RU2457352C1 - Способ комбинированного производства электроэнергии, тепла и холода - Google Patents

Способ комбинированного производства электроэнергии, тепла и холода Download PDF

Info

Publication number
RU2457352C1
RU2457352C1 RU2010152398/06A RU2010152398A RU2457352C1 RU 2457352 C1 RU2457352 C1 RU 2457352C1 RU 2010152398/06 A RU2010152398/06 A RU 2010152398/06A RU 2010152398 A RU2010152398 A RU 2010152398A RU 2457352 C1 RU2457352 C1 RU 2457352C1
Authority
RU
Russia
Prior art keywords
heat
heating
hot water
water supply
cold
Prior art date
Application number
RU2010152398/06A
Other languages
English (en)
Other versions
RU2010152398A (ru
Inventor
Александр Иванович Баженов (RU)
Александр Иванович Баженов
Елена Владимировна Михеева (RU)
Елена Владимировна Михеева
Юрий Максимович Хлебалин (RU)
Юрий Максимович Хлебалин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ)
Priority to RU2010152398/06A priority Critical patent/RU2457352C1/ru
Publication of RU2010152398A publication Critical patent/RU2010152398A/ru
Application granted granted Critical
Publication of RU2457352C1 publication Critical patent/RU2457352C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к теплоэнергетике. Способ комбинированного производства электроэнергии, тепла и холода включает преобразование теплоты продуктов сгорания в механическую энергию с помощью теплового двигателя, преобразование механической энергии в электрическую в электрогенераторе, передачу теплоносителя, нагретого в контуре охлаждения теплового двигателя и выхлопных газов с помощью теплообменников, по крайней мере, двух ступеней подогрева, на отопление, горячее водоснабжение и вентиляцию и на получение холода в абсорбционной холодильной машине. Часть теплоносителя отводят на цели горячего водоснабжения, отопления и вентиляции перед теплообменниками второй и/или последующих ступеней подогрева в зависимости от требуемой температуры теплоносителя в системах горячего водоснабжения, отопления и вентиляции. Оставшуюся часть теплоносителя подают после теплообменника последней ступени подогрева в абсорбционную холодильную машину. Предлагаемый способ позволяет повысить холодильный коэффициент и выработку холода АХМ. 2 ил.

