RU2465011C1 - Радиофармацевтический препарат для диагностики меланомы и ее метастазов - Google Patents

Радиофармацевтический препарат для диагностики меланомы и ее метастазов Download PDF

Info

Publication number
RU2465011C1
RU2465011C1 RU2011116643/15A RU2011116643A RU2465011C1 RU 2465011 C1 RU2465011 C1 RU 2465011C1 RU 2011116643/15 A RU2011116643/15 A RU 2011116643/15A RU 2011116643 A RU2011116643 A RU 2011116643A RU 2465011 C1 RU2465011 C1 RU 2465011C1
Authority
RU
Russia
Prior art keywords
peptide
melanoma
cells
cys
gly
Prior art date
Application number
RU2011116643/15A
Other languages
English (en)
Inventor
Роман Эдуардович Арутюнов (RU)
Роман Эдуардович Арутюнов
Андрей Анатольевич Афанасьев (RU)
Андрей Анатольевич Афанасьев
Александр Борисович Брускин (RU)
Александр Борисович Брускин
Олег Борисович Егоров (RU)
Олег Борисович Егоров
Галина Евгеньевна Кодина (RU)
Галина Евгеньевна Кодина
Валентин Николаевич Корсунский (RU)
Валентин Николаевич Корсунский
Ольга Евгеньевна Клементьева (RU)
Ольга Евгеньевна Клементьева
Елена Витальевна Кудрявцева (RU)
Елена Витальевна Кудрявцева
Михаил Владимирович Овчинников (RU)
Михаил Владимирович Овчинников
Василий Николаевич Ощепков (RU)
Василий Николаевич Ощепков
Original Assignee
Общество с ограниченной ответственностью "ИНТЕРА-МЕД"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ИНТЕРА-МЕД" filed Critical Общество с ограниченной ответственностью "ИНТЕРА-МЕД"
Priority to RU2011116643/15A priority Critical patent/RU2465011C1/ru
Application granted granted Critical
Publication of RU2465011C1 publication Critical patent/RU2465011C1/ru

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Изобретение относится к химико-фармацевтической промышленности и касается создания радиофармацевтических препаратов (РФП) на основе пептидных аналогов нейрорегуляторных пептидов, меченных радиоизотопами, с целью диагностики раковых опухолей. Сущность изобретения: радиофармацевтический препарат для диагностики меланомы и ее метастазов, содержащий линейный гептапептид формулы: Ac-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2, меченный 99mTc через пептидную хелатирующую группу формулы: Gly-Cys-Gly-Cys-H, ковалентно связанную с ε-аминогруппой C-концевого лизина. Данное изобретение позволяет быстро и эффективно диагностировать раковые опухоли. 8 ил., 1 табл., 8 пр.

