RU2454473C1 - Истираемое уплотнение турбомашины - Google Patents

Истираемое уплотнение турбомашины Download PDF

Info

Publication number
RU2454473C1
RU2454473C1 RU2010149549/02A RU2010149549A RU2454473C1 RU 2454473 C1 RU2454473 C1 RU 2454473C1 RU 2010149549/02 A RU2010149549/02 A RU 2010149549/02A RU 2010149549 A RU2010149549 A RU 2010149549A RU 2454473 C1 RU2454473 C1 RU 2454473C1
Authority
RU
Russia
Prior art keywords
particles
amount
filler
seal according
abradable seal
Prior art date
Application number
RU2010149549/02A
Other languages
English (en)
Inventor
Александр Степанович Лисянский (RU)
Александр Степанович Лисянский
Анатолий Михайлович Смыслов (RU)
Анатолий Михайлович Смыслов
Алексей Анатольевич Смыслов (RU)
Алексей Анатольевич Смыслов
Аскар Джамилевич Мингажев (RU)
Аскар Джамилевич Мингажев
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш"
Priority to RU2010149549/02A priority Critical patent/RU2454473C1/ru
Application granted granted Critical
Publication of RU2454473C1 publication Critical patent/RU2454473C1/ru

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Истираемое уплотнение турбомашины выполнено из адгезионно соединенных между собой в монолитный материал частиц порошкового наполнителя. Наполнителем является высоколегированная сталь состава: Cr - от 16,0 до 18,0%, Мо - от 0,7 до 1,6%, Fe - остальное. Размеры частиц порошка наполнителя составляют от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм составляет не менее 80% от общего объема частиц. Уплотнение показывает сочетание высоких прочностных характеристик и хорошей прирабатываемости. 10 з.п. ф-лы, 1 пр.

