RU2447521C1 - Способ контроля плотности нейтронного потока ядерного реактора - Google Patents

Способ контроля плотности нейтронного потока ядерного реактора Download PDF

Info

Publication number
RU2447521C1
RU2447521C1 RU2010140577/07A RU2010140577A RU2447521C1 RU 2447521 C1 RU2447521 C1 RU 2447521C1 RU 2010140577/07 A RU2010140577/07 A RU 2010140577/07A RU 2010140577 A RU2010140577 A RU 2010140577A RU 2447521 C1 RU2447521 C1 RU 2447521C1
Authority
RU
Russia
Prior art keywords
reactor
output current
ionization
current
ionization chamber
Prior art date
Application number
RU2010140577/07A
Other languages
English (en)
Inventor
Сергей Павлович Дашук (RU)
Сергей Павлович Дашук
Валерий Фёдорович Борисов (RU)
Валерий Фёдорович Борисов
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова"
Priority to RU2010140577/07A priority Critical patent/RU2447521C1/ru
Application granted granted Critical
Publication of RU2447521C1 publication Critical patent/RU2447521C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области исследования и контроля работы ядерных реакторных установок, а именно к исследованию и контролю нейтронного излучения в присутствии гамма-излучения, и может быть использовано в системах управления и защиты ядерных реакторов, критической сборки и других источников нейтронов. Способ включает формирование выходного тока ионизационной камеры деления (ИКД) и противотока, равного по величине части прямого тока, формируемой основными электродами ИКД под воздействием гамма-излучения реактора и конструкционных материалов ИКД. На входе размещенного за пределами ИКД измерительного устройства формируют дополнительный противоток. Формируют базу данных ложного выходного тока ИКД, содержащую зависимости ложного выходного тока от времени после останова реактора. Перед повторным пуском реактора выбирают из сформированной базы временную зависимость изменения ложного выходного тока с учетом флюенса и времени стоянки реактора после останова. В момент повторного пуска формируют на входе измерительного устройства дополнительный противоток, суммируют его с выходным током ИКД и регистрируют суммарный сигнал. Технический результат - расширение динамического диапазона системы контроля реактора, повышение безопасности его эксплуатации, сокращение времени после остановки реактора, в течение которого повторный пуск реактора недопустим по причине неадекватной работы аппаратуры контроля при малой загрузке. 1 ил.