Description

Изобретение относится к химико-фармацевтической промышленности и касается создания радиофармацевтических препаратов (РФП) на основе пептидных аналогов нейрорегуляторных пептидов, меченных радиоизотопами, с целью диагностики и терапии раковых опухолей.
В последние годы наиболее перспективными для диагностики и терапии опухолей считаются РФП на основе таргетных селективных пептидов, имеющих высокое сродство к гиперэкспрессированным рецепторам опухолевых клеток. Применение таких РФП позволяет осуществлять раннее выявление первичных очагов и метастазов опухолей и начинать эффективную терапию, в том числе радиоизотопами, что существенно повышает выживаемость онкологических больных [Jean Claude Reubi; Helmut R.Macke; and Eric P.Krenning. Candidates for Peptide Receptor Radiotherapy Today and in the Future. J Nucl Med 2005; 46: 67-75].
Меланома является одной из самых злокачественных опухолей, занимает 6 место по частоте встречаемости, отличается быстрым метастазированием, резистентностью к химиотерапии и высокой смертностью. Поэтому ранняя диагностика метастазов меланомы и срочное начало лечения являются необходимыми для достижения положительных результатов терапии.
Вырабатываемый в организме альфа-меланоцит стимулирующий гормон (αМСГ) представляет собой тридекапептид, высокоаффинный к меланокортиновым рецепторам, в частности к меланокортиновому рецептору 1 типа (MC1R), который гиперэкспрессируют клетки меланомы животных и человека. Однако αМСГ нестабилен и быстро разрушается в тканях организма. Поэтому для создания РФП, высокоаффинных и длительно связывающихся с MC1R, были синтезированы различные стабильные, устойчивые к распаду в организме пептидные аналоги αМСГ, в том числе сложные циклические соединения [Quinn Т, Zhang X, Miao Y. Targeted melanoma imaging and therapy with radiolabeled alpha-melanocyte stimulating hormone peptide analogues. G Ital Dermatol Venereol. 2010 Apr; 145(2): 245-58].
Однако в последние годы было показано, что РФП для диагностики меланомы на основе линейных пептидных аналогов αМСГ, меченных радиоизотопом через хелатирующую группу, ковалентно связанную с ε-аминогруппой концевого лизина, обладают улучшенными фармакокинетическими свойствами и качеством визуализации при диагностике, за счет увеличения специфического связывания меченого соединения клетками опухоли и уменьшения уровня неспецифического связывания выводимых из организма меченых соединений в почках и печени [Sylvie Froidevaux; Martine Calame-Christe; Heidi Tanner; Alex N.Eberle. Melanoma Targeting with DOTA-α-Melanocyte-Stimulating Hormone Analogs: Structural Parameters Affecting Tumor Uptake and Kidney Uptake. J Nucl Med. 2005, Vol.46, No.5].
Кроме того, были получены новые данные, показывающие, что уменьшение длины пептидного аналога αМСГ в составе РФП увеличивает уровень и длительность накопления меченого соединения в клетках опухоли [Haixun Guo, Jianquan Yang, Fabio Gallazzi, Yubin Miao. Reduction of the Ring Size of Radiolabeled Lactam Bridge-Cyclized a-MSH Peptide, Resulting in Enhanced Melanoma Uptake. J Nucl Med. 2010; 51: 418-426].
Важным является существенно меньшая стоимость коротких линейных пептидов и технологичность их синтеза, по сравнению со сложными многозвенными циклическими соединениями.
В настоящее время радиоизотоп технеция (99mTc), получаемый непосредственно в клиниках из генератора 99Мо/99mTc, является наиболее приемлемым по цене и идеальным по физико-химическим характеристикам для создания РФП с целью проведения СПЕКТ диагностики с использованием доступных γ-камер в медицинской практике.
Однако разработанные линейные пептидные аналоги αМСГ, меченные 99mTc, крайне ограничены. Известен линейный пептид (NDP-MSH), меченный 99mTc через пептидную хелатирующую группу:
99mTc-Cys-Gly-Cys-Gly-NDP-MSH
Его недостатками являются: большая длина основного пептида (последовательность из 13 аминокислот) и то, что пептидная хелатирующая группа (Cys-Gly-Cys-Gly) соединена с N-концевой частью основного пептида. Поэтому в экспериментальных исследованиях не были получены удовлетворительная фармакокинетика и достаточное накопление соединения в опухоли [Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP. Melanoma-targeting properties of (99m)technetium-labeled cyclic alpha-melanocyte-stimulating hormone peptide analogues. Cancer Res. 2000 Oct 15; 60(20): 5649-58].
Наиболее близким техническим решением (прототипом) является радиофармацевтический препарат для диагностики меланомы и ее метастазов, содержащий линейный октапептид (последовательность из восьми аминокислот), меченый 99mTc через хелатирующую карбонильную группу (pz), ковалентно связанную с ε-аминогруппой С-концевого лизина:
Figure 00000001
Недостатком РФП на основе I является повышенная гидрофобность, вносимая карбонильной составляющей, что существенно ухудшило его связывание с клетками меланомы и фармакокинетические свойства [Raposinho PD, Correia JD, Alves S, Botelho MF, Santos AC, Santos I. A (99m)Tc(CO)(3)-labeled pyrazolyl-alpha-melanocyte-stimulating hormone analog conjugate for melanoma targeting. Nucl Med Biol. 2008 Jan; 35(1): 91-9].
