RU2462636C2 - Клапанное уплотнение и способ его изготовления - Google Patents

Клапанное уплотнение и способ его изготовления Download PDF

Info

Publication number
RU2462636C2
RU2462636C2 RU2009136783/06A RU2009136783A RU2462636C2 RU 2462636 C2 RU2462636 C2 RU 2462636C2 RU 2009136783/06 A RU2009136783/06 A RU 2009136783/06A RU 2009136783 A RU2009136783 A RU 2009136783A RU 2462636 C2 RU2462636 C2 RU 2462636C2
Authority
RU
Russia
Prior art keywords
seal
seat
valve
sealing surface
valve seal
Prior art date
Application number
RU2009136783/06A
Other languages
English (en)
Other versions
RU2009136783A (ru
Inventor
Филипп Андреевич Казанкин (RU)
Филипп Андреевич Казанкин
Рашит Хурматович Кутуев (RU)
Рашит Хурматович Кутуев
Александр Анатольевич Маньков (RU)
Александр Анатольевич Маньков
Валентин Максимович Перфильев (RU)
Валентин Максимович Перфильев
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш") filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш")
Priority to RU2009136783/06A priority Critical patent/RU2462636C2/ru
Publication of RU2009136783A publication Critical patent/RU2009136783A/ru
Application granted granted Critical
Publication of RU2462636C2 publication Critical patent/RU2462636C2/ru

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Sealing Devices (AREA)
  • Details Of Valves (AREA)

