RU2451889C1 - Теплообменник-реактор - Google Patents

Теплообменник-реактор Download PDF

Info

Publication number
RU2451889C1
RU2451889C1 RU2011114750/06A RU2011114750A RU2451889C1 RU 2451889 C1 RU2451889 C1 RU 2451889C1 RU 2011114750/06 A RU2011114750/06 A RU 2011114750/06A RU 2011114750 A RU2011114750 A RU 2011114750A RU 2451889 C1 RU2451889 C1 RU 2451889C1
Authority
RU
Russia
Prior art keywords
pipes
heat exchanger
pipe
reactor
tube
Prior art date
Application number
RU2011114750/06A
Other languages
English (en)
Inventor
Юрий Федорович Гортышов (RU)
Юрий Федорович Гортышов
Виктор Михайлович Гуреев (RU)
Виктор Михайлович Гуреев
Риннат Галеевич Нуруллин (RU)
Риннат Галеевич Нуруллин
Ринат Рашитович Юнусов (RU)
Ринат Рашитович Юнусов
Ильнур Лутович Низамиев (RU)
Ильнур Лутович Низамиев
Лут Бурганович Низамиев (RU)
Лут Бурганович Низамиев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева)
Закрытое акционерное общество "Татарский центр катализа Эрэфэн" (ЗАО "ТЦК Эрэфэн")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева), Закрытое акционерное общество "Татарский центр катализа Эрэфэн" (ЗАО "ТЦК Эрэфэн") filed Critical Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева)
Priority to RU2011114750/06A priority Critical patent/RU2451889C1/ru
Application granted granted Critical
Publication of RU2451889C1 publication Critical patent/RU2451889C1/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к теплообменному и реакторному оборудованию и может быть использовано в энергетической, химической, нефтехимической отраслях промышленности. Теплообменник-реактор содержит корпус в виде усеченного конуса с вогнутой в направлении к его вертикальной оси поверхностью с днищами, патрубки ввода и вывода теплоносителя трубного и межтрубного пространств. Внутри корпуса 1 расположен трубный пучок, который состоит из по меньшей мере двух рядов конусообразных труб, закрепленных концами в отверстиях решеток по концентрическим окружностям. Трубы расположены с наклоном одновременно в двух направлениях: с наклоном к вертикальной оси корпуса и с дополнительным наклоном, выполненным путем смещения концов в окружном направлении, т.е. по дугам окружностей размещения их в трубных решетках. При этом углы наклонов выполнены в пределах 0,5-50,0 градусов от вертикальной плоскости, проходящей через вертикальную ось корпуса. При таком выполнении отпадает необходимость усиливать входные параметры теплоносителя, что позволяет экономить тепловую и электрическую энергию. 4 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области теплотехники и может быть использовано в энергетической, химической, нефтехимической и других отраслях промышленности, при осуществлении процессов, сопровождаемых большими тепловыми эффектами, в частности при гетерогенно-каталитическом окислении, гидрировании и дегидрировании.
Известен реактор для проведения эндотермических и экзотермических каталитических реакций, состоящий из кожуха, труб теплопередачи, в которых может быть расположен твердый катализатор. Кроме того, теплообменник содержит периферийные трубы теплопередачи. Реакционная смесь проходит через слой катализатора, расположенного вне труб теплопередачи, затем - через слой катализатора, расположенного в кольцевом пространстве двойных труб теплопередачи или внутри труб теплопередачи, после чего покидает аппарат через периферийные трубы теплопередачи (Патент РФ 2379100 МПК С2 B01J 8/02 С01В 3/3, опубл в 2008 году).
Реактор сложен по конструкции. Загрузка и выгрузка катализатора затруднительны. Большое сопротивление реакционным газам не оправдано повышенной эффективностью теплообмена по сравнению с другими аналогичного назначения аппаратами.
Известен кожухотрубный реактор с жидкостным охлаждением под давлением для проведения каталитических реакций, содержащий пучок вертикальных заполненных катализатором реакторных труб, концы которых герметично закреплены в верхней и нижней трубных решетках. Трубные решетки соединены с корпусом герметично посредством уплотнительного устройства и состоят из отдельных участков, соединенных герметично друг с другом также герметизирующим устройством. По меньшей мере одна из трубных решеток имеет фиксирующий элемент в виде параллельного к решетке удерживающего диска, а также отверстие для прохода отводящей или подводящей трубы. Узлы реактора могут быть соединены сваркой и не нуждаются в термической обработке после сборки (Патент РФ 2392045 МПК B01J 8/06 опубл. 2008 году).
В кожухотрубном реакторе указанной конструкции сложно добиться равномерного и одинакового во всех трубах теплообмена, а также согласованности скоростей отвода или подвода тепла со скоростью процесса, происходящего в катализаторных трубах. Более того, в реакторе остаются полости, используемые недостаточно полно. Разборка и ремонт реакторов с паровым барабаном более сложны по сравнению с традиционной компоновкой реакторов.
