RU2451096C2 - Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа - Google Patents

Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа Download PDF

Info

Publication number
RU2451096C2
RU2451096C2 RU2010114373/02A RU2010114373A RU2451096C2 RU 2451096 C2 RU2451096 C2 RU 2451096C2 RU 2010114373/02 A RU2010114373/02 A RU 2010114373/02A RU 2010114373 A RU2010114373 A RU 2010114373A RU 2451096 C2 RU2451096 C2 RU 2451096C2
Authority
RU
Russia
Prior art keywords
iron
mixture
ore
briquettes
clay
Prior art date
Application number
RU2010114373/02A
Other languages
English (en)
Other versions
RU2010114373A (ru
Inventor
Владимир Стефанович Литвиненко (RU)
Владимир Стефанович Литвиненко
Владимир Леонидович Трушко (RU)
Владимир Леонидович Трушко
Регина Эдуардовна Дашко (RU)
Регина Эдуардовна Дашко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет"
Priority to RU2010114373/02A priority Critical patent/RU2451096C2/ru
Publication of RU2010114373A publication Critical patent/RU2010114373A/ru
Application granted granted Critical
Publication of RU2451096C2 publication Critical patent/RU2451096C2/ru

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к подготовке железорудного материала в виде брикетов для процесса прямого восстановления железа. Железорудный материал и 3-5% глины смешивают, осуществляют обработку полученной смеси водным раствором хлорида железа с добавкой энзима в количестве, обеспечивающем получение смеси с влажностью 15-20%, прессование и последующую сушку. В качестве железорудного материала используют смесь обогащенных грохочением 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды. Изобретение позволит повысить прочность получаемых брикетов при сохранении высокого содержания железа. 2 з.п. ф-лы, 3 пр.

