RU2450402C2 - Способ релейной защиты энергообъекта - Google Patents

Способ релейной защиты энергообъекта Download PDF

Info

Publication number
RU2450402C2
RU2450402C2 RU2010105455/07A RU2010105455A RU2450402C2 RU 2450402 C2 RU2450402 C2 RU 2450402C2 RU 2010105455/07 A RU2010105455/07 A RU 2010105455/07A RU 2010105455 A RU2010105455 A RU 2010105455A RU 2450402 C2 RU2450402 C2 RU 2450402C2
Authority
RU
Russia
Prior art keywords
modes
modules
group
type
simulation models
Prior art date
Application number
RU2010105455/07A
Other languages
English (en)
Other versions
RU2010105455A (ru
Inventor
Юрий Яковлевич Лямец (RU)
Юрий Яковлевич Лямец
Ирина Сергеевна Подшивалина (RU)
Ирина Сергеевна Подшивалина
Сергей Владимирович Иванов (RU)
Сергей Владимирович Иванов
Андрей Николаевич Подшивалин (RU)
Андрей Николаевич Подшивалин
Юрий Вячеславович Романов (RU)
Юрий Вячеславович Романов
Original Assignee
Общество с ограниченной ответственностью "Исследовательский центр "Бреслер"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" filed Critical Общество с ограниченной ответственностью "Исследовательский центр "Бреслер"
Priority to RU2010105455/07A priority Critical patent/RU2450402C2/ru
Publication of RU2010105455A publication Critical patent/RU2010105455A/ru
Application granted granted Critical
Publication of RU2450402C2 publication Critical patent/RU2450402C2/ru

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и универсализация способа. Способ заключается в том, что релейная защита энергообъекта осуществляется путем построения ее из групп модулей, объединенных внутри группы по схеме И, а групп между собой - по схеме ИЛИ, преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения модулей от имитационных моделей первого типа, воспроизводящих контролируемые режимы энергообъекта, и от имитационных моделей второго типа, воспроизводящих режимы, альтернативные контролируемым, при этом группы модулей обучают одну за другой в заданной последовательности, каждую группу - новым множеством режимов имитационных моделей первого типа, расширяющим по мере своего увеличения области срабатывания всех модулей обучаемой группы, и увеличивают каждое новое множество режимов до тех пор, пока не произойдет срабатывания обучаемой группы в каком-либо одном режиме из всего множества режимов имитационных моделей второго типа. 9 ил.

