RU2464488C2 - Светодиодная лампа - Google Patents

Светодиодная лампа Download PDF

Info

Publication number
RU2464488C2
RU2464488C2 RU2010146392/07A RU2010146392A RU2464488C2 RU 2464488 C2 RU2464488 C2 RU 2464488C2 RU 2010146392/07 A RU2010146392/07 A RU 2010146392/07A RU 2010146392 A RU2010146392 A RU 2010146392A RU 2464488 C2 RU2464488 C2 RU 2464488C2
Authority
RU
Russia
Prior art keywords
radiator
emitter
led
cooling radiator
lamp
Prior art date
Application number
RU2010146392/07A
Other languages
English (en)
Other versions
RU2010146392A (ru
Inventor
Виктор Викторович Сысун (RU)
Виктор Викторович Сысун
Original Assignee
Виктор Викторович Сысун
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Викторович Сысун filed Critical Виктор Викторович Сысун
Priority to RU2010146392/07A priority Critical patent/RU2464488C2/ru
Publication of RU2010146392A publication Critical patent/RU2010146392A/ru
Application granted granted Critical
Publication of RU2464488C2 publication Critical patent/RU2464488C2/ru

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Изобретение относится к полупроводниковой светотехнике, в частности к светодиодным лампам, применяемым для общего или специального освещения. Техническим результатом является повышенная светоотдача и срок службы. Лампа содержит светодиодный излучатель с мощными светодиодами, собранными на составном радиаторе охлаждения и корпус с установленным в нем электронным преобразователем питающей сети и стандартным цоколем, разделенными воздушным зазором или переходником из материала с низкой теплопроводностью. Указанные радиатор излучателя и корпус могут быть разделены друг от друга воздушным зазором с электрическим и механическим соединением между собой посредством ниппеля с установленными внутри средствами токоподвода. Переходник может быть выполнен в виде электромеханического разъема, подключенного средствами токоподвода к радиатору и корпусу. В этом случае лампа становится разъемной на две части с возможностью индивидуальной взаимозаменяемости излучателя со светодиодами или преобразователя. Радиатор охлаждения светодиодов выполнен составным на основе усеченного икосаэдра или пирамиды с установленными на гранях светодиодами и оребренного держателя, причем часть радиатора может быть заключена в заполненную теплопроводным газом, например аргоном, колбу, таким образом, что другая его часть - оребренный держатель выступает из колбы, обеспечивая охлаждение светодиодов. 4 з.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к полупроводниковой светотехнике, в частности к лампам на светодиодах различных цветов излучения в оптическом диапазоне спектра, в т.ч. на светодиодах белого свечения или на светодиодах фиолетового или синего излучения с преобразованием его в белое свечение при помощи люминофоров.
Светодиодные лампы предназначены для замены ламп накаливания, галогенных ламп накаливания и компактных люминесцентных ламп /КЛЛ/, используемых для общего освещения в составе осветительных приборов промышленного и бытового назначения, для применения в специальной осветительной и светосигнальной аппаратуре.
Исследования светодиодных ламп прямой замены ламп накаливания, обсуждаемые, например, в [1 и 2] подтверждают, что применяемые в них светодиоды белого свечения имеют КПД, в 8-10 раз больший, а срок службы достигает 100 тыс.часов, т.е. эти параметры существенно выше чем для ламп накаливания и КЛЛ.
Однако при проектировании светодиодных ламп на основе таких светодиодов, особенно для эксплуатации в промышленной сети переменного табака, названные параметры не достигнуты. Существуют серьезные трудности, связанные с подбором малогабаритного электронного преобразователя питающей сети с высоким КПД и построенного на компонентах, имеющих срок службы, приближающийся к сроку службы светодиодов. Не решены также для ламп повышенной мощности проблемы отвода тепла как от светодиодов, так и от электронных компонентов преобразователя, существенно влияющих и снижающих светоотдачу и срок службы не только светодиодов, но также срок службы преобразователей.
Кроме того, применяемые в лампах для отвода тепла радиаторы охлаждения громоздки, затрудняют получение требуемого светораспределения лампы более чем в полусферу, требуют в ряде случаев использования дополнительной светорассеивающей оптики, также снижающей светоотдачу лампы и ощутимо повышающей ее стоимость.
Рассмотренные обстоятельства оставляют не решенной проблему создания эффективной светодиодной лампы повышенной мощности с приемлемыми габаритами радиаторов охлаждения для замены ламп накаливания и КЛЛ.
Известна лампа на мощных светодиодах [3], содержащая собранные на индивидуальных, выполненных в виде лепестков радиаторах охлаждения, светодиоды с токоведущими элементами и преобразователь питающей сети, установленный в камере, примыкающей к названным радиаторам охлаждения.
