RU101162U1 - Теплообменный аппарат - Google Patents

Теплообменный аппарат Download PDF

Info

Publication number
RU101162U1
RU101162U1 RU2009149746/06U RU2009149746U RU101162U1 RU 101162 U1 RU101162 U1 RU 101162U1 RU 2009149746/06 U RU2009149746/06 U RU 2009149746/06U RU 2009149746 U RU2009149746 U RU 2009149746U RU 101162 U1 RU101162 U1 RU 101162U1
Authority
RU
Russia
Prior art keywords
pipes
pipe
heat exchanger
heat
placement
Prior art date
Application number
RU2009149746/06U
Other languages
English (en)
Inventor
Виктор Михайлович Гуреев
Юрий Федорович Гортышов
Василий Степанович Краснянский
Марс Гиниятович Хуснуллин
Иван Федорович Калачев
Сэркан Абузарович Танрыверди
Алмаз Лутович Низамиев
Лут Бурганович Низамиев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева)
Закрытое акционерное общество "Татарский центр катализа Эрэфэн" (ЗАО "ТЦК Эрэфэн")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева), Закрытое акционерное общество "Татарский центр катализа Эрэфэн" (ЗАО "ТЦК Эрэфэн") filed Critical Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева)
Priority to RU2009149746/06U priority Critical patent/RU101162U1/ru
Application granted granted Critical
Publication of RU101162U1 publication Critical patent/RU101162U1/ru

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

1. Теплообменный аппарат, содержащий корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей в трубное и межтрубное пространства, трубные решетки, в отверстиях которых закреплены по концентрическим окружностям наклонно к оси аппарата трубы в форме усеченных конусов, вертикальную центральную трубу для размещения термопар, отличающийся тем, что трубы дополнительно наклонены путем смещения концов по окружностям их размещения на трубной решетке. ! 2. Теплообменный аппарат по п.1, отличающийся тем, что углы дополнительного наклона труб составляют 0,5-50,0°. ! 3. Теплообменный аппарат по п.1, отличающийся тем, что отверстия в трубных решетках выполнены под усеченные конусы одинаковой высоты сомкнутыми малыми вершинами.

