RU2453854C1 - Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков - Google Patents

Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков Download PDF

Info

Publication number
RU2453854C1
RU2453854C1 RU2011109475/28A RU2011109475A RU2453854C1 RU 2453854 C1 RU2453854 C1 RU 2453854C1 RU 2011109475/28 A RU2011109475/28 A RU 2011109475/28A RU 2011109475 A RU2011109475 A RU 2011109475A RU 2453854 C1 RU2453854 C1 RU 2453854C1
Authority
RU
Russia
Prior art keywords
microcontroller
resistors
outputs
measuring
digital
Prior art date
Application number
RU2011109475/28A
Other languages
English (en)
Inventor
Александр Витальевич Вострухин (RU)
Александр Витальевич Вострухин
Виктор Семенович Ядыкин (RU)
Виктор Семенович Ядыкин
Алексей Николаевич Хабаров (RU)
Алексей Николаевич Хабаров
Original Assignee
Александр Витальевич Вострухин
Виктор Семенович Ядыкин
Алексей Николаевич Хабаров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Витальевич Вострухин, Виктор Семенович Ядыкин, Алексей Николаевич Хабаров filed Critical Александр Витальевич Вострухин
Priority to RU2011109475/28A priority Critical patent/RU2453854C1/ru
Application granted granted Critical
Publication of RU2453854C1 publication Critical patent/RU2453854C1/ru