Недостатки аналога обусловлены сравнительно низким коэффициентом эффективности теплоотвода от преобразователя, что затрудняет существенное повышение мощности лампы.
Известна светодиодная лампа белого свечения [4], содержащая светодиодный излучатель с мощными светодиодами, собранными в тепловом контакте на радиаторе охлаждения и заключенными в оптически прозрачную, заполненную газом колбу, покрытую люминофором, преобразующим коротковолновое, излучение светодиодов в белое свечение, и электронный преобразователь питающей сети, установленный внутри выступающего из колбы в окружающее пространство составного радиатора охлаждения и корпуса лампы с цоколем.
Недостатки прототипа связаны с ограниченной возможностью повышения мощности лампы из-за недостаточной эффективности теплоотвода, учитывая существенные потери мощности электронного преобразователя, имеющего КПД 0,75-0,8 и рассеивающего тепло внутри лампы, вызывающего ухудшение светотехнических параметров и срока службы.
Недостатки прототипа обусловлены также тем, что отдельные компоненты электронных схем применяемых преобразователей в условиях повышенной температуры, например фильтрующие ток нагрузки конденсаторы, имеют срок службы в 2-3 раза ниже срока службы светодиодов, определяют более низкий срок службы неразборных светодиодных ламп с этими преобразователями.
Целью предлагаемого изобретения является улучшение теплофизических параметров светодиодной лампы, повышение светоотдачи и срока службы при одновременном улучшении эксплуатационных характеристик лампы за счет предусмотренной возможности замены ее составных частей в процессе эксплуатации.
Поставленная цель достигается тем, что в светодиодной лампе, содержащей светодиодный излучатель, выполненный в виде собранных на радиаторе охлаждения светодиодами и корпус лампы с цоколем и установленным в нем электронным преобразователем питающей сети, подключенным к светодиодам средствами токоподвода, вышеупомянутый радиатор охлаждения светодиодного излучателя теплоизолирован от корпуса лампы с цоколем и электронным преобразователем питающей сети.
Цель достигается также тем, что радиатор охлаждения светодиодного излучателя теплоизолирован от корпуса лампы воздушным зазором с возможностью электрического и механического соединения между собой посредством по меньшей мере одного ниппеля с установленными внутри средствами токоподвода.
Поставленная задача решается и тем, что радиатор охлаждения светодиодного излучателя теплоизолирован от корпуса лампы переходником из материала с низкой теплопроводностью, выполненным, например, в виде электромеханического разъема, подключенного средствами токоподвода к светодиодному излучателю и к электронному преобразователю питающей сети, в корпусе лампы с цоколем, и механически сопряженного с ними.
Цель достигается и тем, что радиатор охлаждения светодиодного излучателя и корпус лампы с электронным преобразователем питающей сети и цоколем выполнены разъемными с возможностью электрического и механического сопряжения между собой и индивидуальной взаимозаменяемости их в условиях эксплуатации.
Решение задачи достигается также тем, что радиатор охлаждения светодиодного излучателя выполнен составным в виде полого правильного многогранника, например усеченного икосаэдра, или правильной пирамиды, в частности усеченной пирамиды, на по крайней мере части граней которых смонтированы светодиоды, установленные в тепловом контакте с оребренным держателем, имеющим осевое отверстие для размещения средств токоподвода и сопряжения с ниппелем или электромеханическим разъемом.
Достижению цели способствует и то, что по меньшей мере часть граней полого многогранника составного радиатора охлаждения светодиодного излучателя находятся в тепловом контакте с дополнительным теплоотводящим элементом, например, в виде кронштейна, соединяющего грани с оребренным держателем.
Цель достигается и тем, что часть составного радиатора охлаждения светодиодного излучателя заключена в заполненную газом, например, теплопроводным инертным газом, оптически прозрачную колбу таким образом, что другая часть этого радиатора, выполненная с оребрением, выступает из колбы в окружающее лампу пространство.
Достижению цели способствует также то, что стенки корпуса лампы, примыкающие к электронному преобразователю питающей сети, выполнены с ребрами охлаждения или с вентиляционными отверстиями для рассеивания тепла, выделяемого указанным преобразователем.
Решению поставленной задачи способствует и то, что корпус лампы с электронным преобразователем питающей сети через кольцевой изолятор сопряжен и подключен к стандартному цоколю, например, типа E14, Е27 или Gy9,5.