Description

Полезная модель относится к теплоэнергетике, к теплообменной аппаратуре и может быть применена в энергетической, химической, нефтехимической и других отраслях промышленности, при осуществлении гетерогенно-каталитического окисления, дегидрирования и других процессов.
Известен кожухотрубный теплообменный аппарат, содержащий кожух цилиндрической формы, трубы с трубными решетками, поперечные решетки и перегородки винтообразной формы в межтрубном пространстве, днища и патрубки входа и выхода потоков, (а.с. СССР №345336, МПК F28D 7/16, опубликовано 1970 г.). Теплообменник сложный в изготовлении и обладает большой металлоемкостью.
Известен кожухотрубный теплообменник содержащий винтообразно закрученные теплообменные трубы овального профиля. При циркуляции теплообменивающихся сред в трубах и в межтрубном пространстве поддерживаются закрученные потоки посредством закрученной конструкции труб. (а.с. СССР №840662, МПК F28D 7/00 F28, F 1/06, опубликовано 1979 г.) Данный теплообменник может быть использован в ограниченных случаях, так как при больших скоростях потоков возможны усиление вибрации, ремонт и очистка труб достаточно проблематичны.
Известен реактор для каталитической очистки газообразных выбросов, содержащий в цилиндрическом корпусе ряд устройств, в том числе трубчатый теплообменник, трубы которого выполнены наклонными и расположены по круговому периметру корпуса, а также закреплены в трубных досках, отделяющих полости корпуса для очищаемого и очищенного газовых потоков. Газы, проходя через трубы, затем между трубами, должны подвергаться закручиванию из-за наклона труб, усиливая теплообмен между исходным и нагретым потоками. (Патент РФ 2299089, МПК B01D 53/86, F23G 7/06, опубликован 2005 г.). Недостатками являются неравномерные скорости в центральном и периферийном участках аппарата, а также нерациональное использование рабочего объема.
Известен теплообменный аппарат, наиболее близкий к заявляемому изобретению, который содержит корпус в виде усеченного конуса с днищами, патрубки ввода и вывода теплоносителей в трубное и межтрубное пространства, перегородки, трубные решетки, в отверстиях которых закреплены трубы в форме усеченных конусов под углом к центральной оси аппарата, а также одну центральную трубу, ось которой совпадает с осью аппарата (патент РФ №2372572, МПК F28D 15/00, опубликован 2009 г.).
Технический результат, на достижение которого направлена предлагаемая полезная модель, заключается в повышении интенсивности теплообмена при уменьшении металлоемкости, сопротивления потоку в межтрубном пространстве и упрощение конструкции.
Технический результат достигается тем, что в теплообменном аппарате, содержащем корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей в трубное и межтрубное пространства, трубные решетки, в отверстиях которых закреплены по концентрическим окружностям наклонно к оси аппарата трубы в форме усеченных конусов, вертикальную центральную трубу для размещения термопар, новым является то, что трубы дополнительно наклонены путем смещения концов по окружностям их размещения на трубной решетке.
Углы наклона труб составляют 0,5÷50 градусов, а отверстия в трубных решетках выполнены под усеченные конусы одинаковой высоты сомкнутыми вершинами.
На фиг.1 представлен разрез теплообменного аппарата с наклонными трубами; на фиг.2 - вид по поперечному сечению А-А; на фиг.3 представлен узел I - выполнение отверстий в трубных решетках.
Теплообменный аппарат (фиг.1) содержит корпус 1 в форме усеченного конуса с днищами 2 и 3, патрубки 4 и 5 ввода и вывода теплоносителя трубного пространства, патрубки 6 и 7 соответственно ввода и вывода теплоносителя межтрубного пространства, трубные решетки 8 и 9, в отверстиях которых закреплены трубы в форме усеченного конуса 10 и 11. В центральной трубе 11 в кожухе установлены термопары 12. Трубы 10 расположены под углом к центральной оси корпуса 1, расширяются в направлении его расширения, при этом угол наклона труб 10, расположенных ближе к центральной оси корпуса меньше углов наклонов труб 10, расположенных на периферии. Наклоны труб 10, полученные смещением концов труб 10 по окружностям их размещения на решетках 8 и 9, существенно больше наклона относительно оси аппарата. Величина углов дополнительных наклонов труб 10 составляет 0,5÷50 градусов. Смещению труб 10 могут быть подвергнуты как верхние, так и нижние концы, а также одновременно, но в противоположные направления. Форма корпуса 1 и труб 10, представляющая собой усеченные конусы, а также наличие наклона относительно оси аппарата, позволяют добиться дополнительного наклона труб 10 в направлении вокруг оси аппарата на достаточно большие углы относительно секущих плоскостей, проходящих через трубы 10 в радиальном направлении. В результате, не меняя расстояния между трубами 10, достигается оптимальное их расположение для протока теплоносителей в закрученном режиме в трубном и межтрубном пространствах. В целях упрощения сборки, отверстия в трубных решетках 8 и 9 выполнены под усеченные конусы одинаковой высоты сомкнутыми малыми вершинами. Корпус аппарата 1, трубный пучок и трубы 10 и 11, имеющие форму усеченного конуса, наличие наклонов труб 10 одновременно относительно оси аппарата и в направлении вокруг оси аппарата в совокупности позволили пропускать теплоносители в режиме закрученных потоков. При этом увеличивается интенсивность теплообмена без применения дополнительных устройств интенсификаторов, а также высота трубного пучка уменьшена по сравнению с высотой пучка в аппарате-прототипе.
Теплообменный аппарат работает следующим образом. При организации работы аппарата прямотоком, теплоноситель трубного пространства поступает через патрубок 4 и днище большого диаметра 2 в трубы 10 и 11 (фиг.1), затем, проходя в виде закрученного потока по этим трубам 10 и 11, отдавая или принимая тепло через стенки от теплоносителя межтрубного пространства, выходит через днище малого диаметра 3 и патрубок 5 из аппарата. Теплоноситель межтрубного пространства поступает в аппарат через патрубок 6, проходя в виде закрученного потока, отдает или принимает тепло через стенки труб 10 и 11 и выходит через патрубок 7.