Известен теплообменник, пригодный для проведения химических процессов, в котором проходы для нагреваемой среды (холодного теплоносителя) постепенно увеличиваются, а для нагревающей среды (охлаждаемого теплоносителя) - постепенно сужаются. Скорость потока сред вдоль поверхности теплообмена остается постоянной. Это достигается применением кольцевых секторов. В данном аппарате осуществляют оптимальный теплообмен (Заявка Германии DE 102590398 МПК F28D 9/00 опубл. 2004 году).
В таких теплообменниках в кольцевых секторах параметры потока на различных уровнях будут различны. Причем эти различия не совпадают с подобными различиями в соседних секторах. В таком аппарате достичь высокой эффективности достаточно сложно.
Известен теплообменник, который может быть использован в качестве химического реактора, где для выравнивания скорости и градиента сопротивления величина проходного сечения первого потока (трубное пространство) выполняется неравномерной - обратно пропорциональной плотности заполнителя или величине локальных значений теплового потока (Пат. США 4108241 кл. 165/146, МПК F28F 13/00 опубл. 1978 году).
Теплообменник способен работать лишь в узком диапазоне расходов без переналадки.
Наиболее близким к заявляемому изобретению и принятым за прототип является теплообменный аппарат, содержащий корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей в трубное и межтрубное пространства, трубные решетки, в отверстиях которых закреплены трубы в форме усеченных конусов наклонно под углом относительно центральной вертикальной оси корпуса, причем трубы, кроме центральной, дополнительно наклонены путем смещения концов по окружностям их размещения в трубной решетке на 0,5-50,0 градусов, а отверстия в трубных решетках выполнены под усеченные конуса одинаковой высоты сомкнутыми вершинами (Патент на полезную модель РФ 101162 МПК F28D 15/00 опубл. в 10.01.2011 году). Однако в известном теплообменном аппарате недостаточно полно используется объем, что приводит к недостаточно высокой интенсивности теплообмена и, кроме того, создаются дополнительные напряжения, возникающие в процессе эксплуатации, вызываемые центробежными силами, что снижает надежность работы аппарата.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении интенсивности теплообмена и эффективности процесса в ректоре, а также повышении надежности при эксплуатации.
Технический результат достигается тем, что в теплообменнике-реакторе, содержащем корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей трубного и межтрубного пространств, трубные решетки, в отверстиях которых закреплены по концентрическим окружностям наклонно к оси, по меньшей мере, два ряда труб, кроме того, трубы дополнительно наклонены со смещением по дугам окружностей размещения их концов на одной из трубных решеток, центральную трубу, при этом, по меньшей мере, в одном ряду, трубы наклонены со смещением по дугам окружностей размещения их концов на одной из трубных решеток в противоположном направлении относительно наклона со смещением в прилежащем ряду или в прилежащих рядах.
Трубы имеют форму усеченного конуса.
Поверхность корпуса выполнена вогнутой к своей вертикальной оси, при этом максимальная вогнутость расположена на расстоянии 02,58-0,65 от большой трубной решетки.
В центральной трубе расположены тепловые и другие датчики.
На фиг.1 показан общий вид теплообменника-реактора (без теплоизоляции и опорных приспособлений), на фиг.2 - общий вид трубного пучка, по меньшей мере, с двумя рядами труб и с трубными решетками (без корпуса и днищ), на фиг.3 - вид А в направлении трубного пучка по фиг.2 (без трубных решеток), на фиг.4 - вид Б в направлении трубного пучка (без трубных решеток).
Теплообменник-реактор (фиг.1) содержит корпус 1 в форме усеченного конуса с вогнутой в направлении к его вертикальной оси поверхностью с днищами 2, 3, патрубки 4, 5 ввода и вывода теплоносителя трубного пространства, а также патрубки 6, 7 ввода и вывода теплоносителя межтрубного пространства. Внутри корпуса 1 размещен трубный пучок (фиг.2). Он состоит из, по меньшей мере, двух рядов конусообразных труб 8, 9, расположенных по концентрическим окружностям и закрепленных концами в трубных решетках 11, 12. Отверстия в трубных решетках 11, 12 выполнены под усеченные конусы одинаковой высоты сомкнутыми малыми вершинами. Центральная труба 10 конусообразной формы, ее ось совпадает с вертикальной осью корпуса 1. Внутри трубы 10 расположен кожух для тепловых и других датчиков. Трубы 8, 9 расположены с наклоном одновременно в двух направлениях: с наклоном к вертикальной оси корпуса 1 и с дополнительным наклоном, выполненным путем смещения концов в окружном направлении, т.е. по дугам окружностей размещения их в трубных решетках 11 или 12. При этом углы наклонов выполнены в пределах 0,5-50,0 градусов от вертикальной плоскости, проходящей через вертикальную ось корпуса 1. Направление дополнительных наклонов труб 8, 9 выполнены чередующимся. Например, трубы 9 второго ряда с края пучка наклонены в противоположную сторону по отношению к трубам 8 первого крайнего ряда. Может быть выбран любой другой порядок чередования рядов с противоположными наклонами. Предпочтительно, если чередование будет осуществляться через два или нескольких рядов от крайнего ряда.