Description

Изобретение относится к электроэнергетике и электротехнике и может быть использовано во всех видах защит, преимущественно микропроцессорных. Оно относится к тому направлению в релейной защите, основы которого были заложены изобретением [1], где впервые поставлена и решена задача объединения информации, поступающей из различных фаз наблюдаемого объекта. Актуальность технических решений, связанных с объединением информации, значительно возросла с появлением микропроцессорной техники. Изобретения [2, 3] решили задачу объединения априорной информации о наблюдаемом объекте с текущей информацией о двух режимах: первый режим короткого замыкания, второй - тот, что предшествовал короткому замыканию. Однако область применения этих технических решений была ограничена линиями передачи.
Более общее решение - способ релейной защиты произвольного энергообъекта [4], в котором удалось объединить априорную информацию об энергообъекте с наблюдаемыми величинами путем совместного преобразования в двумерные сигналы и задания характеристик защиты на плоскостях двумерных сигналов. Недостатком данного предложения стало предварительное разбиение плоскостей на ячейки, кодирование групп ячеек и выбивание тех кодов, при которых имеет место срабатывание в режимах, альтернативных контролируемым. Контролируемые режимы (α-режимы) - те, в которых защита призвана срабатывать. Альтернативные режимы (β-режимы) - те, срабатывание в которых означает нежелательное действие защиты. Как бы тщательно ни проводилось обучение защиты, нет гарантии, что не будет пропущен какой-либо из кодов срабатывания в альтернативном режиме, а это означает риск неселективного поведения защиты. Существует и бескодовый способ защиты, но опять-таки с ограниченным применением для линий электропередачи [5].
Дальнейшее развитие данного направления пошло по пути разделения функций срабатывания релейной защиты в контролируемых режимах и функций блокирования в альтернативных режимах [6], а также введения операции обучения реле - модулей микропроцессорной защиты [7]. Однако в перечисленных источниках новые технические операции еще не составляли единого целого.
Наиболее эффективен способ релейной защиты, представленный в [8]. Согласно ему релейная защита предстает в виде системы, обучаемой учителями - имитационными моделями защищаемого энергообъекта. Используются имитационные модели двух типов. Первые воспроизводят α-режимы. Вторые воспроизводят β-режимы, и тогда принимаются меры, предотвращающие срабатывание защиты. Релейная защита компонуется модулями двух типов: первые формируют сигнал на срабатывание, а вторые - на блокирование защиты. В обсуждаемом способе, являющемся прототипом нового технического решения, принципиальную роль играет разграничение модулей (реле) в соответствии с принимаемой с самого начала иерархией. Такая необходимость накладывает существенные ограничения на функциональные возможности способа, снижает его общность, делая менее универсальным, чем могло бы быть, если бы все модули одного типа, образующие единую группу, были равноправны и вносили свой предельно возможный вклад в распознавание аварийной ситуации на энергообъекте.
Цель изобретения заключается в расширении функциональных возможностей и универсализации способа релейной защиты энергообъекта.
Поставленная цель достигается тем, что в известный способ защиты энергообъекта путем построения ее из групп (семейств) модулей внесены принципиальные изменения в части его структуры и операций обучения модулей и групп в целом. Как и в прототипе, информация о состоянии энергообъекта преобразуется в двумерные сигналы. Каждый сигнал отображается на его уставочной плоскости. Группы модулей обучаются от разных имитационных моделей. Первые модели воспроизводят контролируемые режимы энергообъекта, например режимы короткого замыкания в контролируемой зоне. Вторые модели воспроизводят альтернативные режимы. Обучение защиты заключается в отображении множеств режимов на плоскостях двумерных сигналов и в определении границ областей отображений. Но в отличие от прототипа все модули обучаются параллельно, без разделения на основной и дополнительные. Модули обучаются нарастающим множеством контролируемых режимов при постоянной проверке, и в этом заключается весьма существенный признак изобретения, - всеми альтернативными режимами с тем, чтобы узнать, не вызывают ли они срабатывания всех без исключения модулей, входящих в группу. Выходы всех равноправных модулей группы объединены по схеме И, а выходы всех групп - по схеме ИЛИ.
Изобретение инвариантно по отношению к имитационным моделям и к диапазонам изменения варьируемых параметров.
На фиг.1 изображена структурная схема обучения группы модулей релейной защиты, осуществляемого от имитационных моделей контролируемых и альтернативных режимов. Контролируемые режимы задаются множеством значений варьируемых параметров Gα, а альтернативные режимы - областью Gβ значений параметров соответствующей модели. На фиг.2 показана структурная схема, реализующая предлагаемый способ релейной защиты. Вектор z=[z1,z2,…zn]T обозначает замер, т.е. совокупность двумерных сигналов z1, z2, … zn, поступающих на измерительные органы (модули) релейной защиты. Фиг.3-8 иллюстрируют операции обучения одной из групп модулей. Группе присвоен верхний индекс «k», рядом с которым указываются номера этапов обучения, начиная с первого (фиг.3) и вплоть до пятого (фиг.8). Фиг.9 иллюстрирует заключительную операцию задания уставочных областей (областей срабатывания) релейной защиты.