Предпочтительные варианты исполнения лампы согласно предлагаемому изобретению показаны на чертежах.
Фиг.1. Светодиодная лампа с теплоизоляцией радиатора охлаждения светодиодов от корпуса с преобразователем воздушным зазором с ниппелем. Вид сбоку, частично в разрезе.
Фиг.2. Продольное сечение части составного радиатора охлаждения лампы, показанной на фиг.1.
Фиг.3. Разъемная светодиодная лампа с теплоизоляцией радиатора охлаждения светодиодов от корпуса с преобразователем электромеханическим разъемом. Вид сбоку, частично в разрезе.
Показанный на фиг.1 и 2 вариант исполнения светодиодной лампы содержит светодиодный излучатель с мощными светодиодами I, собранными в тепловом контакте на гранях составного радиатора охлаждения, выполненного в виде полого правильного многогранника, в частности усеченного икосаэдра 2, имеющего 15 треугольных граней, установленного отбортовкой 3 в тепловом контакте на плосковыпуклом держателе 4 с ребрами охлаждения 5 и осевым отверстием 6.
На оребренном держателе 4, образующем вместе с усеченным икосаэдром 2 составной радиатор охлаждения светодиодного излучателя лампы, может быть установлен дополнительный теплоотводящий элемент, выполненный, например, в виде кронштейна 7 /см. фиг.2/, соединяющего в тепловом контакте преимущественно верхние грани усеченного икосаэдра со светодиодами I с оребренным держателем.
Внутри усеченного икосаэдра 2 может быть установлено бóльшее количество теплоотводящих элементов, соединяющих грани со светодиодами, для улучшения кондуктивной теплопередачи от них на оребренный держатель 4 и в окружающее лампу пространство. Кроме того, на гранях упомянутого икосаэдра могут быть выполнены вентиляционные отверстия /не показаны/ для интенсификации конвективного теплообмена.
При использовании в лампе светодиодов повышенной мощности /2-3 Вт/ на части боковых граней усеченного икосаэдра, примыкающих к его верхним 5-ти граням, по оси ZZ лампы светодиоды не устанавливают, увеличивая тем самым теплорассеивающую рабочую поверхность радиатора.
Лампа содержит также корпус 8, в котором установлен электронный преобразователь 9 питающей сети с выходными контактами, подключенными к светодиодам I средствами токоподвода 10, расположенными в осевом отверстии 6 оребренного держателя 4.
Преобразователь 9 входными контактами подключен к стандартному цоколю 11, например, типа E14 или Е27, установленному на кольцевом изоляторе 12 корпуса 8, для подключения лампы к питающей сети.
Преобразователь 9, выполненный, например, в виде моноблока, залитого теплопроводным электроизоляционным компаундом типа "Номакон", установлен в тепловом контакте со стенками корпуса 8, который может быть изготовлен с ребрами 13 охлаждения, обеспечивающими теплообмен с окружающей лампу средой.
Собранные в тепловом контакте между собой составные части 2, 4 и 7 /см. фиг..2/ радиатора охлаждения светодиодного излучателя лампы, а также корпус 8 лампы с ребрами 13 охлаждения выполнены из теплопроводного материала, преимущественно на основе алюминиевых сплавов.
Составной радиатор охлаждения светодиодного излучателя лампы со светодиодами 1 теплоизолирован от оребренного корпуса 8 лампы с установленным в нем рассеивающим тепло электронным преобразователем 9 питающей сети и цоколем 11.
При этом в одном из вариантов исполнения лампы теплоизоляция радиатора охлаждения светодиодного излучателя от корпуса 8 лампы достигается за счет образования воздушного зазора между ними с возможностью электрического и механического соединения указанных составных частей лампы между собой посредством по меньшей мере одного ниппеля 14 с установленными внутри средствами токоподвода 10 от преобразователя 9 к светодиодам I светодиодного излучателя.
Ниппель 14 сопрягается с гнездом, соосным с отверстием 6 оребренного держателя 4 светодиодного излучателя, а противоположным концом с отверстием в корпусе 8 лампы.
Ниппель 14 может быть выполнен в виде патрубка единой детали с корпусом 8 или держателем 4 /не показано/.
Существенно меньшее поперечное сечение ниппеля 14 по сравнению с сечением корпуса 8 исключает ощутимую передачу тепла, генерируемого электронным преобразователем 9, к составному радиатору охлаждения со светодиодами 1.
Для светодиодной лампы с высокой степенью защиты в одном из вариантов исполнения часть составного радиатора охлаждения светодиодного излучателя, включая усеченный икосаэдр 2 со светодиодами 1, может быть заключена в оптически прозрачную колбу 15, выполненную из силикатного стекла, заполненную газом, например теплопроводным инертным газом аргоном при нормальном или пониженном давлении. При этом другая часть радиатора - наружная часть держателя 4 с ребрами охлаждения 5 выступает из колбы 15 в окружающее лампу пространство, обеспечивая рассеивание тепла, генерируемого светодиодами 1 внутри колбы.