Links

Abstract

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков содержит микроконтроллер 1, образцовый резистор 2 (R0), резистивный датчик резистор 3 (RX), резистор 4 (R1) и резистор 5 (R2). Резисторы 2 и 4 первыми выводами подключены к первым цифровым выходам микроконтроллера 1, резисторы 3 и 5 первыми выводами подключены ко вторым цифровым выходам микроконтроллера 1, вторые выводы резисторов 2 и 3, а также резисторов 4 и 5 подключены, соответственно, к первому и второму входам аналогового мультиплексора (на фиг. не показан) встроенного в микроконтроллер 1. Выход аналогового мультиплексора подключен к входу аналого-цифрового преобразователя (на фиг. не показан), встроенного в микроконтроллер 1. В качестве первого и второго цифровых выходов микроконтроллера используется несколько линий микроконтроллера для каждого цифрового выхода. Технический результат заключается в повышении чувствительности измерительной цепи и снижению ее энергопотребления. 1 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками, к которым относятся, например, тензодатчики, а также медные и платиновые термосопротивления.
Уровень техники
Известно устройство для измерения электрической емкости, содержащее два одновибратора, включенные по схеме кольцевого автогенератора, два интегрирующих RC-звена, подключенные к выходам соответствующих одновибраторов, блок индикации, включенный между выходами интегрирующих RC-звеньев, во времязадающие цепи одновибраторов включены конденсаторы и резисторы. На выходе устройства формируется постоянное напряжение, значение которого зависит от изменения емкости и/или сопротивления времязадающих цепей одновибраторов, которое отражается блоком индикации (см. пат. РФ №2156472, кл. G01R 27/26).
Недостатки известного решения - низкая точность, обусловленная высокой погрешностью, вносимой генераторами, параметры сигналов которых зависят от внешних факторов, например температуры.
Известно устройство для измерения неэлектрических величин конденсаторными датчиками, содержащее первый и второй генераторы, микроконтроллер и цифровой индикатор, во времязадающие цепи генераторов включены конденсаторы и резисторы, один из выводов микроконтроллера подключен к входам разрешения генерирования обоих генераторов, цифровой индикатор подключен к микроконтроллеру. На выходе устройства формируется код, который зависит от изменения емкости и/или сопротивления времязадающих цепей генераторов (см. пат. РФ №2214610, кл. G01R 27/26).
Недостаток известного решения - низкая точность, обусловленная погрешностью, вносимой генераторами, параметры которых зависят от внешних факторов.
Наиболее близким по технической сущности к заявляемому техническому решению и принятое авторами за прототип является мостовая схема (мост Уитстона) для измерения сопротивления резистивных датчиков, содержащая, два резистивных делителя, крайние выводы которых подключены к источнику питания, между средними выводами резистивных делителей включен измерительный прибор (см. Яковлев В. Структура измерительной системы на базе пассивных датчиков / В.Яковлев // Современные технологии автоматизации. - 2002, №1).
Недостаток известного решения - низкая чувствительность измерительной цепи схемы, а также высокое энергопотребление, что недопустимо в автономных измерительных устройствах. Резистивным датчикам присущи погрешности от саморазогрева резистора измерительным током. Значение измерительного тока, протекающего через резистор, с точки зрения обеспечения ничтожно малой погрешности от нагрева нужно выбирать как можно меньше, но при этом резко падает чувствительность измерительной цепи, в которую включен чувствительный элемент. В технических условиях на медные и платиновые термосопротивления указывается предельно допустимое значение измерительного тока, например для медного термосопротивления типа ТСМ50 измерительный ток, как правило, не должен превышать 5 мА.
Раскрытие изобретения
Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению чувствительности измерительной цепи и снижению ее энергопотребления.
Технический результат достигается тем, что в энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков, содержащий резистивный датчик, первый, второй и третий резисторы, первые выводы первого и второго резисторов соединены в первую общую точку, первые выводы резистивного датчика и третьего резисторов соединены во вторую общую точку, вторые выводы первого резистора и резистивного датчика соединены в третью общую точку, вторые выводы второго и третьего резисторов соединены в четвертую общую точку, введен микроконтроллер, причем первая и вторая общие точки подключены, соответственно, к первым и вторым цифровым выходам микроконтроллера, третья и четвертая общие точки подключены, соответственно, к первому и второму входам аналогового мультиплексора, встроенного в микроконтроллер, в качестве первого и второго цифровых выходов микроконтроллера используется несколько линий микроконтроллера для каждого цифрового выхода.
Краткое описание чертежей
На чертеже представлена структурная схема энергосберегающего микроконтроллерного измерительного преобразователя для резистивных датчиков.
Осуществление изобретения
Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков содержит (см. чертеж): микроконтроллер 1, образцовый резистор 2 (R0), резистивный датчик - резистор 3 (RX), резистор 4 (R1) и резистор 5 (R2). Резисторы 2 и 4 первыми выводами подключены к первым цифровым выходам микроконтроллера 1, резисторы 3 и 5 первыми выводами подключены ко вторым цифровым выходам микроконтроллера 1, вторые выводы резисторов 2 и 3, а также резисторов 4 и 5 подключены, соответственно, к первому и второму входам аналогового мультиплексора (на фиг. не показан), встроенного в микроконтроллер 1. Выход аналогового мультиплексора подключен к входу аналого-цифрового преобразователя (АЦП) (на фиг. не показан), встроенного в микроконтроллер 1. В качестве первого и второго цифровых выходов микроконтроллера используется несколько линий микроконтроллера для каждого цифрового выхода.
Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков работает следующим образом.
Микроконтроллер 1 выводит на второй цифровой выход низкий уровень напряжения (логический 0), а на первый цифровой выход высокий уровень напряжения (логическую 1), при этом к делителям R1, R2, и R0, RX будет приложено измерительное напряжение, которое определяется выражением:
Figure 00000001
, где UП - напряжение питания микроконтроллера 1;
Figure 00000002
- напряжение, падающее на выходных сопротивлениях транзисторных ключей, управляющих цифровыми выходами микроконтроллера 1.
Затем микроконтроллер 1 с помощью аналогового мультиплексора подключает общую точку вторых выводов резисторов 4 и 5 ко входу АЦП и измеряет напряжение U1, падающее на резисторе 5 (сопротивление R2). Так как R1=R2, то UИ=2·U1.
Затем микроконтроллер 1 с помощью аналогового мультиплексора подключает общую точку вторых выводов резисторов 2 и 3 ко входу АЦП и измеряет напряжение UX, падающее на резисторе 3 (сопротивление RX), определяет измерительный ток из выражения Iизм=(UИ-UX)/R0 и измеряемое сопротивление из выражения RX=UX/Iизм.
Затем микроконтроллер 1 выводит на первый цифровой выход логический 0, а так как на втором цифровом выходе также сформирован логический 0, то через измерительную схему (цепь) ток не течет. Таким образом, измерения (преобразования) производятся в интервалы времени протекания измерительного тока, а следовательно, измерительная цепь работает в импульсном режиме. Задача заключается в обеспечении условия Iср≤Iном, где Iср - среднее значение измерительного тока; Iном - номинальное значение измерительного тока.
Среднее значение измерительного тока в импульсном режиме определяется
Figure 00000003
где k - коэффициент заполнения импульсной последовательности измерительного тока, определяется k=tи/T=tи/(tи+tн); Т - период импульсной последовательности измерительного тока; tи и tн - длительности импульса и паузы измерительного тока.
Время, необходимое для выполнения одного преобразования в АЦП, определяется выражением
Figure 00000004
fАЦП - тактовая частота АЦП; число 14 - количество тактов АЦП, необходимое для одного преобразования. Наибольшая точность преобразования достигается, если тактовая частота АЦП находится в диапазоне 50…200 кГц [Евстифеев А.В. Микроконтроллеры AVR семейства Mega. Руководство пользователя. - М.: Издательский дом «Додека-XXI», 2007. - 592 с.: ил. (Серия «Программируемые системы»)].
При тактовой частоте fАЦП=50кГц время, необходимое на выполнение одного преобразования, в соответствии с выражением (2) будет равно tАЦП=28·10-5 c=0,280 мс.
Учитывая, что в каждом цикле производится два преобразования, одно для измерения U1, другое для измерения UX, то время, в течение которого датчик включен под измерительное напряжение, т.е. время импульса, определяется выражением tи=2·tАЦП. При tАЦП=0,280 мс tи≈0,56 мс. Если импульсный измерительный ток Iизм=50 мА, что в десять раз превышает номинальный измерительный ток для термосопротивления типа дТС125-50М.В2.60, то средний измерительный ток через этот датчик, в соответствии с выражением (1) (при условии, что в течение одной секунды (1000 мс) производится одно преобразование), определяется Iср=0,56/1000·50=0,028 мА.
Таким образом, средний измерительный ток в Iном/Iср=5/0,028=179 раз меньше номинального измерительного тока. При этом чувствительность измерительной цепи в 5 раз выше чувствительности при протекании измерительного тока, равного номинальному значению в Iном≈5 мА.
Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет преимущество: повышена чувствительность измерительной цепи, а следовательно, и точность преобразования, а также снижено энергопотребление, что важно для автономных измерительных устройств.