В результате осуществления двух видов наклонов достигнуто уменьшение диаметра трубного пучка. Это уменьшение плавно развивается при мысленном движении от трубных решеток 11, 12 в направлении к средней области. Минимальный диаметр достигнут на расстоянии 0,58-0,65 высоты, проведенной от большой трубной решетки 11.
На этой высоте корпус 1 имеет максимальное сужение. Расстояние от внутренней поверхности корпуса 1 до трубного пучка равно расстоянию между наружными поверхностями труб 8, 9, а на трубных решетках - согласно расчетам.
Теплообменник-реактор работает следующим образом. В случае организации теплообмена прямотоком, теплоноситель или реакционная смесь трубного пространства поступает через патрубок 4 и днище 3 малого диаметра в трубы 8, 9, 10, проходя по ним, реагируя и обмениваясь теплом через их стенки с теплоносителем межтрубного пространства, выходит через днище 5 большого диаметра и патрубок 6. При этом поток трубного пространства из-за наклонов труб 8, 9 стремится приобрести закрученный вид. Угол атаки потока трубного пространства направлен в сторону внутренних стенок труб 8, 9. Теплоноситель межтрубного пространства поступает в теплообменник-реактор через патрубок 6 и, отдавая или принимая тепло через наружные стенки труб 8, 9, 10, в теплоноситель трубного пространства, выходит из него через патрубок 7. При организации теплообмена противотоком, теплоноситель или реакционная смесь трубного пространства проходит аналогичный путь, а теплоноситель межтрубного пространства поступает через патрубок 7 и, обмениваясь теплом через стенки труб 8, 9, 10 с теплоносителем или реакционной смесью трубного пространства, выходит через патрубок 6. Иногда выгодно подавать теплоноситель трубного пространства или реакционную смесь через патрубок 5 со стороны большого диаметра теплообменника-реактора. В этом случае потоки организуют в противоположных направлениях.
Преимущества заявляемого теплообменника-реактора в том, что если в каком-то ряду труб в межтрубном пространстве возникает закручивание потока в одном направлении, то в следующем за ним другом ряду формируется закручивание в противоположном направлении. Центробежные силы, возникающие при наклонах одинаковой направленности, уравновешиваются. Осевая нагрузка от потока трубного пространства распределяется более равномерно.
При направлении потока от периферии к центру, от входа к выходу и по окружности, поток приобретает сложную по направлениям волнообразную форму, более равномерную по всем направлениям. Некоторое увеличение сопротивления потоку, вызванное изменением направления части потока при соприкосновении с трубами, наклоны которых противоположны, способствует увеличению части потока, направляющейся по окружности, обеспечивая полноту использования объема. При этом исчезают преобладающие по скорости отдельные течения. Омывание внешних поверхностей труб приближается к поперечному омыванию, а общее сопротивление теплообменника-реактора не увеличивается.
В трубном пространстве появляется разнонаправленная вторичная циркуляция, возникающая в поперечном сечении труб, интенсифицируя теплообмен и процессы в реакторе.
В результате использования корпуса с вогнутой поверхностью и осуществления двух видов наклонов труб происходит дополнительное уменьшение проходного сечения межтрубного пространства. Это приводит к дополнительному увеличению скорости потока, следовательно, усилению теплообмена в области, где наиболее вероятны перегревы или дефицит тепла в трубном пространстве, кроме того, разнонаправленные наклоны труб уравновешивают центробежные силы, что способствует повышению надежности реактора при эксплуатации. Отпадает необходимость усиливать входные параметры теплоносителя межтрубного пространства, что позволяет экономить тепловую и/или электрическую энергию. Таким образом, в предлагаемом теплообменнике-реакторе полнота использования тепловой энергии повышается на 6-7%.
За счет более равномерного и интенсивного теплообмена, уменьшения или полного исчезновения зон перегрева или переохлаждения, как показали предварительные расчеты, выход целевых продуктов в процессах таких, как дегидрирование и парциальное окисление углеводородов, увеличивается до 10%.