Задачей настоящего изобретения является получение нового РФП для диагностики меланомы и ее метастазов с улучшенными радиофармацевтическими свойствами на основе линейного аналога αМСГ, меченного 99mTc, позволяющего достигнуть высокого уровня накопления и длительности удержания меченого препарата клетками и тем самым улучшить качество визуализации меланомы при диагностике.
Поставленная задача достигается использованием линейного пептида - аналога альфа-меланоцит - стимулирующего гормона:
Figure 00000002
содержащего гидрофильную пептидную хелатирующую группу для мечения радионуклидом, с целью получения радиофармацевтического препарата общей формулы:
Figure 00000003
где X - хелатирующая группа в виде Gly-Cys-Gly-Cys-Н.
Содинение III отличается от прототипа тем, что входящий в него основной пептид II имеет меньшую длину (последовательность из 7 аминокислот), а также тем, что с ε-аминогруппой С-концевого лизина ковалентно связана гидрофильная пептидная хелатирующая группа (Gly-Cys-Gly-Cys-H).
Представленное в изобретении соединение III может быть также использовано в качестве таргетной пептидной составляющей для терапевтического РФП в случае его комплекса с β-излучающим радионуклидом, например, с 188Re, характеризующимся близкими к 99mTc физико-химическими характеристиками.
Примеры, иллюстрирующие предлагаемые изобретения
Список использованных сокращений:
АсОН - уксусная кислота
Asp - аспарагиновая кислота
Arg - аргинин
Cys - цистеин
Gly - глицин
His - гистидин
Nle - норлейцин
Lys - лизин
Ser - серин
Тгр - триптофан
Phe - фенилаланин
But - трет-бутил
Bz - бензоил
DCC - N,N'-дициклогексилкарбодиимид
DMF - диметилформамид
DIPEA - диизопропилэтиламин
EDT - этандитиол
НОВТ - 1-гидроксибензотриазол
HONB - ONp - n-нитрофениловый эфир
ONSu - N-гидроксисукцинимидный эфир
TFA - трифторуксусная кислота
TFMSA - трифторметансульфокислота
Z - бензилоксикарбонил
ВОР - гексафторфосфат-бензотриазол-1-ил-окси-трис-(диметиламино)фосфоний.
ONB-N-гидрокси-3-норборнен-2,3-дикарбоксиимидный эфир
ВЭЖХ - высокоэффективная жидкостная хроматография
Синтез пептидных продуктов проводился методами классической пептидной химии в жидкой фазе [Synthetic Peptides. A User's Guide. Second Edition / Ed. G.A.Grant. Oxford Univ. Press. Oxford, N.Y.: 2002].
Пример 1. Синтез целевого линейного пептида:
Figure 00000004
Схема синтеза целевого линейного пептида приведена на рис.1.
Синтез целевого линейного пептида изложен ниже в соответствии со схемами, представленными на рис.1 и 2
Z-Nle-Asp(OBu)-His-OH
К 8.5 г (0.055 моль) гистидина добавляли 27.5 мл Тритона В, упаривали, к остатку добавляли раствор 21.02 г (0.050 моль) Z-Asp-ONSu в 100 мл DMF. Реакционную смесь выдерживали 12 ч при 20°С, упаривали, к остатку добавляли 150 мл этилацетата, промывали 5% АсОН (2×50 мл) и водой до нейтральной реакции, упаривали. Остаток растворяли в 200 мл этанола, гидрировали над 5% Pd/C до исчезновения исходного Z-Asp-His-OH (контроль методом ТСХ в системе А). Катализатор отфильтровывали, фильтрат упаривали досуха. Полученное масло растворяли в 22.5 мл Тритона В, упаривали, к остатку добавляли раствор 16.3 г (0.045 моль) Z-Nle-ONSu в 100 мл DMF. Реакционную смесь перемешивали 12 ч при 20°С, упаривали, к остатку добавляли 150 мл этилацетата, промывали 5% АсОН (2×50 мл) и водой до нейтральной реакции, упаривали. Кристаллизовали из диэтилового эфира, отфильтровывали, сушили на воздухе. Выход 21.5 г (67%) в расчете на Z-Asp-ONSu. Rf 0.745 (Б).
Ac-Nle-Asp(OBu)-His-OH
К 21.5 г (0.037 моль) соединения (1) добавляли 37 мл 1N NaOH, растворяли в 150.0 мл этанола, гидрировали над 5% Pd/C до исчезновения исходного (1). Катализатор отфильтровывали, фильтрат упаривали досуха. Остаток растворяли в 150 мл DMF, добавляли 7.2 г (0.040 моль) AcONp. Реакционную смесь перемешивали 12 ч при 20°С, упаривали, к остатку добавляли 150 мл этилацетата, промывали 5% АсОН (2×50 мл) и водой до нейтральной реакции, упаривали. Кристаллизовали из диэтилового эфира, отфильтровывали, сушили на воздухе. Выход 12.69 г (79%). Rf 0.68 (В).
Z-dPhe-Arg-OH
Растворяли 29.4 г (0.070 моль) Z-dPhe-ONp в 200 мл DMF, добавляли 13.4 г (0.077 моль) аргинина. Реакционную смесь перемешивали 12 ч при 20°С, упаривали. К остатку добавили 100 мл этилацетата, выпавший осадок отфильтровывали, промывали на фильтре этилацетатом и диэтиловым эфиром, сушили на воздухе. Выход 25.5 г (80%). Rf 0.70 (В).
Z-Trp-Lys(Boc)-NH2
Растворяли 29.2 г (0.077 моль) Z-Lys(Boc)-NH2 в 250 мл этанола, гидрировали над 5% Pd/C до исчезновения исходного по ТСХ в системе (Б). Катализатор отфильтровывали, фильтрат упаривали досуха. Остаток растворяли в 250 мл DMF, добавляли 35.4 г (0.077 моль) Z-Trp-ONp. Реакционную смесь перемешивали 12 ч при 20°С, упаривали, к остатку добавляли 250 мл этилацетата, промывали 5% раствором NH4OH (3×150 мл), водой до нейтральной реакции, 2% H2SO4 (2×150 мл), водой до нейтральной реакции, упаривали. Кристаллизовали из диэтилового эфира, отфильтровывали, сушили на воздухе. Выход 39.0 г (89%). Rf 0.81 (Б).
Z-dPhe-Arg-Trp-Lys(Boc)-NH2