Abstract

Изобретение относится к области клапанных кплотнений, преимущественно к электромагнитным клапанам высокого давления. Клапанное уплотнение содержит фторопластовый кольцевой вкладыш. Вкладыш деформируется при заделке между двумя коническими поверхностями штока и обоймы уплотнительного узла, пересекающимися между собой со стороны, удаленной от плоскости седла. Небольшой участок кольцевого вкладыша сформован между штоком и обоймой, в районе поверхности, контактирующей с седлом, имеет снаружи и внутри цилиндрическую форму, поверхности которых и седло образуют радиальные зазоры. Уплотняющая поверхность седла выполнена конической с углом в основании, близким к 0°, и с кольцевым выступом на меньшем диаметре. Технический результат: стабилизация хода клапана и его гидравлических характеристик. 2 н. и 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области клапанных уплотнений, преимущественно к электромагнитным клапанам высокого давления.
Известно клапанное уплотнение закрытого типа обратного клапана, в котором резиновый уплотнительный элемент поджат в канавке внутренним и наружным конусными подвижными кольцами с образованием зазора, закрыт плоским полированным седлом и работает в условиях всестороннего обжатия (Уплотнения и уплотнительная техника: Справочник / Л.А.Кондаков, А.И.Голубев, В.В.Гордеев и др. Под общ. ред. А.И.Голубева и Л.А.Кондакова. М.: Машиностроение, 1986, стр.242, рис.7.14). Всестороннее обжатие уплотнительного элемента и практическое отсутствие зазоров между уплотнительным элементом из резины и клапаном или седлом (в зависимости от конструкции) позволяет работать конструкции при рабочих давлениях до 35 МПа, но ресурс при этом не превышает 200 срабатываний, а утечки через клапанное уплотнение составляют 0,6 ат·см3/мин.
Такое уплотнение хорошо работает только с применением резины, что ограничивает ресурс работы уплотнения и исключает его использование в агрессивных средах.
Известны клапанные уплотнения с фторопластовым уплотнителем, в которых кольцевой уплотнитель, в основном, прямоугольного профиля крепится в клапане завальцовкой (Уплотнения и уплотнительная техника: Справочник / Л.А.Кондаков, А.И.Голубев. В.В.Гордеев и др. Под общ. ред. А.И.Голубева и Л.А.Кондакова. М.: Машиностроение, 1986, стр.232, рис.7.10, а). Уплотнитель в канавке такого клапанного уплотнения находится в напряженно-деформированном состоянии, а для равномерного распределения напряжений и обеспечения долговечности и надежности работы клапанного уплотнения канавка в сечении имеет профиль равнобедренной трапеции. Завальцовка предназначена. для создания напряженного состояния уплотнительного материала и исключения выпадения уплотнителя из канавки при открытии клапана.
Недостатком такого клапанного уплотнения является неуправляемая нерегламентированная деформация уплотнителя в процессе заделки фторопласта, а также во время эксплуатации в месте контакта с седлом при высоких удельных нагрузках в широком диапазоне рабочих температур, которые приводят к негерметичности клапанного уплотнения в процессе эксплуатации клапана.
Наиболее близким решением является клапанное уплотнение и способ его изготовления по патенту РФ №2227236, в котором напряженное состояние кольцевого уплотнительного элемента из фторопласта-4 поддерживается во всем диапазоне рабочих давлений и температур. Фторопластовый кольцевой вкладыш при заделке деформируют между двумя коническими поверхностями, пересекающимися между собой со стороны, удаленной от плоскости седла. Небольшой участок кольцевого вкладыша, сформованного между штоком и обоймой, в районе поверхности, контактирующей с седлом, имеет снаружи и внутри цилиндрическую форму. Для окончательного формования уплотняющей поверхности проводят ее чистовую обработку (подторцовку).
Уплотняющая поверхность окончательно формуется кольцевым седлом в процессе работы клапана.
Такое клапанное уплотнение в процессе работы меняет свои гидравлические и динамические характеристики. Изменяются и характеристики герметичности (утечки рабочего тела).
Причинами таких изменений являются изменение величины рабочего хода клапана и формование новых контуров гидравлического тракта (за счет остаточных деформаций фторопласта) между седлом, кольцевым уплотнительным элементом и цилиндрическими поверхностями штока и обоймы, контактирующими с фторопластовым вкладышем.
Задачей изобретения является получение практически постоянной формы гидравлического тракта между седлом и уплотнительным элементом, обеспечивающей стабильность хода клапана и постоянство гидравлических характеристик.
Задача решается тем, что в клапанном уплотнении фторопластовый кольцевой вкладыш при заделке деформирован между двумя коническими поверхностями штока и обоймы, пересекающимися между собой со стороны, удаленной от плоскости седла. Небольшой участок кольцевого вкладыша, сформованного между штоком и обоймой, в районе поверхности, контактирующей с седлом, имеет снаружи и внутри цилиндрическую форму, согласно изобретению уплотняющая поверхность седла выполнена конической с углом в основании, близким к 0°, и с кольцевым выступом на меньшем диаметре.