Description

Изобретение относится к теплоэнергетике и может быть использовано при комбинированном производстве тепла, холода и электроэнергии.
Известен способ работы передвижной установки комбинированного производства электричества, тепла и холода, в которой генератор преобразует механическую энергию вращающегося вала двигателя в электроэнергию, выхлопные газы, проходящие через теплообменник, отдают тепло жидкостному теплоносителю для теплоснабжения в отопительный период или используются в абсорбционной холодильной машине для холодоснабжения в летний период [1].
К недостаткам данного способа работы установки можно отнести невысокий КПД, связанный с выбросом в атмосферу существенной части неиспользованной тепловой энергии.
Известен также способ работы установки, в которой двигатель внутреннего сгорания производит полезную энергию, преобразуемую в электрическую энергию с помощью электрогенератора, второй двигатель внутреннего сгорания используется для привода компрессора холодильной машины, вырабатывающей холод в теплый период года. Тепло, утилизированное от рубашки двигателя и выхлопных газов, используется для теплоснабжения потребителей в холодный период года [2].
Недостатками способа работы данной установки являются неполное использование сбросной теплоты двигателей внутреннего сгорания, дополнительные затраты топлива для работы второго двигателя внутреннего сгорания, используемого для привода компрессора холодильной машины.
Известен способ работы установки, одновременно осуществляющей тепло/холодо- и электроснабжение, в которой теплоснабжение в холодный период осуществляется за счет утилизации теплоты выхлопных газов и охлаждающей жидкости двигателя внутреннего сгорания, механическая энергия вращающегося вала двигателя преобразуется в электроэнергию, холод вырабатывается в теплый период года в компрессионной холодильной машине [3].
К недостаткам способа работы данной установки можно отнести невысокий КПД из-за недостаточного использования сбросной теплоты двигателя внутреннего сгорания, значительные затраты электроэнергии на работу компрессора холодильной машины.
Наиболее близким техническим решением (прототипом) является способ работы установки для выработки электроэнергии, тепла и холода, по которому тепловой двигатель производит механическую работу, преобразуемую в электрическую энергию с помощью электрогенератора. Отводимое через теплообменники первой, второй и третьей ступеней подогрева от теплового двигателя сбросное тепло смазочного масла, охлаждающей жидкости и выхлопных газов утилизируется для теплоснабжения потребителей. В теплый период года утилизированное тепло частично используется для обеспечения потребителей горячей водой, а частично подается в абсорбционную холодильную машину для обеспечения холодом системы кондиционирования воздуха [4].
Однако данное техническое решение характеризуется относительно невысокой температурой теплоносителя (80°С), подаваемого от теплового двигателя, что приводит к снижению холодильного коэффициента и холодильной мощности абсорбционной холодильной машины.
Задачей изобретения является повышение холодильного коэффициента и холодильной мощности за счет повышения температуры теплоносителя, подаваемого в абсорбционную холодильную машину.
Поставленная задача достигается следующим образом.
В способе комбинированного производства электроэнергии, тепла и холода, включающем преобразование теплоты продуктов сгорания в механическую энергию с помощью теплового двигателя, преобразование механической энергии в электрическую в электрогенераторе, передачу теплоносителя, нагретого в контуре охлаждения теплового двигателя и выхлопных газов с помощью теплообменников по крайней мере, двух ступеней подогрева, на отопление, горячее водоснабжение и вентиляцию и на получение холода в абсорбционной холодильной машине, часть теплоносителя отводят на цели горячего водоснабжения, отопления и вентиляции перед теплообменниками второй и/или последующих ступеней подогрева в зависимости от требуемой температуры теплоносителя в системах горячего водоснабжения, отопления и вентиляции, оставшуюся часть теплоносителя подают после теплообменника последней ступени подогрева в абсорбционную холодильную машину.
За счет отвода части теплоносителя на нужды горячего водоснабжения, отопления и вентиляции уменьшится массовый расход нагреваемого теплоносителя, подаваемого в теплообменники последующих ступеней подогрева, а значит при прочих равных условиях без увеличения площади поверхности нагрева повышается температура нагреваемого теплоносителя, вышедшего из этих теплообменников. Увеличение температуры теплоносителя, отводимого в абсорбционную холодильную машину, позволяет повысить ее холодильный коэффициент и, соответственно, холодопроизводительность.
Предложенный способ комбинированного производства электроэнергии, тепла и холода иллюстрируется фиг.1 и 2.
На фиг.1 изображена схема одной из возможных энергетических установок, с помощью которых может быть осуществлен описываемый способ.
На фиг.2 изображена зависимость относительной холодопроизводительности абсорбционной холодильной машины от температур охлаждаемой, охлаждающей и греющей воды.