Растворяли 39.0 г (0.069 моль) соединения (4) в 250.0 мл этанола, гидрировали над 5% Pd/C до исчезновения исходного по ТСХ в системе (Б). Катализатор отфильтровывали, фильтрат упаривали досуха, остаток кристаллизовали из диэтилового эфира, сушили на воздухе при 20°C. Полученные 24.1 г (0.056 моль) H-Trp-Lys(Boc)-NH2 растворяли в 300.0 мл DMF, добавляли 25.5 г (0.056 моль) соединения (III), 17.0 г (0.122 моль) НОВТ. Реакционную смесь охлаждали до -30°С, добавляли при перемешивании 14.0 г (0.067 моль) DCC, перемешивали 1 ч при -30°C, 12 ч при 20°C. Реакционную смесь упаривали, остаток растворяли в этилацетате, промывали 5% раствором NaHCO3 (3×150 мл), водой до нейтральной реакции, 2% H2SO4 (2×150 мл), водой до нейтральной реакции, упаривали, кристаллизовали из эфира, осадок отфильтровывали, сушили на воздухе. Выход 40.1 г (82%). Rf 0.62 (В).
Ac-Nle-Asp(OBut)-His-dPhe-Arg-Trp-Lys(Boc)-NH2
Растворяли 4.35 г (0.005 моль) соединения (5) в 80.0 мл этанола, гидрировали над 5% Pd/C до исчезновения исходного по ТСХ в системе (Б). Катализатор отфильтровывали, фильтрат упаривали досуха, остаток растворяли в 80.0 мл DMF. Полученный аминокомпонент конденсировали с 2.40 г (0.005 моль) соединения (IV) при помощи 4.2 г (0.0055 моль) комплекса F. Реакционную смесь перемешивали 12 ч при 20°C, упаривали, остаток растворяли в 100 мл смеси бутанола и этилацетата (1:1), промывали 5% раствором NaHCO3 (3×150 мл), водой до нейтральной реакции, 2% H2SO4 (2×150 мл), водой до нейтральной реакции, упаривали. К остатку добавляли смесь этилацетата и диэтилового эфира, выпавший осадок отфильтровывали, сушили на воздухе. Выход 5.4 г (90%). Rf 0.43 (Б).
Ac-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2
5.4 г (0.0045 моль) соединения (6) обрабатывали 80.0 мл смеси TFA и этандитиола (9.5:0.5) 1 ч при 20°C. Реакционную смесь упаривали, масло растирали с эфиром, осадок отфильтровывали, промывали эфиром, сушили в вакууме над NaOH. Продукт подвергали очистке на колонке (250×400 мм) с SP-сефадексом С-25, уравновешенным 0.05 М пиридин-ацетатным буфером. Элюцию проводили градиентом ионной силы пиридин-ацетата от 0.05 до 2.0 М раствора со скоростью 25 мл/ч. Детекцию осуществляли при 280 нм. Фракции, содержащие основной продукт, объединяли, упаривали, растворяли в воде, лиофилизировали. Выход 2.8 г (60%). Rf 0.46 (Г).
Пример 2. Синтез хелатирующей группы для присоединения к линейному пептиду
Схема синтеза хелатирующей группы приведена на рис.3.
Последовательность синтеза состоит из 4 стадий и включает синтез 4 соединений и наращивание цепи с замещением отдельных групп до получения хелатирующей группы для присоединению к целевому пептиду по следующей схеме, рис.3.
Синтез хелатирующей группы описывается в соответствии с представленной схемой.
Boc-Cys(Acm)-Gly-OH
Растворяли 4.13 г (0.010 моль) Boc-Cys(Acm)-ONp в 80.0 мл DMF, добавляли 0.90 г (0.012 моль) глицина в 12.0 мл 1N NaOH. Реакционную смесь перемешивали 12 ч при 20°С, упаривали, остаток растворяли в воде, экстрагировали выделившийся HONp эфиром, подкисляли водный раствор 20% H2SO4, экстрагировали целевой продукт 100 мл смеси бутанола и этилацетата (1:1), промывали водой до нейтральной реакции, упаривали. Маслообразный остаток растирали с эфиром и гексаном, осадок отфильтровывали, промывали гексином, сушили на воздухе при 20°С. Выход 2.1 г (60.0%). Rf 0.44 (Б).
TFA×H-Cys(Acm)-Gly-OH
Обрабатывали 4.0 г (0.011 моль) соединения (7) 50.0 мл TFA 1 ч при 20°С. Реакционную смесь упаривали, масло растирали с эфиром, осадок отфильтровывали, промывали эфиром, сушили в вакууме над NaOH. Выход 3.6 г (91%). Rf 0.63 (Г).
Boc-Cys(Acm)-Gly-Cys(Acm)-Gly-OH
Растворяли 4.0 г (0.011 моль) соединения (8) в 80 мл DMF, добавляли 1.60 г (0.011 моль) HONp. Реакционную смесь охлаждали до - 30°C, добавляли при перемешивании 3.0 г (0.014 моль) DCC, перемешивали 1 ч при -30°C, 12 ч при 20°C, упаривали, растирали с гексаном, гексан декантировали. Полученный маслообразный остаток растворяли в 40 мл DMF, добавляли раствор 3.6 г (0.010 моль) соединения (X) и 2.2 мл N-метилморфолина в 40 мл DMF. Реакционную смесь перемешивали 12 ч при 20°С, упаривали, остаток растворяли в воде, экстрагировали выделившийся HONp эфиром, подкисляли водный раствор 20% H2SO4, экстрагировали целевой продукт 100 мл смеси бутанола и этилацетата (1:1), промывали водой до нейтральной реакции, упаривали. Маслообразный остаток растирали с эфиром, осадок отфильтровывали, промывали на фильтре эфиром, сушили на воздухе при 20°С. Выход 3.77 г (65%).
Boc-Cys(Acm)-Gly-Cys(Acm)-Gly-ONp
Растворяли 0.77 г (0.0013 моль) соединения (9) в 20 мл DMF, добавляли 0.19 г (0.0013 моль) HONp. Реакционную смесь охлаждали до -30°C, добавляли при перемешивании 0.34 г (0.0016 моль) DCC, перемешивали 1 ч при -30°C, 12 ч при 20°C, упаривали, растирали с гексаном, гексан декантировали. Маслообразный остаток растирали с эфиром, осадок отфильтровывали, промывали на фильтре эфиром, сушили на воздухе при 20°C. Выход 0.80 г (87%). Rf 0.71 (Г).
Пример 3. Синтез целевого линейного пептидного с хелатирующей группой
Figure 00000005
Последовательность синтеза состоит из 3 этапов и включает синтез 2 промежуточных соединений и наращивание цепи с замещением отдельных групп до получения целевого пептида 2 по следующей схеме, рис.4.
Синтез целевого линейного пептида с хелатирующей группой изложен в соответствии с представленной схемой.
Figure 00000006
