RU2454264C1 - Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта - Google Patents

Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта Download PDF

Info

Publication number
RU2454264C1
RU2454264C1 RU2010150126/05A RU2010150126A RU2454264C1 RU 2454264 C1 RU2454264 C1 RU 2454264C1 RU 2010150126/05 A RU2010150126/05 A RU 2010150126/05A RU 2010150126 A RU2010150126 A RU 2010150126A RU 2454264 C1 RU2454264 C1 RU 2454264C1
Authority
RU
Russia
Prior art keywords
adsorber
alcohol
water
activated carbon
nanoparticles
Prior art date
Application number
RU2010150126/05A
Other languages
English (en)
Other versions
RU2010150126A (ru
Inventor
Сергей Степанович Гоц (RU)
Сергей Степанович Гоц
Рауф Загидович Бахтизин (RU)
Рауф Загидович Бахтизин
Клара Шаиховна Ямалетдинова (RU)
Клара Шаиховна Ямалетдинова
Рагиб Насретдинович Гимаев (RU)
Рагиб Насретдинович Гимаев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" (ГОУ ВПО БашГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" (ГОУ ВПО БашГУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" (ГОУ ВПО БашГУ)
Priority to RU2010150126/05A priority Critical patent/RU2454264C1/ru
Publication of RU2010150126A publication Critical patent/RU2010150126A/ru
Application granted granted Critical
Publication of RU2454264C1 publication Critical patent/RU2454264C1/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Cleaning In General (AREA)

