relationship Between the Growing Number of Satellites and Space Debris in Low Earth Orbit, and People's Perception of Space Debris Environmental Impacts
Pellegrino et al. Satellites and the climate crisis: what are we orbiting towards?
Menshikov et al. The Conception of the International Global Monitoring Aerospace System (IGMASS)
Narasimhan Satellite Navigation
Nikolopoulos-Anastasiadis Greece: Space capabilities, needs and way forward
Davies et al. Rapid response to volcanic eruptions with an autonomous sensor web: the Nyamulagira eruption of 2006
Gálvez The role of space missions in the assessment of the NEO impact hazard
Ilčev et al. Satellite Meteorological Networks
Kabashkin SPACE & GLOBAL SECURITY OF HUMANITY
SELVAN Ground Station Design for LEO's: Implementation for KvarkenSat

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181208

NF4A Reinstatement of patent

Effective date: 20200226

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20210205