Далее используются следующие понятия, обозначения и сокращения:
x - вектор варьируемых параметров имитационной модели;
z - вектор замера, который поступает на модули (измерительные органы) релейной защиты;
α - символ контролируемых режимов, реагировать на которые призвана релейная защита;
β - символ альтернативных режимов, на которые реагировать не следует;
xα - вектор параметров модели контролируемых режимов;
xβ - вектор параметров модели альтернативных режимов;
zi - i-ый двумерный сигнал;
Fi - оператор преобразования режима x имитационной модели в сигнал zi;
Gα - область определения вектора xα или множество α-режимов;
Gβ - область определения вектора xβ или множество β-режимов;
Figure 00000001
- область α-режимов при обучении k-той группы модулей на l-ом этапе;
Sαi - область отображения множества α-режимов на плоскости сигнала zi;
Figure 00000002
- область срабатывания i-го модуля k-ой группы реле на l-ом этапе обучения; так же обозначается и сам упомянутый модуль;
Figure 00000003
- уставочная область i-го модуля k-ой группы, задаваемая по результатам обучения;
ESi - обозначение операции обучения i-го модуля релейной защиты, состоящей в преобразовании области G в область срабатывания Si;
Схема, иллюстрирующая процедуру обучения релейной защиты, состоит из имитационной модели контролируемых режимов 1 с варьируемой областью изменения параметров Gα, преобразователей 2, 3, реализующих операции Fαi(xα)=zαi,
Figure 00000004
, обучающих блоков 4, 5, которые выполняют техническую операцию триангуляции (окаймления) множества точек zαi, образующих плоскость Sαi, и группу модулей 6-7, представляющих собой реле с плоской областью срабатывания Sαi. В ту же схему входит имитационная модель альтернативных режимов 8 с неизменной областью изменения параметров Gβ, преобразователей 9, 10, реализующих операции Fβi(xβ)=zβi,
Figure 00000005
, модулей 11, 12, идентичных соответственно модулям 6 и 7, и элемента И 13, выходной сигнал которого запрещает наращивание области Gα имитационной модели 1, а также приостанавливает действие обучающих блоков 4, 6, изменяющих области срабатывания Sαi.
По завершению обучения формируется структура защиты (фиг.2) в составе p групп модулей 14, 15; 16; 17; 18, 19, объединяемых каждая операцией И 20-22, а все вместе -оконечной операцией ИЛИ 23.
Диаграммы на фиг.3-8 иллюстрируют процедуру обучения k-ой группы модулей релейной защиты. Процедура совершается с использованием объектного пространства α-режимов 24, объектного пространства β-режимов 25 и n уставочных плоскостей, из которых на фиг.3-8 показаны только первая плоскость 26 и последняя (n-ая) плоскость 27. На фиг.3-8 принято, что процедура обучения состоит из пяти этапов. Каждый совершается в схеме по фиг.1 и лишь по завершению всех этапов компонуется структура защиты по схеме фиг.2.
Область
Figure 00000006
определения параметров имитационной модели α-режимов 1 на каждом этапе изменяет свои размеры, на первом-четвертом этапах она расширяется (фиг.3-6), а на заключительном пятом этапе - несколько сокращается. Фиг.7 служит важным дополнением фиг.6, поясняющим физический смысл явлений, происходящих на четвертом этапе.
Область Gβ определения параметров имитационной модели β-режимов не зависит от событий в пространстве α-режимов 24, поэтому пространство β-режимов 25 показано лишь на фиг.3 и 8, а на других иллюстрациях о присутствии области Gβ свидетельствуют линии с обозначениями Fβi - операторами преобразования режимов хβ в замеры zβi на плоскостях 26, 27.
Каждому из перечисленных этапов обучения релейной защиты отвечают характерные ситуации в отображениях α- и β-режимов на уставочных плоскостях. Рассмотрим их по порядку.
Этап 1 (фиг.3). Выбирается относительно небольшое множество
Figure 00000007
α-режимов имитационной модели 1. Преобразователи 2, 3 формируют замеры zαi, обучающие модули 4, 5 отображают их на плоскостях 26, 27 в виде областей
Figure 00000008
модулей 6, 7 обучаемой k-ой группы реле.
Имитационная модель 8 β-режимов генерирует заданное множество режимов Gβ. Преобразователи 9, 10 отображают его на плоскостях 26, 27 областями Sβ1, Sβn, возможно, бесконечных размеров, как это показано на фиг.3 и далее на фиг.4-6.
Области
Figure 00000009
и Sβ1, а также
Figure 00000010
и Sβn, в данном случае не пересекаются (фиг.3), следовательно, все множество режимов
Figure 00000011
распознаваемо на любой из уставочных плоскостей. В схеме обучения по фиг.1 все модули 11, 12 не срабатывают, и процедура наращивания множества режимов
Figure 00000012
не приостанавливается.
Этап 2 (фиг.4). Множество α-режимов
Figure 00000013
увеличивается до размера
Figure 00000014
настолько, что увеличившиеся отображения