Abstract

Изобретение предназначено для очистки жидкостей. Способ заключается в том, что предназначенную для очистки спиртоводную смесь подают под давлением в нижнюю часть колонны адсорбера, заполненную порошковым активированным углем, а очищенную спиртоводную смесь отбирают из верхней части колонны адсорбера. Находящийся в адсорбере гранулированный или толченный активированный уголь непосредственно перед его использованием подвергают сепарации по размерам с целью вымывания из него гранул или частиц с размерами, меньшими 1 мкм. Промывочную жидкость подают в верхнюю часть колонны адсорбера через гидровибратор, формирующий в потоке промывочной жидкости продольные гидроакустические волны в широкой полосе частот, а использованную промывочную жидкость отводят из нижней части колонны адсорбера через мембранный фильтр, имеющий поры порядка 1-3 мкм, кроме этого, скорость потока промывочной жидкости устанавливают большей в 10-100 раз по сравнению со скоростью потока спиртоводной смеси во время ее фильтрации в адсорбере в рабочем режиме. Технический результат: уменьшение вероятности попадания в спиртоводную смесь наночастиц активированного угля, применяемого для очистки от химических загрязнений спирта и воды, используемых затем для приготовления смеси в заданной концентрации, а также для очистки полученной спиртоводной смеси от посторонних химических примесей. 2 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к способам очистки жидкостей, а именно очистки от нежелательных примесей смесей воды и этилового спирта, и может быть использовано в медицине, пищевой промышленности.
Этиловый спирт, используемый в пищевой промышленности и в медицине, получается путем дрожжевого брожения и ферментации сахаров, содержащихся в корнеплодах картофеля, свеклы, в зернах пшеницы и кукурузы. Предельная концентрация этилового спирта в воде в результате такого брожения не превышает 7-12%. Для повышения концентрации этилового спирта и удаления ряда нежелательных примесей используют многократную повторную дистилляцию. Количество этапов выполнения повторной дистилляции ограничено соображениями экономии энергии и необходимостью сохранения вкусовых качеств спиртосодержащих продуктов. В связи с этим дальнейшее удаление примесей осуществляется путем фильтрации спиртоводной смеси.
Подавляющее большинство современных технологий приготовления спиртоводных смесей, используемых в пищевой и медицинской промышленности, предусматривают применение активированного угля для удаления из раствора этилового спирта нежелательных примесей. Высокая эффективность активированного угля как адсорбента обусловлена тем, что гранулы угля содержат поры, значительно увеличивающие общую его сорбционную площадь. Общая площадь наружной поверхности гранул угля составляет от 10 до 20 см2/г. Площадь внутренних пор примерно на 6 порядков превышает площадь наружной поверхности и достигает 500-1500 м2/г. По своему диаметру поры принято разделять на микропоры (диаметр меньше 2 нм), мезопоры (диаметр от 2 до 50 нм) и макропоры (диаметр более 50 нм). Для повышения эффективности очистки в известных технологиях очистки спиртоводных смесей принято сочетать различные типы активированного угля, отличающиеся по диаметру пор. В патенте РФ №2107679 (МПК6 C07C 31/08, C07C 29/76, C12C 3/08, C12H 1/04) приведены примеры различных сочетаний объемов слоев активированного угля, используемого в адсорберах для очистки спиртоводных смесей.
До недавнего времени считалось, что использование активированного угля не влечет за собой каких-либо дополнительных отрицательных последствий с точки зрения угрозы для здоровья человека, употребляющего очищенные жидкости в пищу и в качестве наружных и внутренних лекарственных средств. В последнее время в связи с бурным развитием нанотехнологий появились новые данные, заставляющие по иному взглянуть на безопасность использования активированного угля в качестве сорбента при очистке пищевых продуктов и лекарственных средств.
Относительно недавно было установлено, что наночастицы с наружными размерами меньше 1 мкм представляют собой серьезную угрозу для потребителей пищевых продуктов и лекарств, содержащих указанные включения даже в относительно небольших количествах. Это связано с тем, что природа не наделила биологические клетки защитными барьерами, препятствующими проникновению в них наночастиц. Организм любого человека также не содержит каких-либо защитных барьеров, препятствующих проникновению с пищей и лекарствами наночастиц в кровь и в жизненно важные органы.
Следует отметить, что большинство наночастиц, окружающих нас, ассоциируются с молекулами различных химических элементов. Степень безопасности и биологическая активность таких наночастиц определяется химическими свойствами соответствующих элементов или соединений. Но существуют и такие наночастицы, биологическая активность которых не может быть объяснена только химическими свойствами. К числу таких наночастиц относятся тяжелые металлы, углеродные нанотрубки и наноразмерные гранулы активированного угля. В виде микрочастиц эти элементы биологически пассивны, в то время как в виде наночастиц эти элементы биологически чрезвычайно активны.
Спиртоводные смеси широко используются при производстве многих пищевых продуктов и лекарственных препаратов. В процессе своего производства спиртоводочные смеси проходят многоэтапную очистку с помощью активированного угля. Однако на сегодняшний день не предусмотрено каких-либо специальных мер для предотвращения попадания наночастиц, и прежде всего наночастиц активированного угля, в спиртоводные смеси. В частности, указанное замечание относится к производству водки, спиртоводочных изделий и медицинского спирта. Современные мембранные фильтры, используемые в пищевой промышленности, способны улавливать частицы лишь диаметром больше 0.5 мкм.
Наиболее близким по сути к заявляемому изобретению является «СПОСОБ ОБРАБОТКИ СПИРТО-ВОДНОЙ СМЕСИ ДЛЯ ПРИГОТОВЛЕНИЯ ВОДКИ» (патент РФ №2142502, МПК 6 C12G 3/08, C12H 1/04). В известном способе обработки спиртоводной смеси для обработки водки предусмотрена подача исходной спиртоводной смеси на фильтрующий элемент, выполненный в виде сильфона, стенки которого изготовлены из пористого гофрированного в поперечном направлении материала толщиной 6.5 мм. Диаметр пор переменный и со стороны входа жидкости изменяется в пределах от 4 мкм до 2 мкм, а на выходе обработанной смеси диаметр пор составляет 0.7 мкм. Поры заполнены порошком активированного угля и полиаминоэпихлоргидриновой смолой. Основным недостатком известного способа является то, что в нем не предусмотрено мер для предотвращения попадания наночастиц активированного угля диаметром менее 0.7 мкм в очищаемую спиртоводную смесь.
Технической задачей изобретения является уменьшение вероятности попадания в спиртоводную смесь наночастиц активированного угля, применяемого для очистки от химических загрязнений спирта и воды, используемых затем для приготовления смеси в заданной концентрации, а также для очистки полученной спиртоводной смеси от посторонних химических примесей.