Наличие воздушного зазора между оребренным корпусом 8, рассеивающим тепло, выделяемое электронным преобразователем 9, и составным радиатором охлаждения светодиодов 1 позволяет увеличить площадь рассеивающей тепло поверхности оребрения держателя 4, повысив тем самым эффективность кондуктивно-конвективного отвода тепла от светодиодов из колбы лампы.
В качестве мощных светодиодов в лампе могут быть использованы, например, светодиоды белого свечения типа XPEWHT-LI-0000-00B01 фирмы GREE мощностью более 1 Вт с прямым током 350 мА и углом излучения ~115° [5], либо подходящие светодиоды фирмы НПЦ "ОПТЭЛ", Москва.
Компактный электронный преобразователь 9 питающей сети может быть выполнен, например, на основе микросхемы LNK605DG фирмы Power Integrations Inc. [1] и изготовлен в виде цилиндрического моноблока, формованного из теплопроводного электроизоляционного компаунда.
Второй вариант исполнения светодиодной лампы, показанный на фиг.3, содержит светодиодный излучатель с составным радиатором охлаждения в виде полого правильного многогранника - правильной пирамиды, в частности усеченной пирамиды, на гранях 16 и верхнем основании которой смонтированы мощные светодиоды 17. Усеченная пирамида со светодиодами установлена в тепловом контакте на плосковыпуклом оребренном держателе 18 с осевым отверстием для размещения средств токоподвода 19 и гнездом, в котором размещен переходник из материала с низкой теплопроводностью, выполненный, например, в виде электромеханического разъема 20, подключающего светодиодный излучатель к электронному преобразователю 21 питающей сети, собранному в корпусе 22 лампы, и теплоизолирующего их друг от друга.
Разъем 20, изготовленный из реактопласта или керамики с низкой теплопроводностью, содержит установленную в гнезде оребренного держателя 18 радиатора охлаждения светодиодного излучателя вилку 23 с ножевыми или цилиндрическими контактами, подключенными к светодиодам 17, и розетку 24, установленную в стенке корпуса 22 лампы и подключенную к выходным контактам 25 преобразователя 21, входные контакты 26 которого подключены к собранному на изоляторе корпуса лампы двухштырьковому, преимущественно керамическому цоколю 27, например, типа Gy 9,5. В корпусе 22 могут быть выполнены вентиляционные отверстия.
Вилка 23 и розетка 24, в частности, цилиндрического разъема 20 дополнительно механически соединены между собой стягивающей кольцевой втулкой 28, установленной по резьбе и упирающейся в стопорное кольцо, выполненное на одной из секций разъема.
Таким образом, наряду с электрическим и механическим соединением радиатора охлаждения светодиодного излучателя и корпуса 22 лампы с преобразователем 21 и цоколем 27 разъем одновременно теплоизолирует их друг от друга, практически исключая кондуктивный теплообмен между ними.
При этом радиатор охлаждения светодиодов 17 светодиодного излучателя и корпус 22 лампы с электронным преобразователем 21 питающей г сети и цоколем 27 выполнены разъемными за счет применения состоящего из двух секций разъема 20, обеспечивающего разъемное соединение составных частей лампы с возможностью электрического и механического сопряжения между собой и индивидуальной взаимозаменяемости в условиях эксплуатации.
Предложенные варианты исполнения светодиодных ламп обладают существенно улучшенными теплофизическими параметрами за счет минимизации влияния /на 15-25%/ тепловыделения электронных компонентов преобразователя питающей сети на работу светодиодов излучателя, улучшения условий теплообмена его радиатора охлаждения с окружающей средой, повышения коэффициента эффективности теплоотвода одновременно как от светодиодов, так и от преобразователя, способствуя тем самым увеличению реальной светоотдачи и срока службы ламп до уровня, приближающегося к параметрам единичных светодиодов.
Одновременно улучшены эксплуатационные характеристики светодиодной лампы за счет выполнения ее конструкции разъемной и тем самым предусматривающей возможности замены ее важнейших узлов в процессе эксплуатации, в частности замены электронного преобразователя, имеющего более низкий срок службы по сравнению со светодиодным излучателем.
Литература
1. Сильвестра Фимиани. "Замена традиционной лампы накаливания". Ж. "Современная светотехника", №1 /01/, ноябрь 2009 г., с.30-31.
2. С.И.Лишик, А.А.Паутино, В.С.Поседько и др. "О светодиодных лампах прямой замены". Ж. "Светотехника", №1, 2010 г., с.48-54.
3. Патент на ИЗ РФ №2347975, кл. F21S 8/00. Опубл. Бюл. №6, 27.02.09.
4. Заявка на ИЗ РФ №2009102486/28, приор. 27.01.2009 г., кл. F21S 8/00. Решение о выдаче пат. 19.07.10. "Светодиодная лампа белого свечения".
5. Каталог фирмы "ProSOFT", 2009 г. "Мощные светодиоды GREE", с.30.