В предпочтительном варианте выполнения клапанное уплотнение имеет коническую уплотняющую поверхность седла с углом в основании не менее 2°, а кольцевой выступ выполнен высотой не более 0,03 мм.
Ширина кольцевого выступа составляет 1/4…1/3 ширины уплотняющей поверхности седла.
Максимально допустимый радиальный зазор между седлом и границами уплотнителя до 0,5 мм выбирают из соотношения σmax≤259·e-7,55·δ, где σmax - максимально допустимая удельная нагрузка на уплотнитель, МПа; δ - радиальный зазор между седлом и границами уплотнителя, мм.
Способ изготовления клапанного уплотнения заключается в деформации фторопластового уплотнителя коническими поверхностями штока и обоймы с созданием в уплотнителе напряженного состояния и его подторцовке. Согласно изобретению уплотнитель запрессовывают при температуре, превышающей рабочую не менее чем на 20%, с последующей механической обработкой торца штока и обоймы с уплотнителем и термообработкой уплотнителя при температуре, превышающей рабочую на величину не менее 30°C, в течение не менее 8 часов, охлаждением не менее 8 часов и последующей подторцовке уплотняющей поверхности уплотнителя и формовании ее соответствующим седлом двукратным рабочим усилием в течение не менее часа.
Предлагаемое решение поясняется чертежами.
На фиг.1 показан общий вид клапанного уплотнения; на фиг.2 - кольцевой вкладыш из фторопласта; на фиг.3 - продольный разрез уплотняющей поверхности седла.
В корпусе клапана 1 с возможностью перемещения установлен якорь 2, в котором смонтированы соосно шток 3, обойма 4 и кольцевой фторопластовый уплотнительный элемент (уплотнитель) 5. Обойма 4 запрессована в якорь 2 и завальцована. В корпусе седла 6 установлено седло 7. Уплотняющая поверхность 8 (фиг.2) кольцевого уплотнительного элемента 5 в закрытом состоянии клапана лежит на поверхности 9 (фиг.3) седла 7, повторяя его форму. Уплотняющая поверхность 9 седла 7 выполнена в виде усеченного конуса с углом α1 в основании не менее 2°, переходящая на меньшем радиусе в кольцевой выступ высотой l1, равной 0,02…0,03 мм. Кольцевой уплотнительный элемент 5 сформован между двумя коническими поверхностями, пересекающимися под углом α2 не более 15°, длина цилиндрической части l2 должна быть по возможности минимальной и на практике составляет около 0,2 мм. Отношение ширины h кольцевого выступа к ширине всей уплотняющей поверхности Н находится в диапазоне 1/3…1/4. Внутренняя и наружная цилиндрические поверхности седла расположены относительно внутренней цилиндрической поверхности обоймы 4 и наружной поверхности штока 3 с зазором δ, выбранным из соотношения σmax≤259·e-7,55·δ в зависимости от максимальной удельной нагрузки, создаваемой седлом на уплотнителе.
Механизм герметизации клапанного уплотнения заключается в заполнении под воздействием равнодействующего усилия от рабочего давления и пружины микронеровностей уплотняющей поверхности 9 седла 7 более мягким материалом уплотнительного элемента 5. Основная герметизация, особенно при малых давлениях, происходит в зоне выступа h седла 7, а конусная часть седла 7 кроме дополнительной герметизации при высоких давлениях предназначена для предохранения уплотнителя 5 в зоне выступа от перегрузки по напряжению и разрушения.
Для герметизации клапанного уплотнения с фторопластовым уплотнителем достаточно создать удельные нагрузки на клапанном уплотнении не более 0.4 МПа. Эта удельная нагрузка хорошо обеспечивается усилием пружины и герметизирует клапанное уплотнение при отсутствии рабочего давления.
Основную долю удельной нагрузки клапанного уплотнения при эксплуатации создает рабочее давление. Кроме того, в быстродействующих электроклапанах на уплотнитель 5 воздействуют инерционные нагрузки движущейся массы запирающего элемента и гидроудары столба рабочего тела. Удельные нагрузки при этом могут значительно превышать равнодействующее усилие рабочего давления и пружины. При давлении рабочего тела 40,0 МПа на уплотняющей поверхности 9 удельные нагрузки могут достигать более 100,0 МПа, а пределы прочности на сжатие самых прочных фторопластов (фторопласт 40П) не превышают 50 МПа. Поэтому решение проблемы работоспособности клапанных уплотнителей при высоких рабочих давлениях простым увеличением прочности материала уплотнителя малоэффективно. Одним из решений этой проблемы является создание объемно-напряженного состояния в уплотнителе.
Стойкость уплотнителя 5 к воздействию нагрузок можно повысить путем ориентации кристаллической структуры фторопласта в зазоре между конусными поверхностями. В зависимости от степени ориентации при плоскопараллельной деформации фторопласта раскаткой между валками можно повысить прочность в направлении ориентации на порядок (Д.Д.Чегодаев, З.К.Наумова, Ц.С.Дунаевская. Фторопласты. Под ред. Л.В.Черешкевича. Л.: Госхимиздат, 1960, 191 с., стр.79). В предлагаемом способе ориентацию кристаллов фторопласта вдоль образующих конусных поверхностей обеспечивают поперечной деформацией уплотнителя 5 запрессовкой со сдвигом. Степень ориентации и упрочнения определяется степенью деформации фторопласта между конусными поверхностями штока 3 и обоймы 4. Наибольшая степень ориентации и упрочнения фторопластового уплотнителя достигается вблизи линии пересечения конусных поверхностей при угле α2 не более 15°.