Растворяли 0.3 г (0.00026 моль) соединения (III) растворяли в 30.0 мл DMF, добавляли при перемешивании 0.100 мл DIPEA, 0.22 г (0.0003 моль) соединения (XI1). Реакционную смесь перемешивали 12 ч при 20°C, упаривали, добавляли 50.0 мл этилацетата, выпавший осадок отфильтровывали, промывали на фильтре этилацетатом. Выход 0.40 г (92%). Rf 0.64 (Г).
Figure 00000007
Обрабатывали 0.4 г (0.00025 моль) соединения (11) в 20.0 мл смеси TFA и этандитиола (9.5:0.5) 1 ч при 20°C. Реакционную смесь упаривали, масло растирали с эфиром, осадок отфильтровывали, промывали эфиром, сушили в вакууме над NaOH. Выход 0.4 г (98%). Rf 0.3 (Г).
Figure 00000008
К раствору 1.13 г (0.0007 моль) соединения (12) в 80.0 мл 30% СН3СООН прибавляли раствор 1.80 г ацетата ртути в 20.0 мл 30% СН3СООН. Перемешивали реакционную смесь 1.5 ч при 20°С, пропускали H2S в течение 20 мин. Образовавшийся осадок отфильтровывали, промывали на фильтре дважды 30% СН3СООН, фильтрат упаривали досуха, остаток растворяли в воде, подвергали очистке с помощью ВЭЖХ на колонке (25×250 мл) Диасорб С-16-130Т, 10 мкм, при длине волны 226 нм. В качестве элюентов использовали буфер А 0.01% трифторуксусную кислоту, Б - 80% ацетонитрила в буфере А. Градиент 0.5% буфера Б в минуту. Выход 0.30 г (32%). Чистота целевого пептида 98.3% (колонка Ultropac TSK ODS-120T, 4.6×45 мм, 5 мкм; буфер А: 0.05М KH2PO4, pH 3.0, буфер Б: 70% ацетонитрил + 30% H2O; градиент Б от 20 до 80% за 30 мин, Rt - 13.87 мин). MALDI - MS: расчетная масса - 1362.636, найдено 1362.809.
Пример 4. Получение радиофармацевтического средства на основе линейного пептида с хелатирующей группой, меченного радионуклидом 99mTc
Данный пример описывает проведение реакции мечения радионуклидом 99mTc (технеций-99m) линейного пептида с хелатирующей группой (III) и полученного при этом радиофармацевтического препарата (РФП) для диагностики меланомы. В результате данной реакции был получен линейный пептидный аналог αМСГ, меченный 99mTc (99mTc-αМСГлп), структурная формула которого представлена ниже (IV):
Figure 00000009
Образец (1 мг) лиофилизата пептидного фрагмента растворяли в 1 мл дистиллированной воды, фасовали по 30 мкл в пробирки Эппендорф и замораживали. Хранили в замороженном виде при -18°C. Образец пептида размораживали при комнатной температуре 5-10 мин. К размороженному пептиду в ту же пробирку дозатором добавляли цитратный буферный раствор и раствор дихлорида олова. Полученный раствор смеси переносили в защитный контейнер и затем к нему прибавляли элюат 99мTcO4- в изотоническом растворе хлорида натрия из генератора 99Мо/99mTc. Соотношения компонентов в смеси обеспечивали pH в диапазоне 4,5-7,0. Реакционную смесь инкубировали при комнатной температуре. По истечении 30 мин инкубации реакция мечения была завершена.
Полученный в указанных условиях состав РФП, обеспечивающий высокий выход меченого пептида, соответствующего формуле (IV), представлен в таблице 1.
Таблица 1
Состав РФП на основе линейного пептида, меченого 99mTc
Компоненты состава Ед. измерения РФП
1 Хелатированный пептид Мкг/мл 20-30
2 Дихлорид олова Мкг/мл 30-80
3 Активность 99mTc МБк/мл 37-750
Примечание: содержание буфера подбирается для обеспечения оптимального pH.
Пример 5. Определение радиохимической чистоты линейного пептида с хелатирующей группой, меченного радионуклидом 99mTc
Выход реакции мечения - радиохимическую чистоту полученного препарата (РХЧ) определяли методом тонкослойной хроматографии (радио-ТСХ). Для этого раздельно определяли содержание в препарате пертехнетата натрия, 99мTc, и гидролизованного восстановленного 99mTc. Затем РХЧ препарата рассчитывалась по формуле:
РХЧРФП(%)=100(%)-ПТ(%)-ГВТ(%),
где РХЧРФП - радиохимическая чистота пептидного РФП на основе 99mTc, в %;
ПТ - процентное содержание несвязанного пертехнетата;
ГВТ - процентное содержание несвязанного гидролизованного восстановленного 99mTc.
Определение ПТ
Для определения ПТ приготавливают пластины для ТСХ (силикагель на алюминиевой подложке, Merck №5553) длиной 100 мм и шириной 15 мм. Пробу исследуемого раствора (2-4 мкл) наносят на линию старта. Объем пробы подбирают в таком количестве, чтобы можно было статистически достоверно зарегистрировать активность пиков на радиометрической установке. Пластину высушивают на воздухе до полного испарения нанесенной жидкости. Пластину помещают в хроматографическую камеру и проводят хроматографирование до достижения подвижной фазой линии финиша, используя в качестве подвижной фазы ацетон. Проводят количественное определение распределения активности с помощью сканера для радио - ТСХ или прямой радиометрией частей пластины. В этих условиях ПТ имеет значение Rf 0,95±0,05, остальные продукты реакции находятся на линии старта.
Содержание ПТ (%) рассчитывают по формуле:
Figure 00000010
,
где Афр - активность финишной части хроматограммы, содержащей ПТ;
Аст - активность остальной части хроматограммы.
Определение ГВТ:
Для определения ГВТ приготавливают пластины для ТСХ (целлюлоза Ф на алюминиевой подложке, Merck №5754) длиной 100 мм шириной 15 мм. Пробу исследуемого раствора (2-4 мкл) наносят на линию старта. Объем пробы подбирают в таком количестве, чтобы можно было статистически достоверно зарегистрировать активность пиков на радиометрической установке. Пластину высушивают на воздухе до полного испарения нанесенной жидкости. Пластину помещают в хроматографическую камеру и проводят хроматографирование восходящим методом, используя в качестве подвижной фазы смесь ацетонитрил-вода в соотношении 1:1 (по объему), до достижения подвижной фазой линии финиша. Проводят количественное определение распределения активности с помощью сканера для радио - ТСХ или прямой радиометрией частей пластины. В этих условиях ГВТ имеет значение Rf 0,05±0,05, остальные продукты реакции двигаются вместе с фронтом элюента. Содержание ГВТ (%) рассчитывают по формуле:
Figure 00000011
,
где Аст - активность стартовой части хроматограммы, содержащей ГВТ;
Аост - активность остальной части хроматограммы.
Для всех образцов меченого пептида, полученного в соответствии с методикой и условиями примера 4, РХЧ составила 94-98%.
Пример 6. Изучение связывания линейного пептида, меченного 99mTc, опухолевыми клетками in vitro.
В экспериментах in vitro была использована культура мышиной меланомы B16F1 из коллекции Российского Научного Центра им. И.Н.Блохина. Использованная культура - фибробластоподобная, жизнеспособность: 98% (окраска трипановым синим на нулевом пассаже).
Клетки культивировали в пластиковых культуральных флаконах (Coming-Costar) с площадью поверхности 25 см2 в среде следующего состава: среда RPMI-1640 и среда Eagla (из полнокомпонентной смеси фирмы Gibco) в соотношении 3:1 с добавлением эмбриональной телячьей сыворотки - 5%, L-глутамина - 200 мМ и гентамицина 10 ед/мл в CO2-инкубаторе при 37°C в увлажненной атмосфере, содержащей 5% CO2. Клетки инкубировали до получения полноценного монослоя, количество клеток в котором составляло 2*106 клеток/флакон. Перед началом эксперимента клетки инкубировали в течение 2-х часов в среде без добавления сыворотки. Далее клетки снимали с пластика при помощи раствора трипсин/этилендиамитетраацетат (ЭДТА) (0,05% трипсина, 0,02% ЭДТА), центрифугировали, отмывали раствором Хэнкса и расфасовывали по 5·105 клеток в 1 мл среды в пробирки типа "Эппендорф".
Вначале определяли концентрацию 99mTc-αМСГлп, при которой наблюдается его максимальное связывание с рецепторами клеток меланомы. В суспезию клеток вносили 100 мкл раствора 99mTc-аМСГлп в диапазоне концентраций 30-0,003 мкг/мл с активностью элюата 99мTcO4-, равной 1 мКи/мл.
Клетки инкубировали при 37°C в CO2-инкубаторе в течение двух часов. Затем клетки осаждали центрифугированием в течение 10 мин 2500 об/мин (центрифуга Heidolph), дважды промывали холодным (+4°C) раствором Хэнкса, ресуспендировали в 1 мл среды. Отдельно готовили эталон, представляющий собой 1 мл среды, содержащий 100 мкл исходного раствора 99mTc-αМСГлп в диапазоне концентраций 30-0,003 мкг/мл с активностью элюата 99мTcO4-, равной 1 мКи/мл.
По окончании инкубирования радиоактивный раствор удаляли с помощью процедуры последовательно повторяемых трижды - осаждения центрифугированием и промывания раствором Хэнкса. Измеряли радиоактивность каждой пробы и эталона в гамма-счетчике Wizard 2480 («PerkinElmer LAS /Wallac», Финляндия). Уровень связывания оценивали по формуле:
Figure 00000012
,
где Ai - счет пробы в импульсах,
Ae - счет эталона в импульсах.
Каждая точка была взята в триплетах.
На рис.5 приведены полученные данные об уровне связывания 99mTc-αМСГлп клетками меланомы в зависимости от концентрации меченого соединения в инкубационной среде.
При внесении в инкубационную среду 99mTc-аМСГлп максимальное накопление в клетках меланомы В16 достигается в диапазоне концентраций 3·10-4-3·10-3 мкг/мл.
Для определения максимального уровня связывания исследовали динамику накопления 99mTc-аМСГлп клетками меланомы. Клетки готовили аналогичным способом, но в отдельных опытах инкубировали в течение 30, 60, 90 и 120 минут с внесенным в инкубационную среду 99mTc-аМСГлп в оптимальной концентрации 3·10-4 мкг/мл. Радиоактивный раствор удаляли троекратно путем осаждения центрифугированием и промыванием раствором Хэнкса. Радиоактивность проб и уровень связывания оценивали как в предыдущем эксперименте. Каждая точка была взята в триплетах.
На рис.6 приведены данные о зависимости уровня накопления 99mTc-αМСГлп клетками меланомы В16 от времени инкубации.
Инкубирование в течение двух часов клеток меланомы В16 с 99mTc-αМСГлп, внесенным в инкубационную среду в оптимальной концентрации, обеспечивает уровень связывания более 4% от внесенной дозы уже к 60 мин инкубации, достигая 4,4% к 120 мин, что принято оценивать как высокий результат. Для сравнения, уровень связывания клетками меланомы В16 меченного 99mTc прототипа (I), на 120 мин инкубации был несколько меньше - до 4,1%.
Пример 7. Исследование интернализации линейного пептида, меченного 99mTc, опухолевыми клетками