Claims (2)

1. Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков, содержащий резистивный датчик, первый, второй и третий резисторы, первые выводы первого и второго резисторов соединены в первую общую точку, первые выводы резистивного датчика и третьего резисторов соединены во вторую общую точку, вторые выводы первого резистора и резистивного датчика соединены в третью общую точку, вторые выводы второго и третьего резисторов соединены в четвертую общую точку, отличающийся тем, что в него введен микроконтроллер, причем первая и вторая общие точки подключены соответственно к первым и вторым цифровым выходам микроконтроллера, третья и четвертая общие точки подключены соответственно к первому и второму входам аналогового мультиплексора, встроенного в микроконтроллер.
2. Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков по п.1, отличающийся тем, что в качестве первого и второго цифровых выходов микроконтроллера используется несколько линий микроконтроллера для каждого цифрового выхода.
RU2011109475/28A 2011-03-14 2011-03-14 Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков RU2453854C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011109475/28A RU2453854C1 (ru) 2011-03-14 2011-03-14 Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011109475/28A RU2453854C1 (ru) 2011-03-14 2011-03-14 Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков

Publications (1)

Publication Number Publication Date
RU2453854C1 true RU2453854C1 (ru) 2012-06-20

Family

ID=46681170

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011109475/28A RU2453854C1 (ru) 2011-03-14 2011-03-14 Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков

Country Status (1)

Country Link
RU (1) RU2453854C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2552749C1 (ru) * 2014-02-10 2015-06-10 Александр Витальевич Вострухин Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика
WO2015157763A1 (en) * 2014-04-11 2015-10-15 Texas Instruments Incorporated Contactless resistance measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2214610C2 (ru) * 2001-12-13 2003-10-20 Ставропольская Государственная Сельскохозяйственная Академия Устройство для измерения неэлектрических величин конденсаторными датчиками
RU2391677C1 (ru) * 2009-04-03 2010-06-10 Общество с ограниченной ответственностью научно-производственная компания "Интеллект-Сервис" Микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код
RU2395816C1 (ru) * 2009-08-03 2010-07-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Микроконтроллерное устройство для исследования диэлектрических свойств биологических объектов и изоляционных материалов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2214610C2 (ru) * 2001-12-13 2003-10-20 Ставропольская Государственная Сельскохозяйственная Академия Устройство для измерения неэлектрических величин конденсаторными датчиками
RU2391677C1 (ru) * 2009-04-03 2010-06-10 Общество с ограниченной ответственностью научно-производственная компания "Интеллект-Сервис" Микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код
RU2395816C1 (ru) * 2009-08-03 2010-07-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Микроконтроллерное устройство для исследования диэлектрических свойств биологических объектов и изоляционных материалов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2552749C1 (ru) * 2014-02-10 2015-06-10 Александр Витальевич Вострухин Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика
WO2015157763A1 (en) * 2014-04-11 2015-10-15 Texas Instruments Incorporated Contactless resistance measurement
US9625506B2 (en) 2014-04-11 2017-04-18 Texas Instruments Incorporated Contactless resistance measurement

Similar Documents

Publication Publication Date Title
RU2391677C1 (ru) Микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код
TWI651930B (zh) 使用三角積分轉換之電容近接偵測
RU2565595C2 (ru) Детектор контакта с кожей
CN101490567A (zh) 测量电容元件容量的方法和设备
Czaja An implementation of a compact smart resistive sensor based on a microcontroller with an internal ADC
RU2453854C1 (ru) Энергосберегающий микроконтроллерный измерительный преобразователь для резистивных датчиков
RU2395816C1 (ru) Микроконтроллерное устройство для исследования диэлектрических свойств биологических объектов и изоляционных материалов
RU2449299C1 (ru) Микроконтроллерный измерительный преобразователь для резистивного датчика
RU2392629C1 (ru) Устройство микроконтроллерное для измерения емкости и сопротивления
RU2502076C1 (ru) Микроконтроллерный измерительный преобразователь сопротивления в двоичный код с генератором, управляемым напряжением
RU2603937C1 (ru) Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу
RU2444020C1 (ru) Микроконтроллерный измерительный преобразователь сопротивления в двоичный код
RU2504793C1 (ru) Способ определения теплового импеданса цифровых кмоп интегральных микросхем
RU2583148C1 (ru) Микроконтроллерный измерительный преобразователь для фотоплетизмографического датчика пульса
RU2552749C1 (ru) Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика
RU2309415C1 (ru) Устройство для измерения емкости конденсаторного датчика
RU2506599C1 (ru) Микроконтроллерный измерительный преобразователь с уравновешиванием резистивного моста
RU2372592C2 (ru) Измеритель температуры, являющийся эквивалентом образцового резистора, и способ, реализуемый в нем
RU2756374C1 (ru) Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем
RU2565813C1 (ru) Микроконтроллерный измерительный преобразователь сопротивления, емкости и напряжения в двоичный код
EP3018484A1 (en) Device and method for measuring electrical variables of analog sensors
RU2461804C1 (ru) Преобразователь температуры
RU2563315C1 (ru) Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции
RU2298872C1 (ru) Аналого-цифровой преобразователь с управляемой чувствительностью на базе микроконтроллера
RU2214610C2 (ru) Устройство для измерения неэлектрических величин конденсаторными датчиками