Figure 00000015
на части уставочных плоскостей, но не на всех, начинают пересекаться с неизменившимися отображениями β-режимов Sβi. На фиг.4 эта ситуация затрагивает плоскость 26, но не проявляется на плоскости 27. Как следствие, отдельно взятая плоскость 26 отныне не способна защищать объект в заданной части пространства 24. Однако схема обучения по фиг.1 построена таким образом, что это явление не сказывается на проводимой процедуре. Дело в том, что хотя модуль 11 и сработает, но не сработает модуль 12, а следовательно, и схема И 13. Не получив блокирующего сигнала от схемы И 13, имитационная модель 1 и обучающие блоки 4, 5 продолжают процедуру наращивания множества режимов
Figure 00000016
.
Этап 3 (фиг.5). Множество
Figure 00000017
получает приращение до величины
Figure 00000018
, настолько большой, что все увеличившиеся области
Figure 00000019
входят в пересечение с неизменными областями отображений β-режимов Sβi. На фиг.5, как ранее на фиг.4, обозначение
Figure 00000020
относится к тем β-режимам, которые вызывают срабатывание модуля 11. Новое обозначение
Figure 00000021
отмечает β-режимы, вызывающие срабатывание модуля 12. Благодаря присутствию схемы И 13 дальнейшее зависит от того, относятся ли режимы
Figure 00000022
и
Figure 00000021
к одному и тому же или к разным подмножествам β-режимов. В данном случае полагается, что это разные подмножества. В такой ситуации схема И 13 не срабатывает, и процедура наращивания множества режимов
Figure 00000023
не приостанавливается.
Этап 4 (фиг.6). Этот этап связан с эффектом перерегулирования, возможным в ходе обучения релейной защиты. Имеется в виду, что множество
Figure 00000024
получает приращение до такой величины
Figure 00000025
, что ее отображения
Figure 00000026
и
Figure 00000027
на плоскостях 26, 27 входят в столь значительное пересечение с отображениями β-режимов, что некоторые режимы xβ одновременно отображаются и в
Figure 00000028
, и в
Figure 00000029
. Как следствие, в структурной схеме по фиг.1 одновременно срабатывают все модули 11, 12, вслед на ними - элемент И 13, который своим выходным сигналом воздействует на имитационную модель α-режимов 1 и обучающие модули 4, 5, не только приостанавливая дальнейшее расширение множества режимов
Figure 00000030
и областей
Figure 00000031
, но и предусматривая возможность их некоторого сокращения.
Сокращению предшествует определение взаимных областей α- и β-режимов
Figure 00000032
(фиг.7), в которых располагаются отображения только тех режимов xβ, которые попадают во все без исключения области
Figure 00000033
. Режимы
Figure 00000022
и
Figure 00000021
, не отвечающие этому условию (фиг.6), в формировании взаимных областей участия не принимают.
Этап 5 (фиг.8). Множество α-режимов
Figure 00000034
сокращается до размера
Figure 00000035
, промежуточного между ним и предыдущим множеством
Figure 00000036
. Критерий сокращения - уменьшение взаимных областей
Figure 00000037
до минимально возможного размера - одной точки. На фиг.8 эта точка zβ1 области
Figure 00000038
, представляющая собой замер некоторого граничного β-режима хβгр, отображаемого, разумеется, не только на первой уставочной плоскости, но и на всех остальных плоскостях: zβi=Fβi(xβгр). Однако в рассматриваемом граничном случае только одно из отображений (на фиг.8 это zβ1) располагается на границе области
Figure 00000039
(на фиг.8 это
Figure 00000040
); прочие отображения могут располагаться как на границах, так и внутри других областей (на фиг.8 это
Figure 00000041
).
На этом заключительном этапе определяются области срабатывания модулей 6, 7 и идентичных им 11, 12, для чего из областей
Figure 00000042
исключаются малые взаимные области
Figure 00000043
. Итогом становятся уставочные области
Figure 00000044
и множество распознаваемых k-ой группой модулей α-режимов
Figure 00000045
(фиг.9).
Структурная схема защиты составляется из групп модулей, прошедших каждая все этапы обучения (фиг.2). Группы различаются областями
Figure 00000046
. Защита срабатывает, если входные двумерные сигналы zi вызывают одновременные срабатывания всех модулей хотя бы одной из n групп.
Достоинством предлагаемого способа следует считать отсутствие в его структуре (фиг.2) блокирующих операций и возможность задавать обучающие множества α-режимов
Figure 00000047
в окрестности наиболее опасных состояний защищаемого объекта, таких как замыкание на шинах, металлические замыкания, замыкания на фоне максимальной передачи мощности. После того как срабатывание в подобных режимах будет обеспечено, остальные множества
Figure 00000048
выбираются с целью повышения чувствительности защиты до предельно возможного уровня.
Источники информации
1. Авторское свидетельство №66343, кл. H02H 3/28, 1944.
2. Патент РФ №2066511, кл. H02H 3/40, G01R 31/08, 1992.
3. Патент РФ №2149489, кл. H02H 3/40, G01R 31/08, 1999.
4. Патент РФ №2247456, кл. H02H 3/40, 2002.
5. Патент РФ №2248077, кл. H02H 3/40, 2002.
6. Патент РФ №2316780, кл. G01R 31/08, H02H 3/40, 2006.
7. Патент РФ №2316871, кл. H02H 3/40, 2006.
8. Патент РФ №2316872, кл. H02H 3/40, 2006.