Предлагаемый способ изготовления клапанного уплотнения обеспечивает достаточное по объему напряженное состояние уплотнителя и удержание этого состояния силами трения и взаимодействия кристаллов между собой и с ограничивающими уплотнитель поверхностями. Повышается стабильность геометрических характеристик уплотнительного элемента и, следовательно, величина рабочего хода и гидравлического сопротивления клапана.
Но при этом остается проблема исключения течения уплотнителя в радиальном зазоре между границами уплотнителя и седла. Для стабилизации геометрической формы уплотняющей поверхности уплотнителя и обеспечения постоянства гидравлического тракта необходимо исключить течение уплотнителя в незамкнутых зазорах клапанного уплотнения.
Известно, что тонкий слой фторопласта не выдавливается из щелевого зазора при очень высоких давлениях и больших перепадах температуры вследствие трения о поверхность металла и межкристаллитного трения (Д.Д.Чегодаев, З.К.Наумова, Ц.С.Дунаевская. Фторпласты. Под ред. Л.В.Черешкевича. Л.: Госхимиздат, I960, 191 с., стр.53). При этом контактирующие с фторопластом поверхности зазора должны быть параллельными и не очень гладкими. Из опытов, проведенных в НИИМаш, установлена зависимость радиального зазора между границами кольцевой канавки и седла от удельной нагрузки седла на фторопластовый уплотнитель. В диапазоне радиальных зазоров между седлом и границами кольцевой канавки до 0,5 мм максимально допустимая удельная нагрузка на уплотнитель должна удовлетворять эмпирическому соотношению σmax≤259·e-7,55·δ. При удельной нагрузке менее допустимого значения, определенной по приведенной формуле при заданной величине δ, выдавливание фторопластового уплотнителя из незамкнутых зазоров клапанного уплотнения в процессе работы электроклапана не происходит. Соотношение справедливо при зазорах менее 0,5 мм и удельных нагрузках от 6,0 до 120 МПа. После проектирования электроклапана проводится проверочный расчет выбранной конструкции клапанного уплотнения в части соответствия удельной нагрузки на фторопластовый уплотнитель вышеуказанному соотношению. В противном случае корректируют размер незамкнутых зазоров.
Работоспособность клапанного уплотнения в диапазоне температур от минус 50°C до плюс 50°C обеспечивается дополнительной термообработкой уплотнителя в процессе сборки уплотнительного узла, которая исключает нерегламентированную деформацию уплотнителя во всем диапазоне температур рабочего тела при эксплуатации электроклапана и стабилизирует геометрическую форму уплотняющей поверхности уплотнителя в рабочем диапазоне температур.
При сборке уплотнительного узла кольцевой уплотнитель 5 запрессовывают между штоком 3 и обоймой 4, которую дополнительно закрепляют завальцовкой. Запрессовка производится в нагретом состоянии деталей. Температура нагрева должна быть выше максимальной рабочей на 20%. Уплотняющая поверхность 8 уплотнительного элемента 5 образуется дополнительной механической обработкой торцевой поверхности. Затем уплотнительный узел с запрессованным уплотнительным элементом подвергают термообработке при температуре выше максимальной рабочей на 30°C с последующей выдержкой при этой температуре не менее 8 часов и охлаждением при нормальной температуре в течение не менее 8 часов. Выступившая в результате термического расширения за торцевую поверхность обоймы часть уплотнителя 5 механически удаляется.
Дополнительно стабилизация геометрической формы уплотняющей поверхности уплотнителя в диапазоне рабочих давлений от 0 до 40 МПа осуществляется формованием этой поверхности соответствующим седлом электроклапана. Поэтому окончательной операцией изготовления клапанного уплотнения является формование поверхности контакта 8 уплотнителя 5 с седлом 7. Для этого в составе электроклапана седло 7 прижимают к уплотнителю 5 двукратным рабочим усилием и выдерживают не менее одного часа в этих условиях. Напряженное состояние уплотнителя 5 сохраняется за счет трения об ограничивающие поверхности штока 3 и обоймы 4 и сил взаимодействия кристаллов внутри самого уплотнителя.
Предлагаемый способ изготовления клапанного уплотнения обеспечивает достаточное по объему напряженное состояние уплотнителя, удержание этого состояния силами трения и взаимодействия кристаллов между собой и с ограничивающими уплотнитель поверхностями. Повышается стабильность геометрических характеристик уплотнительного элемента и, следовательно, величина рабочего хода и гидравлического сопротивления клапана. Благодаря этому клапанное уплотнение работает при давлениях рабочего тела до 40 МПа и в широком диапазоне температур, обладает высокой герметизирующей способностью, имеет большой ресурс работы по количеству срабатываний.