Поставленная техническая задача достигается за счет того, что предназначенную для очистки спиртоводную смесь подают под давлением в нижнюю часть колонны адсорбера, заполненную порошковым активированным углем, а очищенную спиртоводную смесь отбирают из верхней части колонны адсорбера, при этом согласно изобретению находящийся в адсорбере гранулированный или толченный активированный уголь непосредственно перед его использованием подвергают сепарации по размерам с целью вымывания из него гранул или частиц с размерами, меньшими 1 мкм, при этом промывочную жидкость подают в верхнюю часть колонны адсорбера через гидровибратор, формирующий в потоке промывочной жидкости продольные гидроакустические волны в широкой полосе частот (от 10 Гц до 20 кГц), а использованную промывочную жидкость отводят из нижней части колонны адсорбера через мембранный фильтр, имеющий поры порядка 1÷3 мкм, кроме этого, скорость потока промывочной жидкости устанавливают большей в 10÷100 раз по сравнению со скоростью потока спиртоводной смеси во время ее фильтрации в адсорбере в рабочем режиме. Наличие продольных гидроакустических волн и высокая скорость промывочной жидкости способствуют активации наночастиц (разрыв механических связей за счет сил Ван-дер-Ваальса) и более эффективному их вымыванию.
Поставленная техническая задача также достигается за счет того, что в процессе промывки активированного угля в колонне адсорбера корпус последнего подвергают дополнительным ударным вибрационным воздействиям и встряхиванию в вертикальном направлении амплитудой 2÷10 мм и частотой 0.25-1 Гц.
Поставленная техническая задача также достигается за счет того, что в процессе промывки активированного угля в колонне адсорбера мембранный фильтр подвергают вибрационным воздействиям частотой 10-400 Гц амплитудой 1÷3 мм в перпендикулярном направлении к плоскости мембранного фильтра. Подобная мера способствует очистке пор фильтра от застрявших в них частиц угля [Гончаревич И.Ф., Урьев Н.Б., Талейсник М.А. Вибрационная техника в пищевой промышленности. - М.: Пищевая промышленность, 1977. - 278 с.].
Суть предлагаемого способа заключается в следующем. Во время промывки угольного порошка в адсорбере создаются благоприятные условия, способствующие форсированному вымыванию наночастиц из угольного порошка. Этому способствуют следующие факторы:
Во-первых, подача промывочной воды сверху адсорбера обеспечивает увеличение сил, воздействующих на каждую частицу угольного порошка. Действительно, в рабочем режиме фильтрации гидродинамическая и гидростатическая силы действуют на частицу вертикально вверх, а сила тяжести действует вниз. Результирующая сила FP в рабочем режиме будет равна
FP(r)=(ρВУ)·V(r)·g+FСтокса(r),
где ρУ и ρВ - соответственно плотности угольных частиц и воды, V(r) - объем угольной частицы радиуса r, g - ускорение свободного падения.
В режиме промывки угольного порошка результирующая сила FП будет равна
FП=(ρУВ)·V(r)·g+FСтокса(r)
Несложно заметить, что если средняя плотность угля больше плотности воды, т.е. ρУВ, то действующая на частицы сила во время промывки будет больше силы, действующей на частицы в рабочем режиме, т.е. FП>FР.
Во-вторых, гидроакустические волны, генерируемые в промывочной жидкости в широкой полосе частот, вызывают резонансные возбуждения частиц угля с разными диаметрами и с разными резонансными частотами. За счет этого многократно ускоряется процесс вымывания наночастиц из рабочего объема активированного угля.
В-третьих, встряхивание корпуса адсорбера активизирует частицы угля и способствует их ускоренному вымыванию. Кроме этого, в результате встряхивания корпуса адсорбера и вибраций мембранного фильтра последний очищается от застрявших в нем микрочастиц активированного угля.
Адсорбер (фиг.1) представляет собой герметичный разъемный цилиндрический пластмассовый сосуд 1 высотой 15 см, установленный вертикально. В нижний и верхний торцы адсорбера вмонтированы штуцеры 2 с установленными в них мембранными фильтрами 3. Диаметр пор в мембранных фильтрах составляет 3 мкм. В адсорбер засыпают 1 кг порошкового березового активированного угля 4 марки БАУ-А. Спиртоводная смесь, предназначенная для фильтрации, подается в адсорбер под давлением через нижний штуцер 2н. Скорость фильтрации спиртоводной смеси в рабочем режиме устанавливают равной 0,2 л/мин.
Промывочная вода подается в адсорбер через гидровибратор 5 и через верхний штуцер 2в. Во время промывки угля скорость потока промывочной воды через адсорбер устанавливают равной 2 л/мин.
Для предотвращения засорения пор фильтра 3н частицами активированного угля в нижнюю часть адсорбера установлен вибратор 6, выполненный, например, в виде закрепленной на корпусе адсорбера катушки электромагнита и подвижного ферромагнитного сердечника, жестко связанного с фильтром 3н. В процессе промывки адсорбера на катушку вибратора 6 подают синусоидальное напряжение частотой 10-400 Гц.
На фиг.2 представлен спектр акустических колебаний вблизи струи воды, снятый в диапазоне частот 9 Гц - 21 кГц. Расход воды во время проведения измерений составлял 5 л/мин.
Из приведенного на фиг.2 графика видно, что неравномерность звукового давления в полосе частот от 10 Гц до 1500 Гц не превышает ±10 дБ, а в полосе частот от 1500 Гц до 5000 Гц имеется 7 узкополосных пиков, превышающих средний уровень звукового давления на 15-20 дБ. За исключением указанных пиков неравномерность звукового давления в полосе частот от 10 Гц до 15000 Гц не превышает ±10 дБ. На частотах выше 15 кГц уровень звукового давления монотонно снижается. На частоте 20 кГц уровень звукового давления снижается на 30 дБ относительно уровня на низких и средних частотах.
Реализация способа поясняется следующими примерами.
Пример 1. В адсорбер засыпают 1 кг порошкового березового активированного угля 4 марки БАУ-А. Спиртоводная смесь, предназначенная для фильтрации, подается в адсорбер под давлением через нижний штуцер 2н. Скорость фильтрации спиртоводной смеси в рабочем режиме устанавливают равной 0.2 л/мин.
Промывочная вода подается в адсорбер через гидровибратор 5 и через верхний штуцер 2в. Во время промывки угля скорость потока промывочной воды через адсорбер устанавливают равной 2 л/мин.
Для предотвращения засорения пор фильтра 3н частицами активированного угля в нижнюю часть адсорбера установлен вибратор 6, выполненный, например, в виде закрепленной на корпусе адсорбера катушки электромагнита и подвижного ферромагнитного сердечника, жестко связанного с фильтром 3н. В процессе промывки адсорбера на катушку вибратора 6 подают синусоидальное напряжение частотой 10-400 Гц.
Пример 2. Промышленный адсорбер представляет собой герметичный цилиндрический металлический сосуд высотой 4,7 м, установленный вертикально. Конструктивно промышленный адсорбер не отличается от лабораторного варианта по набору функциональных элементов.
Предлагаемый способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта позволяют производить очистку спиртоводной смеси от гранул или частиц с размерами, меньшими 1 мкм.