Description

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.
Эффективность работы газотурбинных двигателей и установок, а также паровых турбин зависит герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют например, используя плетеные металлические волокна, соты [патент США N 5080934, МПК F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющие, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.
Известно прирабатываемое уплотнение турбомашины [патент США №4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.
Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.
Известно также прирабатываемое уплотнение турбомашины [патент США №4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.
Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.
Наиболее близким по технической сущности и достигаемому результату к заявляемому является прирабатываемое уплотнение турбомашины, выполненное из частиц порошкового наполнителя, адгезионно соединенных между собой в монолитный материал [патент РФ №2039631, МПК B22F 3/10. Способ изготовления истираемого материала, 1995]. При этом уплотнение включает заполненный в сотовые ячейки и спеченный в вакууме или защитной среде гранулированный порошковый материл состава Cr-Fe-NB-C-Ni.
Известный материал прирабатываемого уплотнения турбомашины [патент РФ №2039631, МПК B22F 3/10. Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатки с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ №2277637, МПК F01D 11/08, 2006 г.].
Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом, сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 11/08, 2006 г.].
Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.
В этой связи использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала, допускающего врезание в него выступов лопатки и снижающего их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.
Техническим результатом заявляемого изобретения является обеспечение высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также снижения трудоемкости его изготовления.
Технический результат достигается тем, что истираемое уплотнение турбомашины, выполненное из адгезионно соединенных между собой в монолитный материал частиц порошкового наполнителя, отличается тем, что в качестве наполнителя используется высоколегированная сталь состава: Сr - от 16,0 до 18,0%, Мо - от 0,7 до 1,6%, Fe - остальное, а размеры частиц порошка наполнителя составляют от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм составляет не менее 80% от общего объема частиц.
Технический результат достигается также тем, что истираемое уплотнение выполнено спеканием в вакууме или защитной среде, обеспечивающим величину прочности сцепления частиц наполнителя от 20 до 100% от прочности частиц, при локальной прочности сцепления частиц в зоне контакта с контр-телом от 0,5 до 12% от прочности частиц наполнителя.
Технический результат достигается также тем, что истираемое уплотнение дополнительно содержит: Са в пределах от 0,01 до 0,2% или СаF2 в количестве от 4 до 11% или BN в количестве от 4 до 11% или BN+BaSO4 в количестве от 4 до 14% или Мn в количестве от 0,2 до 0,6% или Si в количестве от 0,2 до 1,6%.
Технический результат достигается также тем, что истираемое уплотнение дополнительно содержит: Мn - от 0,2 до 0,6%, Si - от 0,2 до 1,6% или Si в количестве от 0,2 до 1,6%, Мn в количестве от 0,2 до 0,6%, С в количестве от 0,01 до 0,03% или в % вес: Si - от 0,2 до 1,6%, Мn - от 0,2 до 0,6%, С - от 0,01 до 0,03%, Ni - от 0,1 до 0,3%, Nb - от 0,4 до 0,8%, S - от 0,01 до 0,03%.
Исследованиями авторов было установлено, что в определенных условиях возможно создание материала для уплотнений, обладающего, с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него элементы уплотнений, не разрушающиеся в условиях эксплуатации, а с другой - обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале для уплотнений, объясняется, в частности, тем, что прочность сцепления частиц наполнителя, образующего материал, весьма высока, тогда как в результате мгновенного ударно-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя кинетическая энергия удара переходит в тепловую энергию. В результате этого прочность сцепления частиц на границе рассматриваемой частицы резко снижается и в результате удара происходит его отрыв. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения прочности сцепления на границе между частицами порошкового наполнителя. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. Таким образом реализуется совмещение прочности сцепления частиц наполнителя, составляющей величину от 20 до 100% от прочности частиц, и локальной прочности сцепления частиц в зоне контакта с контр-телом от 0,5 до 12% от прочности частиц наполнителя. В связи с дискретным характером взаимодействия системы «уплотнение-лопатка», практически, после приработки происходит их безконтактное взаимодействие.
Однако для реализации описанного механизма прирабатываемое уплотнения необходимо обеспечить ряд условий. К этим условиям относятся: соотношение прочности сцепления между частицами наполнителя должно составлять величину от 20 до 100% от прочности частиц; локальная прочность сцепления между частицами в зоне контакта с контр-телом должна быть от 0,5 до 12% от прочности частиц наполнителя; размеры частиц наполнителя должны составлять величину от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм должно составлять не менее 80% от общего объема частиц.
Пример. В качестве основы для получения материала для прирабатываемого уплотнения использовался металлический порошок составов: 1) Cr - 14,0%, Мо - от 0,5%, Fe - остальное - Н.Р. (неудовлетворительный результат); 2) Cr - 16,0%, Мо - от 0,7%, Fe - остальное - У.Р. (удовлетворительный результат); 3) Сr - 17,0%, Мо - 1,2%, Fe - остальное - У.Р.; 4) Cr - 18,0%, Мо - 1,6%, Fe - остальное - У.Р; 5) Cr - 20,0%, Мо - 1,9%, Fe - остальное - Н.Р. Размеры частиц наполнителя составляли величины: 5-7 мкм - Н.Р.; 10 мкм- У.Р.; 30 мкм - У.Р.; 63 мкм - У.Р.; 100 мкм - У.Р.; 150 мкм - У.Р.; 160 мкм - Н.Р. Содержание частиц размером от 10 мкм до 60 мкм от общего объема частиц, % составляло: менее 80% Н.Р.; не менее 80% - У.Р. Исходный порошковый материал дополнительно содержал следующие компоненты: 1) Са - 0,01%; 0,1%; 0,2%; 2) CaF2 - 4%; 8%; 11%; 3) BN - 4%; 6%; 11%; 4) (BN+BaSO4) - 4%; 9%; 14%; 5) Mn - 0,2%; 0,4%; 0,6%; 6) Si - 0,2%; 1,1%; 1,6%; 7) (Mn+Si): Mn - 0,2%; 0,4%; 0,6%; Si - 0,2%; 1,1%; 1,6%; 8) (Mn+Si+C): Mn - 0,2%; 0,4%; 0,6%; Si - 0,2%; 1,1%; 1,6%; С - 0,01%; 0,03%; 9) (Mn+Si+C+Ni+Nb+S): Mn - 0,2%; 0,4%; 0,6%; Si - 0,2%; 1,1%; 1,6%; С - 0,01%; 0,03%; Ni - 0,1%; 0,3%; Nb - 0,4%; 0,8%. Материал был изготовлен: 1) спеканием в вакууме; 2) спеканием в защитной среде. Спекание одной части заготовок проводили при температуре 1200±100°С в вакуумной электропечи ОКБ 8086 при остаточном давлении в камере менее 10-2 мм рт.ст., а другой части - при той же температуре в среде осушенного диссоциированного аммиака, в засыпке из обожженного тонкомолотого глинозема. Давление прессования при изготовлении заготовок для всех вариантов было одинаковым и принято равным 70 кгс/мм2. Механические свойства полученного материала составили: твердость НВ от 131 до 144; σв=28,1…35,4 кгс/мм2; σт=17,2…23,9 кгс/мм2; КС=1,16…1,55 кгм/см2.
Результаты испытаний образцов уплотнений из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений с их хорошей прирабатываемостью.

Claims (11)

1. Истираемое уплотнение турбомашины, выполненное из адгезионно соединенных между собой в монолитный материал частиц порошкового наполнителя, отличающееся тем, что в качестве наполнителя используется высоколегированная сталь состава: Сr - от 16,0 до 18,0%, Мо - от 0,7 до 1,6%, Fe - остальное, а размеры частиц порошка наполнителя составляют от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм составляет не менее 80% от общего объема частиц.
2. Истираемое уплотнение по п.1, отличающееся тем, что оно получено спеканием в вакууме или защитной среде, обеспечивающим величину прочности сцепления частиц наполнителя от 20 до 100% от прочности частиц, при локальной прочности сцепления частиц в зоне контакта с контртелом от 0,5 до 12% от прочности частиц наполнителя.
3. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит Са в пределах от 0,01 до 0,2%.
4. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит CaF2 в количестве от 4 до 11%.
5. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит BN в количестве от 4 до 11%.
6. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит BN+BaSO4 в количестве от 4 до 14%.
7. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит Мn в количестве от 0,2 до 0,6%.
8. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит Si в количестве от 0,2 до 1,6%.
9. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит Si в количестве от 0,2 до 1,6%, Мn в количестве от 0,2 до 0,6%.
10. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит Si в количестве от 0,2 до 1,6%, Мn в количестве от 0,2 до 0,6%, С в количестве от 0,01 до 0,03%.
11. Истираемое уплотнение по п.1 или 2, отличающееся тем, что оно дополнительно содержит, вес.%: Si - от 0,2 до 1,6, Мn - от 0,2 до 0,6, С - от 0,01 до 0,03, Ni - от 0,1 до 0,3, Nb - от 0,4 до 0,8, S - от 0,01 до 0,03.
RU2010149549/02A 2010-12-03 2010-12-03 Истираемое уплотнение турбомашины RU2454473C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010149549/02A RU2454473C1 (ru) 2010-12-03 2010-12-03 Истираемое уплотнение турбомашины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010149549/02A RU2454473C1 (ru) 2010-12-03 2010-12-03 Истираемое уплотнение турбомашины