Description

Изобретение относится к области металлургии, в частности к подготовке железорудного материала в виде брикетов для процесса прямого восстановления железа.
Известен «Способ брикетирования железной окалины (заявка на изобретение RU №2001119151, д.пр. 10.07.2001), включающий смешивание окалины со связующим веществом, прессование в виде тел произвольной формы, обжиг и использование в качестве компактного шихтового материала для производства металла. В качестве связующего вещества используют молотый плавиковый шпат фракцией до 3 мм в количестве не менее 1% и водный раствор жидкого стекла в количестве 1-25% сверх 100% брикетируемой массы. Недостатком способа является невысокая прочность полученных брикетов.
Известен «Способ брикетирования железосодержащих отходов в виде окалины для плавки» (патент RU №2321647, д.пр. 06.07.2006), включающий смешивание предварительно подготовленной окалины с измельченным углеродсодержащим материалом и связующим, включающим кремнесодержащий материал в виде спеченного и измельченного керамзита, карбонат щелочного металла и гидрокарбонат щелочного металла. Осуществляют обработку полученной смеси раствором, включающим жидкое стекло, кремнефтористый натрий (отвердитель) и наполнитель в виде пылевидного материала, например керамзитовой пыли, прессование и последующую сушку. При использовании замасленной окалины ее предварительно обрабатывают силикатно-известковым раствором, содержащим известь в количестве 0,5-2,5 мас.% на 1 мас.% масла, которую добавляют к водному раствору жидкого стекла плотностью 1100-1150 кг/м3, при их соотношении 1:2-1:3 с последующим гранулированием и сушкой при температуре от 200 до 250°C.
Недостатками способа являются использование токсичного кремнефтористого натрия, добавляемого в качестве отвердителя для жидкого стекла при обработке смеси, что не отвечает экологическим требованиям при изготовлении брикетов, а также невысокая прочность полученных брикетов.
Известен способ получения брикетов из металлургического сырья (Авт.св. SU №564347, д.пр. 13.02.76), включающий введение органического связующего, смешивание компонентов шихты, прессование и термообработку брикетов. В качестве связующего используют унифицированную карбамидную смолу 0,5-5% от сухого веса шихты, а термообработку ведут при 125-175°C в течение 30-180 мин. Недостатком способа является использование высокотоксичной карбамидной смолы.
Известен способ подготовки шихтового материала в виде брикетов к плавке (патент RU №2154680, д.пр. 05.03.1999), взятый за прототип, включающий смешивание предварительно подготовленных железосодержащих отходов металлургического производства с тонкоизмельченным углеродосодержащим материалом в количестве 15-60% по углероду от массы отходов и связующим, обработку полученной смеси водным раствором жидкого стекла, прессование и последующую сушку. В качестве связующего используют механическую смесь - суглинка, глины или полевого шпата и карбоната натрия. Причем смесь подвергают совместному размолу до фракции 0,85 мм и менее.
Недостатком способа является то, что получаемые брикеты недостаточно прочны, а также влагонеустойчивы, что требует создания специальных условий хранения и загрузки в плавильные печи.
Задачей изобретения является создание способа, позволяющего получить брикеты с повышенной прочностью и сохранением в них высокого содержания железа из природного тонкодисперсного железорудного материала.
Технический результат заключается в повышении прочности получаемых брикетов и сохранении в них высокого содержания железа.
Технический результат достигается тем, что в способе подготовки железорудного материала в виде брикетов, включающем смешивание предварительно подготовленного железорудного материала и глины в качестве связующего, обработку полученной смеси водным раствором, прессование и последующую сушку, в качестве железорудного материала используют смесь обогащенных грохочением 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды, к приготовленной смеси добавляют глину 3-5% от массы железорудного материала, а в качестве водного раствора используют водный раствор хлорида железа с добавкой энзима, полученного биотехнологическим способом, в количестве, обеспечивающем получение смеси с влажностью 15-20%.
В качестве связующего может быть использована глина группы монтмориллонита.
Прессование может быть проведено при давлении 50-55 МПа, а последующая сушка может быть проведена при температуре 25-30°C в течение не менее 12 часов.
Использование в качестве предварительно подготовленного железорудного материала смеси обогащенных грохочением 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды позволяет получить прочные брикеты с высоким содержанием железа.
Смесь железослюдковомартитовой и гидрогематитовой руд является смесью природного тонкодисперсного железорудного материала для выплавки железа с содержанием железа в них более 65%. Железослюдковомартитовая руда представляет собой природный тонкодисперсный порошок с низкой прессуемостью. Гидрогематитовая руда обладает хорошими связующими свойствами за счет присутствия в ее составе гидроксида железа и небольшого количества глинистой составляющей (до 1%). Гидрогематитовая руда формирует структурные связи в брикете. Предварительная подготовка железорудного материала, а именно приготовление смеси обогащенных грохочением 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды повышает прессуемость смеси, а значит и прочность получаемого брикета с повышенным содержанием железа. Добавка гидрогематитовой руды менее 10 мас.% приводит к недостаточной прессуемости брикета и недостаточной его прочности, а добавка более 15 мас.% нецелесообразна, т.к. технология получения железа из этой руды более сложная, чем из железослюдковомартитовой руды.