Энергетическая установка содержит следующие элементы: 1 - воздушный компрессор, 2 - камеру сгорания, 3 - газовую турбину, 4 - теплообменник системы смазки турбины (первая ступень подогрева), 5 - теплообменник охлаждения дисков и лопаток турбины (вторая ступень подогрева), 6 - теплообменник уходящих (выхлопных) газов (третья ступень подогрева), 7 - теплообменник системы теплоснабжения (отопление, вентиляция потребителей), 8 - абсорбционную холодильную машину, 9 - потребитель тепла (отопление и вентиляция), 10 - потребитель холода, 11 - потребитель горячей воды, 12 - сухую градирню энергетической установки, 13 - градирню холодильной машины, 14 - насос контура оборотного водоснабжения холодильника, 15 - насос контура холодоснабжения потребителей, 16 - насос контура горячего водоснабжения потребителей, 17 - насос контура теплоснабжения (отопления и вентиляции), 18 - насос контура охлаждения теплового двигателя, 19 - электрогенератор, 20 - теплообменник системы горячего водоснабжения потребителей, 21, 22, 23 - трубопроводы подачи греющего теплоносителя в теплообменник системы горячего водоснабжения (20), 24, 25, 26 - трубопроводы подачи греющего теплоносителя в теплообменник (7) системы теплоснабжения (отопления и вентиляции), 27 - трубопровод подачи греющего теплоносителя абсорбционной холодильной машины, 28 - контур охлаждения теплового двигателя.
Способ работы установки осуществляется следующим образом.
В компрессоре 1 происходит процесс сжатия атмосферного воздуха. Из компрессора 1 воздух поступает в камеру сгорания 2, куда через форсунки непрерывно под давлением поступает распыляемое топливо. Из камеры сгорания 2 продукты сгорания направляются в газовую турбину 3, в которой энергия продуктов сгорания преобразуется в механическую энергию вращения вала. В электрическом генераторе 19 эта механическая энергия преобразуется в электрическую. В зависимости от тепловой нагрузки установка работает в одном из трех режимов:
I режим - с отпуском теплоты на цели отопления, вентиляции и горячего водоснабжения;
II режим - с отпуском теплоты на горячее водоснабжение и на абсорбционный холодильник;
III режим - с отпуском теплоты на отопление, вентиляцию и горячее водоснабжение и на абсорбционный холодильник;
На I режиме (в холодный период года) теплоноситель, нагретый в теплообменнике системы смазки 4 (первая ступень подогрева), теплообменнике системы охлаждения дисков и лопаток 5 (вторая ступень подогрева) и теплообменнике уходящих (выхлопных) газов 6 (третья ступень подогрева) по трубопроводу 26 подают в теплообменник 7 для отопления и вентиляции потребителей 9 и по трубопроводам 21, и/или 22, и/или 23 на теплообменник горячего водоснабжения 20.
На II режиме (в теплый период года) в зависимости от требуемой температуры в системе горячего водоснабжения часть теплоносителя отводят после теплообменника системы смазки 4 (первой ступени подогрева) и/или теплообменника системы охлаждения дисков и лопаток 5 (второй ступени подогрева) и/или теплообменника уходящих (выхлопных) газов 6 (третьей ступени подогрева) по трубопроводам 21, и/или 22, и/или 23 на теплообменник горячего водоснабжения 20, а оставшийся теплоноситель по трубопроводу 27 подают в абсорбционную холодильную машину 8 для получения холода, используемого для холодоснабжения потребителей 10.
На III режиме (в осенне-весенний период) в зависимости от требуемых температур в системах горячего водоснабжения, отопления и вентиляции часть теплоносителя отводят после теплообменника системы смазки 4 (первой ступени подогрева), и/или теплообменника системы охлаждения дисков и лопаток 5 (второй ступени подогрева), и/или теплообменника уходящих (выхлопных) газов 6 (третьей ступени подогрева) по трубопроводам 21, и/или 22, и/или 23 на теплообменник горячего водоснабжения 20, часть теплоносителя после теплообменника системы смазки 4 (первой ступени подогрева), теплообменника системы охлаждения дисков и лопаток 5 (второй ступени подогрева) и/или теплообменника уходящих (выхлопных) газов 6 (третьей ступени подогрева) по трубопроводам 24, и/или 25, и/или 26 подают в теплообменник 7 для отопления и вентиляции потребителей 9, оставшуюся в контуре охлаждения теплового двигателя 28 часть теплоносителя по трубопроводу 27 подают в абсорбционную холодильную машину 8 для получения холода, используемого для холодоснабжения потребителей 10. Теплоноситель, охлажденный в теплообменниках 7, 8 и 20, насосом 18 передают для нагрева в теплообменники 4, 5, 6. При отсутствии потребности в тепловой энергии избыточное тепло отводится через сухие градирни 12 в атмосферу.
Например, при работе установки во II режиме, в случае отбора теплоносителя на цели горячего водоснабжения после теплообменника третьей ступени подогрева, в абсорбционную холодильную машину по трубопроводу 27 подают теплоноситель с температурой 103,14°С.
В случае отбора 30% теплоносителя на цели горячего водоснабжения после теплообменника второй ступени в абсорбционную холодильную машину подают теплоноситель с температурой 112,26°С, что дает увеличение холодопроизводительности (согласно фиг.2) на 22%.
В случае отбора 30% теплоносителя на цели горячего водоснабжения после теплообменника первой ступени в абсорбционную холодильную машину подают теплоноситель с температурой 115,41°С, что дает увеличение холодопроизводительности (согласно фиг.2) на 30%.
Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении холодильного коэффициента и холодильной мощности абсорбционной холодильной машины за счет повышения температуры теплоносителя, отведенного из контура охлаждения двигателя. Использование теплоносителя с более высокими параметрами, полученного в результате уменьшения его среднего расхода в контуре охлаждения теплового двигателя за счет отвода части теплоносителя при достижении им требуемой температуры на нужды теплоснабжения, позволяет увеличить холодильную мощность абсорбционной холодильной машины.
Источники информации
1. Патент №2815486 (Франция), опубл. 19.04.2002, МПК F01N 5/02-F02B 63/04; F02G 5/02; F25B 27/00; F25B 30/04; F01N 5/00; F02B 63/00; F02G 5/00; F25B 27/00; F25B 30/00.
2. Патент №2005331147 (Япония), опубл. 02.12.2005, МПК F25B 27/00; F25B 25/02; F25B 27/02; F25B 27/00; F25B 25/00; F25B 27/02.
3. Патент №20040061773 (Корея), опубл. 07.07.2004, МКП F02G 5/00; F02G 5/00.
4. Патент №20020112850 (США), опубл. 22.08.2002, МПК F01K 23/06; F02G 5/04; F24F 5/00; F01K 23/06; F02G 5/00; F24F 5/00.