По мере продвижения теплоносителей в область малых диаметров корпуса 1 и труб 10 и 11, разность температур между теплоносителями постепенно уменьшается; в то же время потоки сужаются, следовательно, скорости потоков увеличиваются. Это компенсирует уменьшающуюся интенсивность теплообмена, вызываемую уменьшением разности температур. В результате интенсивность теплообмена остается более постоянной на всей теплообменной поверхности. Одновременно, существенное отклонение от прямолинейного движения потока в трубах 10, вызванное изменениями углов атак на внутренние стенки, из-за наклонов труб 10, усиливает теплопередачу и приближает к значениям, достигаемым при использовании дополнительных устройств-интенсификаторов. Если высокая интенсивность теплообмена вблизи входа теплоносителей определялась высокой температурной разностью, то вблизи выхода - высокими скоростями потоков. В закрученном потоке теплоносителя меньше разность температур в радиальном направлении между центральным и пристенном участками труб 10, что весьма важно при низких теплопроводностях загруженного материала и потока. В заполненных высокопористыми ячеистыми материалами или твердыми катализаторами трубах 10 и 11, меньше вероятность неравномерного износа, накопления загрязнений и образования каналов наименьшего сопротивления.
При использовании теплообменного аппарата в качестве реактора экзотермического процесса, реакционная смесь начальной высокой концентрации реагирующих веществ подвергается через стенки труб 10 и 11 воздействию свежего теплоносителя межтрубного пространства, а также большему количеству катализатора на единице пути. Интенсивная реакция, сопровождаемая интенсивным тепловыделением, протекает в зоне интенсивной теплопередачи, вызванной большой разностью температур. При поступлении в область сужений реакционная масса в трубном пространстве обедняется реагирующими компонентами, скорость реакции уменьшается, тепловыделение должно было бы уменьшаться. Однако в этой области скорости теплоносителей увеличиваются, благоприятствуя сдвигу равновесия в сторону образования целевых продуктов, частота столкновений с частицами катализатора также увеличивается, уменьшенный диаметр труб способствует быстрой передаче тепла реакции. Вследствие этих факторов интенсивность реакции и тепловыделение остаются высокими, интенсивность теплообмена не снижается. В итоге происходит более полное и равномерное протекание процесса в аппарате. Более того, увеличение скорости реакционной массы вблизи выхода из аппарата позволяет избежать распада некоторой части целевого продукта, который усиливается при долгом пребывании в реакционной зоне. Ориентировочные расчеты показали увеличение выхода целевого продукта на 3,0-5,0% за счет оптимизации теплосъема.
В случае организации теплообмена прямотоком, теплоноситель трубного пространства поступает через патрубок 5 и днище 3 в трубы 10 и 11; при прохождении по трубам 10 и 11 происходит теплообмен с теплоносителем межтрубного пространства, затем, через днище 2 и патрубок 4 выходит из аппарата. Теплоноситель межтрубного пространства поступает через патрубок 7, проходит, закручиваясь и обмениваясь теплом с теплоносителем трубного пространства, между трубами 10 и 11 и выходит через патрубок 6 из аппарата. В процессах каталитического превращения углеводородов в начальный период реакции реакционная смесь богата сырьем, интенсивность реакции и теплопоглощение высоки. Подача свежего теплоносителя в область высоких скоростей обеих теплоносителей (в область входа сырья), а также закрученность потоков компенсируют начальное теплопоглощение. По мере продвижения реакционной смеси вдоль аппарата, она обедняется сырьем, при этом поглощение тепла уменьшается. Постепенно начинает влиять увеличение катализаторной массы в единице длины труб 10 и 11. Образование целевых продуктов остается на прежнем уровне. Использование предлагаемого аппарата в качестве реактора дегидрирования по этой схеме позволяет избежать затухания реакции и увеличивать выход целевых продуктов на 5-7 процентов, а также несколько снизить начальную температуру нагревающего теплоносителя.
При организации теплообмена противотоком нагревающийся поток поступает через патрубок 5 и днище 3 в трубы 10 и 11 и выходит через днище 2 и патрубок 4. Нагревающий поток поступает через патрубок 6, проходя между трубами 10 и 11, выходит через патрубок 7. Данная схема предпочтительна в случае использования аппарата в качестве испарителя или кипятильника. В этом случае, испаряющийся теплоноситель проходит по трубам 10 и 11, а испаряющий - по межтрубному пространству. По мере приближения этого потока в область расширений, он нагревается до кипения за счет все более увеличивающегося повышения теплосодержания испаряющего теплоносителя и пути прохождения. У выхода из трубок общая площадь испарения или кипения увеличивается за счет расширения труб 10 и 11. Следовательно, процесс парообразования и теплообмена происходит более интенсивно. Дополнительное тепло, необходимое для парообразования, компенсируется начальной высокой температурой испаряющего теплоносителя и закрученных потоков.
Начальное соприкосновение теплоносителя в межтрубном пространстве с поверхностями периферийных труб 10 происходит под углом гораздо меньшим 90 градусов. Поток быстрее и с меньшим сопротивлением по сравнению с сопротивлением в аппарате-прототипе, распределяется в объеме около входа и выхода, что позволяет избежать местных перегревов. Это в сочетании с закручиванием потока, обеспечивает более равномерную его плотность, стабильную турбулентность и уменьшение сопротивления.
Уменьшение высоты трубного пучка позволяет уменьшить объем межтрубного пространства, что приводит к увеличению объемного расхода теплоносителя при неизменном начальном расходе в межтрубном пространстве и способствует более интенсивному теплообмену и осуществлению высокотемпературных процессов, кроме того, уменьшаются габариты теплообменного аппарата и следовательно металлоемкость.