Предварительное обогащение железорудного материала грохочением обеспечивает удаление обломков руды, которые имеют пониженное содержание железа, и пустой породы. Приготовление смеси обогащенных грохочением железослюдковомартитовой и гидрогематитовой руды обеспечивает равномерное распределение связывающих частиц гидрогематитовой руды между частицами железослюдковомартитовой руды. Предварительная обработка железорудного материала повышает прессуемость смеси и прочность брикета. При этом поддерживается высокое содержание железа в брикете.
К приготовленной смеси железорудного материала добавляют глину в качестве связующего, 3-5% от массы железорудного материала. Используют глину с высокой физико-химической активностью, в частности глину группы монтмориллонита. Использование глины группы монтмориллонита в качестве связующего при изготовлении брикетов позволяет уменьшить общее содержание глинистого материала без снижения прочности брикета и содержания в нем железа.
Смешивание предварительно подготовленного железорудного материала (смеси 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды руды) и глины в качестве связующего формирует прочность структурных связей в брикете с повышенным содержанием железа. Смешивание глины и смеси из дисперсных железных руд позволяет достигнуть равномерное распределение частиц сухой глины между фракциями железорудных материалов и усиливает связующее действие частиц глины. Это также влияет на повышение прочности брикета. Добавление глины менее 3% от массы руды не дает нужной прочности брикета, более 5% уменьшает общее количество железа в брикете.
Обработка приготовленной смеси железорудных материалов и глины водным раствором в количестве, обеспечивающем получение смеси с влажностью 15-20%, способствует равномерному перемешиванию всех компонентов, формированию структурных связей и лучшему формованию брикетов, что увеличивает прочность брикетов с повышенным содержанием железа. Взаимодействие водного раствора и глины при перемешивании способствует равномерному распределению частиц глины на фракциях железорудных материалов, что улучшает скольжение частиц железорудных материалов относительно друг друга и улучшает равномерность распределения всех фракций. Влажность смеси менее 15% затрудняет перемешивание компонентов смеси и формование брикетов. Влажность смеси более 20% избыточна, снижает формуемость смеси.
Использование водного раствора хлорида железа компенсирует потери железа, возникающие в результате добавления к железорудному материалу глины (наличие катиона железа в растворе), и обеспечивает формирование дополнительных структурных связей в брикете. Также водный раствор хлорида железа обладает низкой коагулирующей способностью, т.е. способствует получению смеси без образования комков, что способствует равномерному перемешиванию компонентов смеси и повышению прочности брикетов с повышенным содержанием железа.
Добавка энзима, полученного биотехнологическим способом, к водному раствору хлорида железа приводит к сорбции энзима на тонкодисперсных частицах железорудного материала и глины. Энзимы или ферменты относятся к высокомолекулярным белкам, в полимерной структуре которых имеются полости, включающие гидрофобные и гидрофильные радикалы и группировки. В результате растворения энзима в воде уменьшается поверхностное натяжение воды, т.к. энзимы обладают свойствами ПАВ и действуют как гидрофобизаторы. Изменение структуры воды при гидрофобизации смеси приводит к интенсивному удалению воды при ее прессовании и созданию наиболее плотной упаковки брикета, что способствует усилению молекулярного и электростатического взаимодействия между тонкодисперсными частицами. За счет особенностей структуры энзимов, полученных биотехнологическим способом, и их сорбции на тонкодисперсных частицах формируются прочные водородные связи. Концентрация энзима не приводит к снижению содержания железа в брикете. Все это обеспечивает повышение прочности брикетов с повышенным содержанием железа.
Использованы энзимы, полученные биотехнологическим способом, которые известны как гидрофобизаторы или стабилизаторы грунта и дорожных масс для строительства дорог. Гидрофобизаторы грунта придают плотность и прочность дорожному покрытию (ТУ 2.7-45.1- 3450778-196-201. Почвы и смеси органо-минеральные, обработанные ферментом Perma-Zyme 11x и цементом). Также они понижают усилия, необходимые для уплотнения-прессования. Использованы, в частности, препараты (энзимы), полученные биотехнологическим способом из растительного сырья, а именно путем ферментативного расщепления свеклы с использованием микроорганизмов, в частности препарат Perma-Zyme 11Х («Пермо-займ») производства США и «Дорзин» производства Украины. Эти энзимы относятся к чистым белкам микробного происхождения, полученным биотехнологическим способом.
Прессование брикетов при давлении 50-55 МПа позволяет получить прочные брикеты за счет уменьшения влажности брикета и формирования структурных связей. Значение оптимального давления получено экспериментально. Прессование при давлении прессования менее 50 МПа не позволяет получить заданную прочность брикетов. При давлении прессования более 55 МПа происходит растрескивание брикетов за счет их дополнительного обезвоживания.