Claims (5)

1. Светодиодная лампа, содержащая светодиодный излучатель, выполненный в виде собранных на радиаторе охлаждения светодиодов, установленный в оптически прозрачной светорассеивающей колбе или без нее, корпус лампы с цоколем, электронный преобразователь питающей сети и средства токоподвода, отличающаяся тем, что светодиодный излучатель с радиатором охлаждения отделен и теплоизолирован воздушным зазором или переходником из материала с низкой теплопроводностью от электронного преобразователя питающей сети, установленного в корпусе с цоколем с возможностью механического и электрического соединения их между собой.
2. Светодиодная лампа по п.1, отличающаяся тем, что разделенные и теплоизолированные друг от друга воздушным зазором радиатор охлаждения с светодиодным излучателем и корпус лампы с электронным преобразователем механически и электрически соединены между собой посредством, по меньшей мере, одного ниппеля с установленными внутри средствами токоподвода.
3. Светодиодная лампа по п.1, отличающаяся тем, что переходник из материала с низкой теплопроводностью, отделяющий радиатор охлаждения светодиодного излучателя от корпуса с электронным преобразователем, выполнен в виде электромеханического разъема, составные части (секции) которого механически соединены с вышеуказанным радиатором и корпусом и электрически подключены к вышеуказанным излучателю и преобразователю.
4. Светодиодная лампа по п.3, отличающаяся тем, что светодиодный излучатель с радиатором охлаждения, соединенным с секцией электромеханического разъема, и корпус лампы с электронным преобразователем, соединенный с ответной секцией указанного разъема, сопряжены разъемно и механически стянуты между собой кольцевой втулкой, установленной по резьбе на цилиндрической наружной поверхности секций с упором в ограничительное кольцо на одной из них.
5. Светодиодная лампа по п.1, отличающаяся тем, что радиатор охлаждения светодиодного излучателя выполнен составным в виде полого правильного многогранника, например усеченного икосаэдра, или усеченной пирамиды, на, по крайней мере, части граней которых смонтированы светодиоды, установленные в тепловом контакте с оребренным держателем, имеющим осевое отверстие для размещения средств токоподвода и сопряжения с ниппелем или электромеханическим разъемом.
RU2010146392/07A 2010-11-15 2010-11-15 Светодиодная лампа RU2464488C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010146392/07A RU2464488C2 (ru) 2010-11-15 2010-11-15 Светодиодная лампа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010146392/07A RU2464488C2 (ru) 2010-11-15 2010-11-15 Светодиодная лампа