Claims (1)

  1. Способ релейной защиты энергообъекта путем построения ее из групп модулей, объединенных внутри группы по схеме И, а групп между собой - по схеме ИЛИ, преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения модулей от имитационных моделей первого типа, воспроизводящих контролируемые режимы энергообъекта, и от имитационных моделей второго типа, воспроизводящих режимы, альтернативные контролируемым, отличающийся тем, что, с целью расширения функциональных возможностей, обучают группы модулей одну за другой в заданной последовательности, каждую группу - новым множеством режимов имитационных моделей первого типа, расширяющим по мере своего увеличения области срабатывания всех модулей обучаемой группы, и увеличивают каждое новое множество режимов до тех пор, пока ни произойдет срабатывания обучаемой группы в каком-либо одном режиме из всего множества режимов имитационных моделей второго типа.
RU2010105455/07A 2010-02-15 2010-02-15 Способ релейной защиты энергообъекта RU2450402C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010105455/07A RU2450402C2 (ru) 2010-02-15 2010-02-15 Способ релейной защиты энергообъекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010105455/07A RU2450402C2 (ru) 2010-02-15 2010-02-15 Способ релейной защиты энергообъекта

Publications (2)

Publication Number Publication Date
RU2010105455A RU2010105455A (ru) 2011-08-20
RU2450402C2 true RU2450402C2 (ru) 2012-05-10

Family

ID=44755537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010105455/07A RU2450402C2 (ru) 2010-02-15 2010-02-15 Способ релейной защиты энергообъекта