Последующая сушка при температуре 25-30°C в течение 12-14 часов способствует формированию дополнительных структурных связей и не требует специального сложного оборудования. Сушка при температуре ниже 25°C значительно увеличивает время сушки. Сушка при температуре выше 30°C приводит к термической усадке брикетов и образованию трещин. Сушка в течение 12-14 часов удаляет часть воды из смеси и позволяет достичь оптимального соотношения влажности и прочности брикета. Уменьшение количества воды в брикете сопровождается сближением частиц и агрегатов смеси и усилению молекулярного и электростатического взаимодействия между ними, в том числе за счет перехода в твердую цементирующую фазу части соли хлорида железа, а также формирование водородных связей. Это повышает прочность брикета с повышенным содержанием железа. За счет удаления воды содержание железа в брикете также повышается. Сушка менее 12 часов приведет к недостаточной прочности брикета, сушка более 14 часов приводит к растрескиванию брикета и потере его прочности.
Способ осуществляют следующим образом.
1. Предварительная подготовка железорудного материала. Железослюдковомартитовую и гидрогематитовой руду предварительно обогащают грохочением на типовом грохоте для удаления крупных кусков породы с размером частиц более 2 мм с низким содержанием железа. Затем приготавливают смесь в соотношении 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды.
2. К полученному количеству железорудного материала добавляют сухой глины 3-5% от массы железорудного материала. Сухую смесь перемешивают.
3. Приготавливают водный раствор хлорида железа из расчета 10 г хлорида железа на 1 л воды.
В раствор вводят энзим, полученный биотехнологическим способом, из расчета 2 мл на 1 л воды. Общее количество водного раствора обеспечивает получение смеси с влажностью 15-20%.
4. Готовый водный раствор хлорида железа с добавкой энзима вводят в сухую смесь и перемешивают до однородного состояния. Операции смешивания осуществляют в типовом смесителе.
5. Готовую смесь прессуют под давлением 50-55 МПа с выдержкой 15 мин. Режим уплотнения - либо статическое давление, либо динамическое (переменное). Влажность брикета после прессования 10-11%. Прессование осуществляют на типовом прессе. Полученные брикеты сушат при температуре 25-30°C в течение 12-14 ч на воздухе.
Пример 1 (лабораторный). Смесь железослюдковомартитовой и гидрогематитовой руд - богатых железных руд рыхлого типа с содержанием железа более 65% Яковлевского рудника Белгородской группы месторождений Курской магнитной аномалии. Предварительно просеянную через сита с размером отверстия +2 до крупности менее 2 мм руду смешивают в механическом смесителе в соотношении 85 мас.% железослюдковомартитовой руды и 15 мас.% гидрогематитовой руды. Затем в смеситель вводят сухую глину с высокой физико-химической активностью из группы монтмориллонита в количестве 5% и сухую смесь перемешивают. Отдельно готовится водный раствор хлорного железа плотностью 10 г на 1 л воды с добавкой энзима 2 мл на 1 л воды. В качестве энзима микробного происхождения, полученного биотехнологическим способом, использован препарат Perma-Zyme 11X (Пермазайм) (США), высококонцентрированный фермент. Раствор добавляют к сухой смеси и перемешивают.Полученную смесь прессуют при давлении 50-55 МПа. Готовые брикеты сушат 12 часов при 30°C. Получены брикеты диаметром 5,0-5,8 см и высотой 3-4 см. Плотность брикета после сушки 3,49-3,53 г/см3. Брикеты имеют прочность на сжатие 4,5-6,2 МПа. В брикете установлено уменьшение общего количества железа по сравнению с исходной рудой не более 2%.
Пример 2. Смесь железослюдковомартитовой и гидрогематитовой руд Яковлевского рудника Белгородской группы месторождений Курской магнитной аномалии. Предварительно просеянную через сита с размером отверстия +2 до крупности менее 2 мм руду смешивают в механическом смесителе в соотношении 90 мас.% железослюдковомартитовой руды и 10 мас.% гидрогематитовой руды. Затем в смеситель вводят сухую глину с высокой физико-химической активностью из группы монтмориллонита в количестве 5% и сухую смесь перемешивают. Отдельно готовится водный раствор хлорного железа плотностью 10 г на 1 л воды с добавкой энзима 2 мл на 1 л воды. В качестве энзима микробного происхождения использован препарат «Дорзин» производства Украины. Раствор добавляют к сухой смеси и перемешивают. Полученную смесь прессуют при давлении 50-55 МПа. Готовые брикеты сушат 12 часов при 30°C. Получены брикеты диаметром 5,0-5,8 см и высотой 3-4 см. Плотность брикета после сушки 3,49-3,53 г/см3. Брикеты имеют прочность на сжатие 4,2-6,7 МПа. В брикете установлено уменьшение общего количества железа по сравнению с исходной рудой не более 2%.
Пример 3. Смесь железослюдковомартитовой и гидрогематитовой руд Яковлевского рудника Белгородской группы месторождений Курской магнитной аномалии. Смешивают в соотношении 90 мас.% железослюдковомартитовой руды и 10 мас.% гидрогематитовой руды. Затем в смеситель вводят сухую глину с высокой физико-химической активностью из группы монтмориллонита в количестве 3% и сухую смесь перемешивают. Отдельно готовится водный раствор хлорного железа плотностью 10 г на 1 л воды с добавкой энзима 2 мл на 1 л воды. В качестве энзима микробного происхождения использован препарат Perma-Zyme 11X (Пермазайм) (США), высококонцентрированный фермент. Раствор добавляют к сухой смеси и перемешивают. Полученную смесь прессуют при давлении 50-55 МПа. Готовые брикеты сушат 12 часов при 30°C. Получены брикеты диаметром 5,0-5,8 см и высотой 3-4 см. Плотность брикета после сушки 3,49-3,53 г/см3. Брикеты имеют прочность на сжатие 4,4-6,0 МПа. В брикете установлено уменьшение общего количества железа по сравнению с исходной рудой не более 2%.
После сушки брикеты подают в металлургический агрегат для дальнейшей переработки. Таким образом, способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа позволяет получить брикет из природного тонкодисперсного железорудного материала с повышенной прочностью и высоким содержанием железа.