Publications (2)

Publication Number Publication Date
RU2010146392A RU2010146392A (ru) 2012-05-20
RU2464488C2 true RU2464488C2 (ru) 2012-10-20

Family

ID=46230352

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010146392/07A RU2464488C2 (ru) 2010-11-15 2010-11-15 Светодиодная лампа

Country Status (1)

Country Link
RU (1) RU2464488C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681309C2 (ru) * 2014-04-21 2019-03-06 Филипс Лайтинг Холдинг Б.В. Световое устройство и светильник
RU2702342C1 (ru) * 2019-04-29 2019-10-08 Виктор Викторович Сысун Светодиодная лампа с внутренним охлаждением

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2002101958A (ru) * 2002-01-29 2003-08-27 Виктор Викторович Сысун Лампа на светодиодах
RU2245489C1 (ru) * 2003-06-06 2005-01-27 Сысун Виктор Викторович Компактная лампа на светодиодах
RU46073U1 (ru) * 2005-02-15 2005-06-10 Закрытое акционерное общество "Научно-производственный центр морских технологий" Техномор" Световой прибор
JP2007080538A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 照明器具
RU71729U1 (ru) * 2007-12-04 2008-03-20 Виктор Викторович Сысун Защищенный световой прибор на мощном светодиоде
CN101307887A (zh) * 2007-05-14 2008-11-19 穆学利 一种led照明灯泡
RU2347975C2 (ru) * 2007-04-17 2009-02-27 Виктор Викторович Сысун Лампа на мощных светодиодах
RU95180U1 (ru) * 2010-01-25 2010-06-10 Дмитрий Сергеевич Гвоздев Светодиодная лампа
RU2009102486A (ru) * 2009-01-27 2010-08-10 Виктор Викторович Сысун (RU) Светодиодная лампа белого свечения
CN201599597U (zh) * 2009-12-22 2010-10-06 胡焕性 Led球泡型灯泡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227245C2 (ru) * 2002-01-29 2004-04-20 Сысун Виктор Викторович Лампа на светодиодах