Claims (1)

  1. Способ комбинированного производства электроэнергии, тепла и холода, включающий преобразование теплоты продуктов сгорания в механическую энергию с помощью теплового двигателя, преобразование механической энергии в электрическую в электрогенераторе, передачу теплоносителя, нагретого в контуре охлаждения теплового двигателя, и выхлопных газов с помощью теплообменников по крайней мере двух ступеней подогрева, на отопление, горячее водоснабжение и вентиляцию и на получение холода в абсорбционной холодильной машине, отличающийся тем, что часть теплоносителя отводят на цели горячего водоснабжения, отопления и вентиляции перед теплообменниками второй и/или последующих ступеней подогрева в зависимости от требуемой температуры теплоносителя в системах горячего водоснабжения, отопления и вентиляции, оставшуюся часть теплоносителя подают после теплообменника последней ступени подогрева в абсорбционную холодильную машину.
RU2010152398/06A 2010-12-21 2010-12-21 Способ комбинированного производства электроэнергии, тепла и холода RU2457352C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010152398/06A RU2457352C1 (ru) 2010-12-21 2010-12-21 Способ комбинированного производства электроэнергии, тепла и холода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010152398/06A RU2457352C1 (ru) 2010-12-21 2010-12-21 Способ комбинированного производства электроэнергии, тепла и холода

Publications (2)

Publication Number Publication Date
RU2010152398A RU2010152398A (ru) 2012-06-27
RU2457352C1 true RU2457352C1 (ru) 2012-07-27

Family

ID=46681604

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152398/06A RU2457352C1 (ru) 2010-12-21 2010-12-21 Способ комбинированного производства электроэнергии, тепла и холода

Country Status (1)

Country Link
RU (1) RU2457352C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518777C2 (ru) * 2012-08-03 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Энергетическая установка

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU974067A1 (ru) * 1981-05-11 1982-11-15 Северо-Западное отделение Всесоюзного научно-исследовательского и проектно-конструкторского института "ВНИПИэнергопром" Комбинированна теплохладоэнергетическа установка
JP2005331147A (ja) * 2004-05-19 2005-12-02 Denso Corp 発電および空調システム
RU2399781C1 (ru) * 2009-05-14 2010-09-20 Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (ГОУ ВПО СГТУ) Способ комбинированного производства электроэнергии, тепла и холода

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU974067A1 (ru) * 1981-05-11 1982-11-15 Северо-Западное отделение Всесоюзного научно-исследовательского и проектно-конструкторского института "ВНИПИэнергопром" Комбинированна теплохладоэнергетическа установка
JP2005331147A (ja) * 2004-05-19 2005-12-02 Denso Corp 発電および空調システム
RU2399781C1 (ru) * 2009-05-14 2010-09-20 Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (ГОУ ВПО СГТУ) Способ комбинированного производства электроэнергии, тепла и холода

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518777C2 (ru) * 2012-08-03 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Энергетическая установка

Also Published As

Publication number Publication date
RU2010152398A (ru) 2012-06-27

Similar Documents

Publication Publication Date Title
RU2399781C1 (ru) Способ комбинированного производства электроэнергии, тепла и холода
EP2522828B1 (en) Organic rankine cycle systems using waste heat from charge air cooling
RU2353787C1 (ru) Газотурбинная установка
US9932862B2 (en) Method and apparatus for heating an expansion machine of a waste heat recovery apparatus
US20100156111A1 (en) Thermo-Electric Engine
WO2008024833B1 (en) A combined cycle system for gas turbines and reciprocating engines and a method for the use of air as working fluid in combined cycle power plants
CN101749116A (zh) 用于涡轮机空气进口的低品位热回收系统
RU2487305C1 (ru) Тригенерационная установка на базе микротурбинного двигателя
JP2017160910A (ja) 熱空気機関
JP2014034924A (ja) 内燃機関の排熱回収装置及びコジェネレーション・システム
US9030034B2 (en) Stationary power plant, in particular a gas power plant, for generating electricity
Karaali et al. Efficiency improvement of gas turbine cogeneration systems
RU2725583C1 (ru) Когенерационная установка с глубокой утилизацией тепловой энергии двигателя внутреннего сгорания
RU2457352C1 (ru) Способ комбинированного производства электроэнергии, тепла и холода
RU2722436C2 (ru) Каскадный цикл и способ регенерации отходящего тепла
RU2440504C1 (ru) Когенерационная установка с двигателем внутреннего сгорания и двигателем стирлинга
Descombes et al. Modelling of waste heat recovery for combined heat and power applications
RU2630284C1 (ru) Когенерационная установка с глубокой утилизацией тепловой энергии теплового двигателя
RU2643878C1 (ru) Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (АБХМ)
RU2599082C1 (ru) Газотурбодетандерная энергетическая установка компрессорной станции магистрального газопровода
RU2354838C2 (ru) Газотурбинная энергетическая установка
RU157594U1 (ru) Тригенерационная установка
RU2466285C2 (ru) Парогенерирующая установка
RU2795803C1 (ru) Компрессорная станция магистрального газопровода с газотурбодетандерной установкой
RU2364796C1 (ru) Способ теплоснабжения и устройство теплоснабжения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121222