Claims (5)

1. Клапанное уплотнение, содержащее фторопластовый кольцевой вкладыш, деформируемый при заделке между двумя коническими поверхностями штока и обоймы уплотнительного узла, пересекающимися между собой со стороны, удаленной от плоскости седла, небольшой участок кольцевого вкладыша, сформованного между штоком и обоймой, в районе поверхности, контактирующей с седлом, имеет снаружи и внутри цилиндрическую форму, поверхности которых и седло образуют радиальные зазоры, отличающееся тем, что уплотняющая поверхность седла выполнена конической с углом в основании, близким к 0°, и с кольцевым выступом на меньшем диаметре.
2. Клапанное уплотнение по п.1, отличающееся тем, что коническая уплотняющая поверхность седла имеет угол в основании не более 2°, а кольцевой выступ выполнен высотой не более 0,03 мм.
3. Клапанное уплотнение по п.1, отличающееся тем, что ширина кольцевого выступа составляет 1/3…1/4 ширины кольцевой уплотняющей поверхности.
4. Клапанное уплотнение по любому из пп.1-3, отличающееся тем, что максимально допустимый радиальный зазор между седлом и границами уплотнителя до 0,5 мм выбирают из соотношения σmах≤259·е-7,55·δ, где σmax - максимально допустимая удельная нагрузка на уплотнитель, МПа; δ - радиальный зазор между седлом и границами уплотнителя, мм.
5. Способ изготовления клапанного уплотнения, заключающийся в деформации фторопластового уплотнителя коническими поверхностями штока и обоймы с созданием в уплотнителе напряженного состояния и его подторцовке, отличающийся тем, что уплотнитель запрессовывают при температуре, превышающей рабочую не менее чем на 20%, с последующей механической обработкой торца штока и обоймы с уплотнителем и термообработкой уплотнителя при температуре, превышающей рабочую на величину не менее 30°С, в течение не менее 8 ч, охлаждением не менее 8 ч и последующей подторцовке уплотняющей поверхности уплотнителя и формовании ее соответствующим седлом двукратным рабочим усилием в течение не менее часа.
RU2009136783/06A 2009-10-05 2009-10-05 Клапанное уплотнение и способ его изготовления RU2462636C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009136783/06A RU2462636C2 (ru) 2009-10-05 2009-10-05 Клапанное уплотнение и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009136783/06A RU2462636C2 (ru) 2009-10-05 2009-10-05 Клапанное уплотнение и способ его изготовления

Publications (2)

Publication Number Publication Date
RU2009136783A RU2009136783A (ru) 2011-04-10
RU2462636C2 true RU2462636C2 (ru) 2012-09-27