Интернализация была определена как включение меченого соединения в клеточные структуры путем их поглощения. Клетки меланомы В16, находящиеся в монослое, промывали охлажденной средой, содержащей 1% бычьей сыворотки. Затем из монослоя получали суспензию клеток. В каждую пробирку, содержащую 1·106 клеток, вносили радиоактивный раствор 99mTc-αМСГлп в концентрации, указанной ранее. Клетки в триплетах для каждой временной точки, инкубировали при 37°C в течение 15, 30, 60, 90 и 120 мин. Инкубирование прерывали путем охлаждения пробирок, центрифугирования и промывания суспензии клеток охлажденной до 4°С средой. Затем, в суспензию клеток вносили глициновый буферный раствор (50 мМ, pH 2,8, 0,1 М NaCl). В течение 5 мин клетки инкубировали в буферном растворе при комнатной температуре. При инкубировании в таких условиях, с поверхности мембран удаляется связанное соединение, не затрагивая при этом цитоплазматические структуры клеток. Клетки осаждали центрифугированием, супернатант удаляли и подвергали радиометрии. Осадок клеток лизировали раствором 1н. NaOH и также подвергали прямой радиометрии. Интернализацию определяли как отношение интернализованной активности к общей активности, связанной клетками (т.е. интернализованной активности и фракции, связанной с рецепторами, расположенными на мембранах). Динамика процесса интернализации 99mTc-αМСГлп показана на рисунке 7.
В данном примере показано связывание 99mTc-αМСГлп с рецепторами, расположенными на мембране клеток меланомы и проникновение его внутрь клетки. Уже через 60 минут после начала инкубирования во внутренние структуры опухолевых клеток включается до 60% от связанной клетками активности, соответственно менее 40% связанной активности остается фиксированными на мембранных рецепторах. К 90 мин достигается максимальный уровень интернализации (70%), который далее сохраняется неизменным в течение остального периода наблюдения. Такая динамика и уровень интернализации считаются оптимальными как критерии оценки степени аффинности пептидного аналога αМСГ к MC1R рецепторам клеток меланомы, что, в частности, определяет перспективность 99mTc-аМСГлп как основного компонента РФП для СПЭКТ диагностики меланомы. Для сравнения, уровень интернализации прототипа (I) на 120 мин инкубации с клетками меланомы В16 был существенно ниже и составил лишь 40%, что указывает на снижение связывания с рецепторами клеток меланомы исходно высокоаффинного аналога αМСГ при его мечении 99mTc через карбонильную хелатирующую группу.
Пример 8. Исследование прочности связывания РФП на основе линейного пептида, меченного 99mTc, с опухолевыми клетками.
Исследование прочности связывания 99mTc-αМСГлп с опухолевыми клетками было проведено с целью косвенной оценки функциональной пригодности РФП на его основе в качестве средства диагностики меланомы in vivo. Для этого были смоделированы условия живого организма: клетки инкубировали в среде, состав которой приближен к составу плазмы крови, температура инкубирования составляла 36,8°C. Прочность связывания была изучена методом вымывания. Для максимального исключения повреждения клеток во время манипулирования с ними, данный эксперимент был осуществлен с монослоями клеточной культуры. В культуральные флаконы, содержащие полноценный монослой клеток и 5 мл культуральной среды, вносили 200 мкл 99mTc-αМСГлп. Клетки инкубировали до достижения максимального накопления изучаемого соединения. Затем радиоактивный раствор удаляли, монослой трижды аккуратно промывали раствором Хэнкса и вносили 5 мл свежей среды. Методом прямой радиометрии определяли уровень накопленной клетками активности. Затем культуральные флаконы вновь помещали в инкубатор и начинали процедуру реинкубирования, во время которой через определенные промежутки времени отбирали пробу культуральной среды (аликвоту). Аликвоты среды также подвергались радиометрии. По окончании была определена динамика вымывания радиоактивных продуктов из клеток в окружающую среду.
Процедуру радиометрии полученных проб осуществляли на автоматическом γ-счетчике Wizard 2480 фирмы "PerkinElmer LAS/Wallac" (Финляндия).
Динамика вымывания радиоактивных продуктов из клеток меланомы В16 в культуральную среду представлена на рисунке 8.
В данном примере регистрировали появление радиоактивного изотопа 99mTc в культуральной среде, не идентифицируя тех соединений, с которыми он был связан.
Как видно из приведенных данных, процесс вымывания радиоактивных продуктов из клеточных структур клеток меланомы В16 в окружающую среду имеет двойственную природу. Вначале, в течение первых 30 мин доля связанной с клетками активности быстро снижалась, но далее снижение резко замедлялось, а связанная активность оставалась высокой - около 60%. Далее продолжалось медленное высвобождение связанной клетками активности за счет выделения меченого пептида или его метаболизированных фрагментов из клеток. При этом через 90 мин реинкубирования до 50% активности оставалось внутри клеток. Что указывает на высокую прочность и длительность связывания меченого пептида с внутренними структурами клеток меланомы и дает хороший прогноз для возможности использования РФП на основе предложенного по изобретению линейного пептида, меченного 99mTc, в качестве способа диагностики меланомы и ее метастазов.
Таким образом, представленные примеры показывают преимущества, высокую функциональную пригодность и перспективность использования предложенного линейного пептидного аналога α-MSH, меченного 99mTc:
Ac-Nle-Asp-His-dPhe-Arg-Trp-Lys-[(Gly-Cys-Gly-Cys)-99mTc]-NH2
в качестве селективной векторной молекулы в составе радиофармацевтического препарата для диагностики меланомы.