Claims (4)

1. Теплообменник-реактор, содержащий корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей трубного и межтрубного пространств, трубные решетки, в отверстиях которых закреплены по концентрическим окружностям наклонно к оси, по меньшей мере, два ряда труб, кроме того, трубы дополнительно наклонены со смещением по дугам окружностей размещения их концов на одной из трубных решеток, центральную трубу, отличающийся тем, что, по меньшей мере, в одном ряду трубы наклонены со смещением по дугам окружностей размещения их концов на одной из трубных решеток в противоположном направлении относительно наклона со смещением в прилежащем ряду или в прилежащих рядах.
2. Теплообменник-реактор по п.1, отличающийся тем, что трубы имеют форму усеченного конуса.
3. Теплообменник-реактор по п.1, отличающийся тем, что поверхность корпуса выполнена вогнутой к своей вертикальной оси.
4. Теплообменник-реактор по п.1, отличающийся тем, что в центральной трубе расположены тепловые и другие датчики.
RU2011114750/06A 2011-04-14 2011-04-14 Теплообменник-реактор RU2451889C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114750/06A RU2451889C1 (ru) 2011-04-14 2011-04-14 Теплообменник-реактор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114750/06A RU2451889C1 (ru) 2011-04-14 2011-04-14 Теплообменник-реактор

Publications (1)

Publication Number Publication Date
RU2451889C1 true RU2451889C1 (ru) 2012-05-27

Family

ID=46231729

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114750/06A RU2451889C1 (ru) 2011-04-14 2011-04-14 Теплообменник-реактор

Country Status (1)

Country Link
RU (1) RU2451889C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639439C1 (ru) * 2016-10-10 2017-12-21 Ямилев Марат Мунаварович Теплообменник кожухотрубчатый с изогнутыми трубками

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108241A (en) * 1975-03-19 1978-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger and method of making
RU2372572C2 (ru) * 2007-11-26 2009-11-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменный аппарат (варианты)
RU2379100C2 (ru) * 2004-10-26 2010-01-20 Хальдор Топсеэ А/С Реактор и способ проведения эндотермических или экзотермических каталитических реакций
RU2392045C2 (ru) * 2007-05-29 2010-06-20 МАН ДВЕ ГмбХ Кожухотрубные реакторы с жидкостным охлаждением под давлением
RU101162U1 (ru) * 2009-12-31 2011-01-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменный аппарат

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108241A (en) * 1975-03-19 1978-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger and method of making
RU2379100C2 (ru) * 2004-10-26 2010-01-20 Хальдор Топсеэ А/С Реактор и способ проведения эндотермических или экзотермических каталитических реакций
RU2392045C2 (ru) * 2007-05-29 2010-06-20 МАН ДВЕ ГмбХ Кожухотрубные реакторы с жидкостным охлаждением под давлением
RU2372572C2 (ru) * 2007-11-26 2009-11-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменный аппарат (варианты)
RU101162U1 (ru) * 2009-12-31 2011-01-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменный аппарат

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639439C1 (ru) * 2016-10-10 2017-12-21 Ямилев Марат Мунаварович Теплообменник кожухотрубчатый с изогнутыми трубками

Similar Documents

Publication Publication Date Title
RU2234975C2 (ru) Проточный реактор с радиальным потоком и способ обработки жидкого потока реагентов
RU2717176C1 (ru) Трубчатый теплообменник
RU2298432C2 (ru) Теплообменник для изотермических химических реакторов
CA1122202A (en) Heat exchanger having improved tube layout
EP0382098B1 (en) Multi-tube type heat transfer apparatus
PL392560A1 (pl) Wymiennik ciepła
JP2006192430A (ja) 発熱性または吸熱性の気体反応を行う多管式反応器
RU2003122764A (ru) Каталитический реактор с теплообменником для проведения экзотермических и эндотермических химических реакций
US20170028373A1 (en) Isothermal tubular catalytic reactor
JP2004083430A (ja) 多管式反応器を用いた気相接触酸化方法
RU2005139156A (ru) Химический реактор
CN107921396B (zh) 管式等温催化反应器
PL219104B1 (pl) Wymiennik ciepła
RU2372572C2 (ru) Теплообменный аппарат (варианты)
JP2007192535A (ja) 熱交換器装置
JP2012525244A (ja) 恒温チューブ式反応器
RU2451889C1 (ru) Теплообменник-реактор
EP3621725B1 (en) Multi-bed catalytic converter with inter-bed cooling
RU109544U1 (ru) Теплообменник-реактор
RU2516998C2 (ru) Кожухотрубный теплообменник
RU2785973C2 (ru) Теплообменный аппарат
RU2534396C1 (ru) Теплообменник и вытеснитель используемый в нем
RU2701307C2 (ru) Радиально-сильфонный теплообменно-контактный аппарат
RU2621189C1 (ru) Радиально-трубный теплообменно-контактный аппарат
RU2662018C1 (ru) Трубчатый подогреватель

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 15-2012

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160415