Family

ID=44051922

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009136783/06A RU2462636C2 (ru) 2009-10-05 2009-10-05 Клапанное уплотнение и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2462636C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU122376A1 (ru) * 1958-12-12 1959-11-30 С.И. Гендель Уплотнение дл дросселирующего вентил
SU1006839A1 (ru) * 1981-04-07 1983-03-23 Опытное Конструкторско-Технологическое Бюро Института Металлофизики Ан Усср Уплотнительный узел дл прогреваемого сверхвысоковакуумного затвора
FR2526116A1 (fr) * 1982-04-29 1983-11-04 Defontaine Sa Robinet a clapet, a controle de fuite, notamment pour l'industrie alimentaire
RU2162182C1 (ru) * 2000-05-24 2001-01-20 Закрытое акционерное общество научно-производственно-коммерческая компания "РУСНИТ" Электромагнитный клапан
RU2227236C2 (ru) * 2000-09-13 2004-04-20 Государственное предприятие Научно-исследовательский институт машиностроения Клапанное уплотнение и способ его изготовления
EP1870620A1 (en) * 2005-04-14 2007-12-26 Toyota Jidosha Kabushiki Kaisha On-off valve device for fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU122376A1 (ru) * 1958-12-12 1959-11-30 С.И. Гендель Уплотнение дл дросселирующего вентил
SU1006839A1 (ru) * 1981-04-07 1983-03-23 Опытное Конструкторско-Технологическое Бюро Института Металлофизики Ан Усср Уплотнительный узел дл прогреваемого сверхвысоковакуумного затвора
FR2526116A1 (fr) * 1982-04-29 1983-11-04 Defontaine Sa Robinet a clapet, a controle de fuite, notamment pour l'industrie alimentaire
RU2162182C1 (ru) * 2000-05-24 2001-01-20 Закрытое акционерное общество научно-производственно-коммерческая компания "РУСНИТ" Электромагнитный клапан
RU2227236C2 (ru) * 2000-09-13 2004-04-20 Государственное предприятие Научно-исследовательский институт машиностроения Клапанное уплотнение и способ его изготовления
EP1870620A1 (en) * 2005-04-14 2007-12-26 Toyota Jidosha Kabushiki Kaisha On-off valve device for fluid

Also Published As

Publication number Publication date
RU2009136783A (ru) 2011-04-10

Similar Documents

Publication Publication Date Title
TWI795473B (zh) 流體控制閥
KR102469089B1 (ko) 진공 밸브의 씨일 및 그 제조 방법
CN106051167B (zh) 密封件以及制造和/或使用密封件的方法
US4451047A (en) Seal
US4363465A (en) Extreme temperature, high pressure balanced, rising stem gate valve with super preloaded, stacked, solid lubricated, metal-to-metal seal
US10228065B2 (en) Flexible seat ball valve
US8960643B2 (en) Double offset ball member usable in ball valves and other flow control applications
EP3348881B1 (en) Sealing structures and valve assemblies including the sealing structures
US9239114B2 (en) Compressable sealing ring assembly
JP4743765B2 (ja) ボールバルブ
US2708573A (en) Seal for liquid springs
KR20160099696A (ko) 밸브체 및 고온용 밸브
EP3642519A1 (en) A non-pressure relieving ball valve
RU2462636C2 (ru) Клапанное уплотнение и способ его изготовления
US20140138082A1 (en) Thermally-sensitive triggering mechanism for selective mechanical energization of annular seal element
US10865901B2 (en) All-metal pressure relief valve
US10167977B2 (en) Flexible stem bellow assembly
US20180355983A1 (en) Diaphragm valve
US3087232A (en) Method of manufacturing valve seat
WO2015162581A1 (en) A valve, and a method for effectively sealing an area between two surfaces in a valve and use thereof
US11821517B2 (en) Metal seal comprising a textured outer sealing layer
RU2227236C2 (ru) Клапанное уплотнение и способ его изготовления
KR102149928B1 (ko) 가스켓
CA1125261A (en) Stem seal
RU68632U1 (ru) Уплотнение шарового крана