Claims (3)

1. Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа, включающий смешивание предварительно подготовленного железорудного материала и глины в качестве связующего, обработку полученной смеси водным раствором, прессование и последующую сушку, отличающийся тем, что в качестве предварительно подготовленного железорудного материала используют смесь обогащенных грохочением 85-90 мас.% железослюдковомартитовой руды и 10-15 мас.% гидрогематитовой руды, к приготовленной смеси добавляют глину 3-5% от массы железорудного материала, а в качестве водного раствора используют водный раствор хлорида железа с добавкой энзима в количестве, обеспечивающем получение смеси с влажностью 15-20%.
2. Способ по п.1, отличающийся тем, что в качестве связующего используют глину группы монтмориллонита.
3. Способ по п.1 и 2, отличающийся тем, что прессование проводят при давлении 50-55 МПа, а последующую сушку проводят при температуре 25-30°C в течение не менее 12 ч.
RU2010114373/02A 2010-04-12 2010-04-12 Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа RU2451096C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010114373/02A RU2451096C2 (ru) 2010-04-12 2010-04-12 Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010114373/02A RU2451096C2 (ru) 2010-04-12 2010-04-12 Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа

Publications (2)

Publication Number Publication Date
RU2010114373A RU2010114373A (ru) 2011-10-20
RU2451096C2 true RU2451096C2 (ru) 2012-05-20

Family

ID=44998790

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010114373/02A RU2451096C2 (ru) 2010-04-12 2010-04-12 Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа

Country Status (1)