Country Status (1)

Country Link
RU (1) RU2450402C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000824A1 (en) * 1992-06-19 1994-01-06 Square D Company Computer-controlled circuit breaker arrangement with circuit breaker having identification circuit
US5426590A (en) * 1992-12-17 1995-06-20 Merlin Gerin Device for numerical computation of a symmetrical component of an electtical quantity of a three-phase power system and relay incorporating it
RU2149489C1 (ru) * 1999-02-01 2000-05-20 Нудельман Года Семенович Способ дистанционной защиты и определения места замыкания на землю линии электропередачи
RU2247456C2 (ru) * 2002-08-05 2005-02-27 ООО Исследовательский центр "Бреслер" Способ релейной защиты энергообъекта
RU2316872C1 (ru) * 2006-08-24 2008-02-10 Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" Способ релейной защиты энергообъекта

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000824A1 (en) * 1992-06-19 1994-01-06 Square D Company Computer-controlled circuit breaker arrangement with circuit breaker having identification circuit
US5426590A (en) * 1992-12-17 1995-06-20 Merlin Gerin Device for numerical computation of a symmetrical component of an electtical quantity of a three-phase power system and relay incorporating it
RU2149489C1 (ru) * 1999-02-01 2000-05-20 Нудельман Года Семенович Способ дистанционной защиты и определения места замыкания на землю линии электропередачи
RU2247456C2 (ru) * 2002-08-05 2005-02-27 ООО Исследовательский центр "Бреслер" Способ релейной защиты энергообъекта
RU2316872C1 (ru) * 2006-08-24 2008-02-10 Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" Способ релейной защиты энергообъекта

Also Published As

Publication number Publication date
RU2010105455A (ru) 2011-08-20

Similar Documents

Publication Publication Date Title
EP3320359B1 (de) Verfahren und prüfvorrichtung zum prüfen einer verdrahtung von wandlern
RU2553448C1 (ru) Способ дистанционной защиты линий электропередачи
RU2404499C1 (ru) Способ релейной защиты энергообъекта
CN109061391B (zh) 一种基于计算机视觉潮流图的电网故障诊断方法及系统
CN104597346A (zh) 有界波环境下电子设备电磁环境效应实验方法
CN102608519B (zh) 基于节点信息的电路故障诊断方法
CN105005294A (zh) 基于不确定性分析的实时传感器故障诊断方法
CN105913166A (zh) 一种机电整机产品贮存寿命试验加速因子评估方法
Piesciorovsky et al. Comparison of non-real-time and real-time simulators with relays in-the-loop for adaptive overcurrent protection
RU2505825C2 (ru) Способ определения мест двойного замыкания многопроводной электрической сети
RU2450402C2 (ru) Способ релейной защиты энергообъекта
CN102129027A (zh) 一种基于故障字典的开关电流电路故障诊断方法
RU2316872C1 (ru) Способ релейной защиты энергообъекта
RU2461110C2 (ru) Способ релейной защиты энергообъекта
RU2316871C1 (ru) Способ релейной защиты энергообъекта
Azbe et al. A direct method for assessing distance-protection behavior during power swings
CN103605292A (zh) 基于rtds的微机保护一体化测试方法
CN107169213B (zh) 测试零序电流自适应保护装置功能指标的方法、装置及系统
DE102017207818B3 (de) Verfahren und Anordnung zum Lokalisieren einer elektrischen Entladung in einer elektrischen Anlage
da Silva et al. High impedance fault location-case study using wavelet transform and artificial neural networks
CN103700300B (zh) 一种教学用模拟输电线路及模拟输电线路的方法
CN108196168A (zh) 一种局放脉冲检测方法、系统、终端及可读存储介质
RU2316780C1 (ru) Способ релейной защиты энергообъекта
RU2247456C2 (ru) Способ релейной защиты энергообъекта
RU203930U1 (ru) Устройство дистанционной защиты

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170216