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2002101958A (ru) * 2002-01-29 2003-08-27 Виктор Викторович Сысун Лампа на светодиодах
RU2245489C1 (ru) * 2003-06-06 2005-01-27 Сысун Виктор Викторович Компактная лампа на светодиодах
RU46073U1 (ru) * 2005-02-15 2005-06-10 Закрытое акционерное общество "Научно-производственный центр морских технологий" Техномор" Световой прибор
JP2007080538A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 照明器具
RU2347975C2 (ru) * 2007-04-17 2009-02-27 Виктор Викторович Сысун Лампа на мощных светодиодах
CN101307887A (zh) * 2007-05-14 2008-11-19 穆学利 一种led照明灯泡
RU71729U1 (ru) * 2007-12-04 2008-03-20 Виктор Викторович Сысун Защищенный световой прибор на мощном светодиоде
RU2009102486A (ru) * 2009-01-27 2010-08-10 Виктор Викторович Сысун (RU) Светодиодная лампа белого свечения
CN201599597U (zh) * 2009-12-22 2010-10-06 胡焕性 Led球泡型灯泡
RU95180U1 (ru) * 2010-01-25 2010-06-10 Дмитрий Сергеевич Гвоздев Светодиодная лампа

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681309C2 (ru) * 2014-04-21 2019-03-06 Филипс Лайтинг Холдинг Б.В. Световое устройство и светильник
RU2702342C1 (ru) * 2019-04-29 2019-10-08 Виктор Викторович Сысун Светодиодная лампа с внутренним охлаждением

Also Published As

Publication number Publication date
RU2010146392A (ru) 2012-05-20

Similar Documents

Publication Publication Date Title
CN101509653B (zh) 带有风扇的大功率led灯结构
JP3115844U (ja) ランプ
US7766512B2 (en) LED light in sealed fixture with heat transfer agent
RU2508498C2 (ru) Электрическая лампа
US7883246B2 (en) Lighting fixture and method
TWI571599B (zh) 照明裝置
KR101007913B1 (ko) 나선형 방열장치 및 이를 이용한 전구형 led 조명장치
US7234842B2 (en) Replaceable LED socket torch and lighting head assembly
EP2636938A1 (en) Light emitting device, bulb-type lamp, and illuminating device
CN101975342B (zh) 一种金属、陶瓷混合散热led球泡灯
JP2008027910A (ja) 放熱強化式高出力ledランプ
TW201323767A (zh) 路燈、發光設備及其發光模組
KR20130081669A (ko) 축 방향 및 반경 방향의 공기 구멍을 구비한 방열 장치 및 이 방열 장치를 적용한 장치
WO2009035693A1 (en) Phosphor-containing led light bulb
KR20100102689A (ko) 조명 어셈블리
KR20110135851A (ko) 적어도 하나의 발광 다이오드를 가진 램프
KR101072584B1 (ko) 엘이디 조명 장치
RU2475673C1 (ru) Взрывозащищенный светильник на светодиодах
CN104033774A (zh) 一种灯丝led灯泡
CN101749581A (zh) 一种安全型自散热led灯具
RU2464488C2 (ru) Светодиодная лампа
KR101231658B1 (ko) 방열기능을 개선한 엘이디 전구
KR100981683B1 (ko) Led조명기구
CN203010323U (zh) 一种u型灯管led节能灯
RU2595258C1 (ru) Светодиодная лампа с системой принудительного охлаждения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121116