Claims (3)

1. Теплообменный аппарат, содержащий корпус в форме усеченного конуса с днищами, патрубки ввода и вывода теплоносителей в трубное и межтрубное пространства, трубные решетки, в отверстиях которых закреплены по концентрическим окружностям наклонно к оси аппарата трубы в форме усеченных конусов, вертикальную центральную трубу для размещения термопар, отличающийся тем, что трубы дополнительно наклонены путем смещения концов по окружностям их размещения на трубной решетке.
2. Теплообменный аппарат по п.1, отличающийся тем, что углы дополнительного наклона труб составляют 0,5-50,0°.
3. Теплообменный аппарат по п.1, отличающийся тем, что отверстия в трубных решетках выполнены под усеченные конусы одинаковой высоты сомкнутыми малыми вершинами.
Figure 00000001
RU2009149746/06U 2009-12-31 2009-12-31 Теплообменный аппарат RU101162U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009149746/06U RU101162U1 (ru) 2009-12-31 2009-12-31 Теплообменный аппарат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009149746/06U RU101162U1 (ru) 2009-12-31 2009-12-31 Теплообменный аппарат

Publications (1)

Publication Number Publication Date
RU101162U1 true RU101162U1 (ru) 2011-01-10

Family

ID=44055068

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009149746/06U RU101162U1 (ru) 2009-12-31 2009-12-31 Теплообменный аппарат

Country Status (1)

Country Link
RU (1) RU101162U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451889C1 (ru) * 2011-04-14 2012-05-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменник-реактор

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451889C1 (ru) * 2011-04-14 2012-05-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Теплообменник-реактор

Similar Documents

Publication Publication Date Title
KR870000086B1 (ko) 반응기
RU2234975C2 (ru) Проточный реактор с радиальным потоком и способ обработки жидкого потока реагентов
JP4651889B2 (ja) 発熱または吸熱不均一反応のための等温反応器
RU2638217C1 (ru) Компактный реактор для получения синтетических углеводородов в процессе Фишера-Тропша, способ активации катализатора Фишера-Тропша и способ осуществления синтеза Фишера-Тропша в компактном варианте с его использованием
RU2015135889A (ru) Каталитический реактор с излучающей стенкой и способ осуществления химической реакции в таком реакторе
CN103990420A (zh) 列管式固定床反应器及其应用
RU2372572C2 (ru) Теплообменный аппарат (варианты)
US20170028373A1 (en) Isothermal tubular catalytic reactor
RU2552623C2 (ru) Теплообменник для охлаждения горячих газов и теплообменная система
US5262130A (en) Fixed bed chemical reactor
SU1205750A3 (ru) Устройство дл проведени реакций частичного окислени органических соединений в паровой фазе
JP2002233747A (ja) 発熱若しくは吸熱不均一反応のための反応器
JPS60106527A (ja) 二重管式発熱反応器
RU101162U1 (ru) Теплообменный аппарат
RU2457415C2 (ru) Теплообменный аппарат
CN105413592A (zh) 一种组合式固定床反应器及由其形成的装置
RU2332246C1 (ru) Пленочный тепломассообменный аппарат
CN104959084B (zh) 一种浆态床反应器
RU85221U1 (ru) Теплообменный аппарат (варианты)
US11667728B1 (en) Reactor and processes for endothermic reactions at high temperatures
RU2462287C1 (ru) Десублимационный аппарат
RU66974U1 (ru) Каталитическая система для осуществления теплонапряженных гетерогенных реакций
RU106140U1 (ru) Кожухотрубный реактор
CN115321480B (zh) 一种绝热控温型变换炉及水煤气变换工艺
RU2588617C1 (ru) Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов и реакторная группа для его осуществления

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20170101