Claims (1)

  1. Радиофармацевтический препарат для диагностики меланомы и ее метастазов, содержащий линейный пептид, меченный 99mTc через хелатирующую группу (X), ковалентно связанную с ε-аминогруппой С-концевого лизина, отличающийся тем, что, с целью повышения качества диагностики используют линейный гептапептид формулы:
    Ac-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2,
    а в качестве хелатирующей группы (X) используют пептидное соединение формулы:
    Gly-Cys-Gly-Cys-H.
RU2011116643/15A 2011-04-27 2011-04-27 Радиофармацевтический препарат для диагностики меланомы и ее метастазов RU2465011C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011116643/15A RU2465011C1 (ru) 2011-04-27 2011-04-27 Радиофармацевтический препарат для диагностики меланомы и ее метастазов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011116643/15A RU2465011C1 (ru) 2011-04-27 2011-04-27 Радиофармацевтический препарат для диагностики меланомы и ее метастазов

Publications (1)

Publication Number Publication Date
RU2465011C1 true RU2465011C1 (ru) 2012-10-27

Family

ID=47147278

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011116643/15A RU2465011C1 (ru) 2011-04-27 2011-04-27 Радиофармацевтический препарат для диагностики меланомы и ее метастазов

Country Status (1)

Country Link
RU (1) RU2465011C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692451C2 (ru) * 2017-10-02 2019-06-24 Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр" Российской академии наук ("Томский НИМЦ") Способ радионуклидной диагностики опухолей головного мозга

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2360701C2 (ru) * 2004-07-19 2009-07-10 Джи-И Хелткер Лимитед Усовершенствованные конъюгаты n4 хелатообразующих агентов

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2360701C2 (ru) * 2004-07-19 2009-07-10 Джи-И Хелткер Лимитед Усовершенствованные конъюгаты n4 хелатообразующих агентов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A1. КЛЕМЕНТЬЕВА О.Е. Экспериментальное обоснование возможности применения комплексов трикарбонилтехнеция-99м и трикарбонилрения-188 в ядерной медицине. Автореферат диссертации на соискание ученой степени кандидата биологических наук. - М., 2001, с.7-19. Edited by K.E.GERMAN ET AL. Associate editors A.YA.MARUK, YA.A.OBRUCHNIKOVA. 7th International Symposium on Technetium and Rhenium - Science and Utilization July 4-8, 2011, Moscow, Russia Book of abstracts, 2011, pp.17-193. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692451C2 (ru) * 2017-10-02 2019-06-24 Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр" Российской академии наук ("Томский НИМЦ") Способ радионуклидной диагностики опухолей головного мозга

Similar Documents

Publication Publication Date Title
AU725827B2 (en) Radiometal-binding peptide analogues
US10960089B2 (en) Radiolabeled drug
EP3689892A1 (en) Radioactive drug
Raposinho et al. Melanoma targeting with α-melanocyte stimulating hormone analogs labeled with fac-[99m Tc (CO) 3]+: effect of cyclization on tumor-seeking properties
US6194386B1 (en) Labelled peptide compounds
Wei et al. Gallium-68-labeled DOTA-rhenium-cyclized α-melanocyte-stimulating hormone analog for imaging of malignant melanoma
Miao et al. Tumor-targeting properties of 90Y-and 177Lu-labeled α-melanocyte stimulating hormone peptide analogues in a murine melanoma model
Raposinho et al. A 99mTc (CO) 3-labeled pyrazolyl–α-melanocyte-stimulating hormone analog conjugate for melanoma targeting
WO2023087871A1 (zh) 颗粒酶b靶向配合物、放射性药物及其制备方法和应用
Miao et al. Reducing renal uptake of 90Y-and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues
Morais et al. Evaluation of novel 99m Tc (I)-labeled homobivalent α-melanocyte-stimulating hormone analogs for melanocortin-1 receptor targeting
Mikaeili et al. Development of a 99mTc-labeled CXCR4 antagonist derivative as a new tumor radiotracer
García et al. Synthesis of hydrophilic HYNIC-[1, 2, 4, 5] tetrazine conjugates and their use in antibody pretargeting with 99m Tc
Koźmiński et al. Synthesis and in vitro/in vivo evaluation of novel mono-and trivalent technetium-99m labeled ghrelin peptide complexes as potential diagnostic radiopharmaceuticals
Banerjee et al. 177Lu-DOTA-lanreotide: a novel tracer as a targeted agent for tumor therapy
Floresta et al. Targeting integrin αvβ6 with gallium-68 tris (hydroxypyridinone) based PET probes
Yan et al. Synthesis and preclinical evaluation of a heterodimeric radioligand targeting fibroblast activation protein and integrin-αvβ3
RU2465011C1 (ru) Радиофармацевтический препарат для диагностики меланомы и ее метастазов
Gniazdowska et al. Synthesis, physicochemical and biological evaluation of technetium-99m labeled lapatinib as a novel potential tumor imaging agent of Her-2 positive breast cancer
Varshney et al. Solid phase synthesis, radiolabeling and biological evaluation of a 99mTc-labeled αVβ3 tripeptide (RGD) conjugated to DOTA as a tumor imaging agent
De et al. Radiolabeled new somatostatin analogs conjugated to DOMA chelator used as targeted tumor imaging agent: synthesis and radiobiological evaluation
Mizuno et al. Aryl isocyanide derivative for one-pot synthesis of purification-free 99mTc-labeled hexavalent targeting probe
Koźmiński et al. Labelling of peptides with 99m Tc complexes through the modified C-terminal group
De et al. HYNIC and DOMA conjugated radiolabeled bombesin analogs as receptor-targeted probes for scintigraphic detection of breast tumor
Gniazdowska et al. Synthesis, radiochemistry and stability of the conjugates of technetium-99m complexes with Substance P

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150428