Claims (4)

1. Способ уменьшения попадания наночастиц активированного угля в спиртоводную смесь этилового спирта и воды в процессе очистки от посторонних химических соединений, заключающийся в том, что предназначенную для очистки спиртоводную смесь подают под давлением в нижнюю часть колонны адсорбера, заполненного порошковым активированным углем, а очищенную спиртоводную смесь отбирают из верхней части колонны адсорбера, отличающийся тем, что находящийся в адсорбере гранулированный или толченый активированный уголь, непосредственно перед его использованием подвергают сепарации, при этом промывочную жидкость подают в верхнюю часть колонны адсорбера через гидровибратор, формирующий в потоке промывочной жидкости продольные акустические волны в широкой полосе частот, а использованную промывочную жидкость отводят из нижней части колонны адсорбера через мембранный фильтр, имеющий поры порядка 1÷3 мкм, при этом скорость потока промывочной жидкости устанавливают в 10÷100 раз больше, чем скорость потока спиртоводной смеси во время ее фильтрации в адсорбере в рабочем режиме.
2. Способ по п.1, отличающийся тем, что в процессе промывки активированного угля в колонне адсорбера корпус последнего подвергают ударным вибрационным воздействиям амплитудой 2÷10 мм и частотой 0,25-1 Гц в вертикальном направлении.
3. Способ по п.1, отличающийся тем, что в процессе промывки активированного угля в колонне адсорбера мембранный фильтр подвергают вибрационным воздействиям частотой 10-400 Гц амплитудой 1÷3 мм в перпендикулярном направлении к плоскости фильтра.
4. Устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта, состоящее из корпуса, верхнего и нижнего штуцеров, отличающееся тем, что в нижний и верхний штуцеры вмонтированы мембранные фильтры, при этом верхний штуцер дополнительно снабжен гидровибратором, нижний - вибратором.
RU2010150126/05A 2010-12-08 2010-12-08 Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта RU2454264C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010150126/05A RU2454264C1 (ru) 2010-12-08 2010-12-08 Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010150126/05A RU2454264C1 (ru) 2010-12-08 2010-12-08 Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта

Publications (2)

Publication Number Publication Date
RU2010150126A RU2010150126A (ru) 2012-06-20
RU2454264C1 true RU2454264C1 (ru) 2012-06-27

Family

ID=46680528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010150126/05A RU2454264C1 (ru) 2010-12-08 2010-12-08 Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта

Country Status (1)

Country Link
RU (1) RU2454264C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462904A (en) * 1982-03-12 1984-07-31 Westvaco Corporation Pulsed regeneration of adsorption column
RU2142502C1 (ru) * 1999-05-11 1999-12-10 Антонов Владимир Васильевич Способ обработки спирто-водной смеси для приготовления водки
EP0818240B1 (en) * 1996-07-11 2001-12-12 Universidad De Salamanca Procedure for the regeneration of catalysts and absorbent materials
RU2299761C2 (ru) * 2005-08-18 2007-05-27 Общество с ограниченной ответственностью "Суперкритические технологии" Способ регенерации древесного активного угля и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462904A (en) * 1982-03-12 1984-07-31 Westvaco Corporation Pulsed regeneration of adsorption column
EP0818240B1 (en) * 1996-07-11 2001-12-12 Universidad De Salamanca Procedure for the regeneration of catalysts and absorbent materials
RU2142502C1 (ru) * 1999-05-11 1999-12-10 Антонов Владимир Васильевич Способ обработки спирто-водной смеси для приготовления водки
RU2299761C2 (ru) * 2005-08-18 2007-05-27 Общество с ограниченной ответственностью "Суперкритические технологии" Способ регенерации древесного активного угля и устройство для его осуществления

Also Published As

Publication number Publication date
RU2010150126A (ru) 2012-06-20

Similar Documents

Publication Publication Date Title
US8658031B2 (en) Method and apparatus for treating liquid containing impurities
EP0041251A1 (en) Method of removing fine suspended solids from effluent streams
Saoudi et al. Innovative technique for 4-chlorophenol desorption from granular activated carbon by low frequency ultrasound: Influence of operational parameters
CA2937652C (en) Multi-media stratified filtration
WO2015079923A1 (ja) 水処理装置及びこれを用いた水処理方法
RU2454264C1 (ru) Способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта
RU104476U1 (ru) Устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта
CN103466749A (zh) 一种有效脱除水溶液中油份的方法
RU2477706C2 (ru) Способ удаления органических компонентов из их смеси с водой и устройство для его осуществления
CN203625268U (zh) 去除丙烯腈产品过氧化物吸收装置
WO2016076042A1 (ja) 下向流式濾過塔
US20220062797A1 (en) Variable-porosity filtering apparatus having compressible filtering medium
CN108726734B (zh) 含油污水悬浮污泥过滤净化装置及其污水处理工艺
CN206996020U (zh) 滤芯结构及滤筒装置
WO2016075773A1 (ja) 水処理装置及びこれを用いた水処理方法
RU2740064C2 (ru) Фильтрующий слой
CN208223932U (zh) 一种水质监测预处理装置
WO2016038948A1 (ja) 濾過ユニット
Sun et al. Application of combined granular media with opposite wettability for demulsification of oily wastewater by microchannel filter
RU2758878C1 (ru) Способ очистки воды от взвешенных частиц
CN217230394U (zh) 组合式除油设备
CN211676642U (zh) 有机硅高效交换过滤装置
RU2674207C1 (ru) Устройство очистки воды от взвешенных примесей
Spengler et al. Ultrasonic phase separation
CN207986935U (zh) 一种在废水处理中回收原材料的超声波过滤装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171209