Country Link
RU (1) RU2451096C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU45302A1 (ru) * 1934-05-07 1935-12-31 Д.М. Львов Способ брикетировани колошниковой пыли, пылеватой руды, мелкого кокса и т.п.
WO1997016573A1 (en) * 1995-11-01 1997-05-09 Westralian Sands Limited Agglomeration of iron oxide waste materials
RU2093592C1 (ru) * 1993-06-21 1997-10-20 Фоест-Альпине Индустрианлагенбаус ГмбХ Способ производства холоднопрессованных брикетов из железосодержащих отходов металлургического производства
RU2154680C1 (ru) * 1999-03-05 2000-08-20 Московский государственный вечерний металлургический институт Способ подготовки шихтового материала в виде брикетов к плавке

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU45302A1 (ru) * 1934-05-07 1935-12-31 Д.М. Львов Способ брикетировани колошниковой пыли, пылеватой руды, мелкого кокса и т.п.
RU2093592C1 (ru) * 1993-06-21 1997-10-20 Фоест-Альпине Индустрианлагенбаус ГмбХ Способ производства холоднопрессованных брикетов из железосодержащих отходов металлургического производства
WO1997016573A1 (en) * 1995-11-01 1997-05-09 Westralian Sands Limited Agglomeration of iron oxide waste materials
RU2154680C1 (ru) * 1999-03-05 2000-08-20 Московский государственный вечерний металлургический институт Способ подготовки шихтового материала в виде брикетов к плавке

Also Published As

Publication number Publication date
RU2010114373A (ru) 2011-10-20

Similar Documents

Publication Publication Date Title
CN106477929A (zh) 一种强化再生骨料的制备方法及强化再生骨料混凝土
Akinwumi et al. Effects of steel slag addition on the plasticity, strength, and permeability of lateritic soil
CN101638924B (zh) 一种石灰石尾矿砖及其制备方法
CN112374843B (zh) 一种利用湿磨钢渣矿浆制备矿山充填混凝土的方法
CN113773014B (zh) 一种金尾矿混凝土及其制备方法
CN104163596B (zh) 一种镍铁矿渣路面透水砖及其制备方法
CN1880258A (zh) 全高钛重矿渣混凝土
CN103524090B (zh) 一种建筑废料制透水砖的方法
CN108046840A (zh) 一种稻草秸秆增强型泡沫混凝土及其制备方法
CN101654737B (zh) 一种钼尾渣、硫酸渣复合铁矿球团及其制备方法
CN107382216A (zh) 掺加铁尾矿与建筑垃圾的高强混凝土及其制备方法
CN111908862A (zh) 一种可再生环保型透水混凝土及其制备方法
CN112537925A (zh) 一种应用机制砂的高性能混凝土
CN114956628A (zh) 一种高强度磷石膏基再生骨料及其制备方法
CN111732356A (zh) 一种低毒磷石膏基高强人造骨料及其制备方法
CN102219461A (zh) 粒化高炉矿渣粉稳定钢渣类混合料
CN111410496A (zh) 一种道路基层材料及其制备方法
CN101880153B (zh) 一种稀土金属改性煤矸石生产烧结砖的方法
Dabakuyo et al. Mechanical properties of compressed earth block stabilized with sugarcane molasses and metakaolin-based geopolymer
CN1264994C (zh) 一种炼钢尘泥球团化渣剂制造工艺
CN104446211B (zh) 一种利用预拌混凝土废浆制得的砌墙砖
CN106587675B (zh) 一种高活性镍渣基水泥混合材及其制备方法
CN105884277B (zh) 一种利用重金属污染土制备混凝土的方法
JP2012219479A (ja) 鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料
RU2451096C2 (ru) Способ подготовки железорудного материала в виде брикетов для процесса прямого восстановления железа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150413

NF4A Reinstatement of patent

Effective date: 20160420

MM4A The patent is invalid due to non-payment of fees

Effective date: 20210413