Publications (1)

Publication Number Publication Date
RU2454473C1 true RU2454473C1 (ru) 2012-06-27

Family

ID=46681901

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149549/02A RU2454473C1 (ru) 2010-12-03 2010-12-03 Истираемое уплотнение турбомашины

Country Status (1)

Country Link
RU (1) RU2454473C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU195635A1 (ru) * 1964-08-05 1967-05-04 Н. Семенов, Г. Л. Дубров , Н. А. Казанцева Институт проблем материаловедени УССР Металлокерамическии сплав для уплотнения газовых турбин
SU1092202A1 (ru) * 1982-02-11 1984-05-15 Специальное Проектно-Конструкторское И Технологическое Бюро Химического И Нефтяного Машиностроения Спеченный уплотнительный сплав на основе железа
CN1091065A (zh) * 1993-02-04 1994-08-24 曲成祥 高强度粉末冶金铜-铁双金属结构材料的制造技术
RU2039631C1 (ru) * 1993-08-27 1995-07-20 Всероссийский научно-исследовательский институт авиационных материалов Способ изготовления истираемого материала
WO2005120749A1 (en) * 2004-06-14 2005-12-22 Höganäs Ab Sintered metal parts and method for the manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU195635A1 (ru) * 1964-08-05 1967-05-04 Н. Семенов, Г. Л. Дубров , Н. А. Казанцева Институт проблем материаловедени УССР Металлокерамическии сплав для уплотнения газовых турбин
SU1092202A1 (ru) * 1982-02-11 1984-05-15 Специальное Проектно-Конструкторское И Технологическое Бюро Химического И Нефтяного Машиностроения Спеченный уплотнительный сплав на основе железа
CN1091065A (zh) * 1993-02-04 1994-08-24 曲成祥 高强度粉末冶金铜-铁双金属结构材料的制造技术
RU2039631C1 (ru) * 1993-08-27 1995-07-20 Всероссийский научно-исследовательский институт авиационных материалов Способ изготовления истираемого материала
WO2005120749A1 (en) * 2004-06-14 2005-12-22 Höganäs Ab Sintered metal parts and method for the manufacturing thereof

Similar Documents

Publication Publication Date Title
RU98159U1 (ru) Элемент прирабатываемого уплотнения турбины
US9169740B2 (en) Friable ceramic rotor shaft abrasive coating
US20150337671A1 (en) Abrasive blade tip treatment
EP2481890A2 (en) Seal in a gas turbine engine component having a coating with abradability proportional to interaction rate
EP3020931B1 (en) Abrasive rotor coating with rub force limiting features
US20120099971A1 (en) Self dressing, mildly abrasive coating for clearance control
US7160352B2 (en) Powder material for an abradable seal
RU2436658C2 (ru) Составной элемент прирабатываемого уплотнения турбины
RU2429106C2 (ru) Прирабатываемое уплотнение турбины
RU2455116C1 (ru) Элемент истираемого уплотнения турбины
RU105673U1 (ru) Прирабатываемое уплотнение турбомашины
RU109427U1 (ru) Уплотнение зазоров проточной части турбомашины
RU2454473C1 (ru) Истираемое уплотнение турбомашины
RU2696985C1 (ru) Материал прирабатываемого уплотнения турбомашины
RU2424874C1 (ru) Элемент прирабатываемого уплотнения турбины
RU2703669C1 (ru) Прирабатываемая вставка уплотнения турбины
EP3623082B1 (en) Method of producing an abrasive tip for a turbine blade
RU2436966C2 (ru) Материал прирабатываемого уплотнения турбомашины
RU95575U1 (ru) Прирабатываемое уплотнение турбомашины
RU94884U1 (ru) Материал прирабатываемого уплотнения
RU114091U1 (ru) Прирабатываемое уплотнение турбины с армирующим элементом
RU2425984C1 (ru) Прирабатываемое уплотнение турбомашины
RU2484924C2 (ru) Элемент прирабатываемого уплотнения турбины
RU95576U1 (ru) Прирабатываемое уплотнение турбины
RU120143U1 (ru) Сотовый элемент прирабатываемого уплотнения турбины

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131204