Description

Изобретение относится к области исследования и контроля работы ядерных реакторных установок различного типа, а именно к исследованию и контролю нейтронного излучения в присутствии гамма-излучения, и могут быть использованы в системах управления и защиты ядерных реакторов, критической сборки и других источников нейтронов.
При эксплуатации ядерных реакторов в качестве параметра, характеризующего мощность реактора, используется плотность нейтронного потока, измеряемая, в частности, с помощью импульсно-токовых ионизационных камер деления (ИКД). Достоверность получаемой с их помощью информации зависит от того, насколько качественно удается отфильтровать отклики процессов, сопровождающих деление ядерного горючего в реакторе, приводящие к появлению фонового выходного тока ИКД, вызванного гамма-фоном работающего реактора, и ложного выходного тока ИКД, вызванного, в основном, током камеры от ее облучения активными продуктами деления, которые накапливаются в ураносодержащей рабочей секции камеры (радиаторе) в процессе облучения ее нейтронами при работе реактора.
Известен способ контроля плотности нейтронного потока, реализованный с использованием ИКД промышленного изготовления КНТ54-1 [Дмитриев А.Б., Малышев Е.К. Нейтронные ионизационные камеры для реакторной техники, М.: Атомиздат, 1975], при котором с помощью двух электродов ИКД формируют ток, вызванный ионизацией рабочего газа ИКД осколками деления материала радиатора ИКД под воздействием нейтронного потока реактора, и регистрируют его с помощью внешнего измерительного устройства.
Недостатком этого способа, при его реализации в устройстве, является узкий динамический диапазон работы из-за наличия фонового тока, вызванного облучением рабочего газа ИКД гамма-излучением реактора, и ложного выходного тока, вызванного облучением рабочего газа ИКД активными продуктами радиатора ИКД и активированными конструкционными материалами ИКД.
Известен способ контроля плотности нейтронного потока, выбранный в качестве прототипа и реализованный с использованием ИКД промышленного изготовления КНК-15-1 [Белозеров В.Г., Щетинин О.И. Широкодиапазонная камера деления для СУЗ ядерных реакторов. Атомная энергия, 1979, т.47, вып.4, с.271-272], при котором с помощью основных электродов формируют прямой ток ИКД, вызванный ионизацией рабочего газа осколками деления материала радиатора ИКД под воздействием нейтронного потока реактора и облучением рабочего газа ИКД гамма-излучением реактора, активными продуктами радиатора ИКД и активированными конструкционными материалами ИКД, а с помощью дополнительных электродов формируют в ИКД противоток, обратный по направлению прямому току и равный по величине части прямого тока, формируемой основными электродами ИКД под воздействием гамма-излучения реактора и конструкционных материалов ИКД, суммируют токи основных и дополнительных электродов и регистрируют их во внешнем измерительном устройстве.
В этом способе скомпенсирована та часть выходного тока ИКД, которая связана с гамма-излучением реактора и конструкционных материалов ИКД, но остается нескомпенсированным ложный выходной ток ИКД, формирующийся в результате активации радиатора ИКД в процессе работы реактора и последующего облучения рабочего газа ИКД его излучением, что сокращает динамический диапазон устройств контроля реактора, удлиняет интервал времени перед повторным пуском реактора на время ожидания снижения ложного выходного тока ИКД до допустимого уровня.
Перед авторами стояла задача минимизировать вклад ложного выходного тока ИКД в суммарный выходной сигнал, регистрируемый измерительным устройством при сохранении компенсации гамма-излучения реактора и обеспечить возможность оперативной подстройки параметров компенсации ложного выходного тока.
Предложенный авторами способ контроля плотности нейтронного потока ядерного реактора позволяет при его реализации расширить динамический диапазон системы контроля реактора, что служит предпосылкой к усилению безопасности его эксплуатации, и свести к минимуму время после остановки реактора, в течение которого повторный пуск реактора недопустим по причине неадекватной работы аппаратуры контроля при малой загрузке.
Указанный технический результат достигается тем, что в известном способе контроля плотности нейтронного потока ядерного реактора, включающем формирование выходного тока ИКД в виде суммы прямого тока ИКД, возникающего за счет ионизации газоразрядного промежутка между основными электродами ИКД осколками деления материала радиатора ИКД, обусловленными нейтронным потоком реактора, а также за счет ионизации гамма-излучением реактора и излучением конструкционных материалов и активных продуктов радиатора ИКД, и противотока, возникающего за счет ионизации газоразрядного промежутка между дополнительными электродами ИКД гамма-излучением реактора и излучением конструкционных материалов, обратного по направлению прямому току ИКД и равного по величине части прямого тока, формируемой основными электродами ИКД под воздействием гамма-излучения реактора и конструкционных материалов ИКД, согласно изобретению формируют дополнительный противоток на входе размещенного за пределами ИКД измерительного устройства, причем на первом этапе формируют базу данных ложного выходного тока ионизационной камеры, содержащую зависимости ложного выходного тока от времени после останова реактора, при этом указанные зависимости учитывают плотность нейтронного потока и продолжительность работы реактора перед остановом. На втором этапе, непосредственно перед повторным пуском реактора, выбирают из сформированной базы данных временную зависимость изменения ложного выходного тока с учетом флюенса и времени стоянки реактора после останова. На основе указанной зависимости формируют на входе измерительного устройства в момент повторного пуска реактора дополнительный противоток, суммируют его с выходным током ИКД и регистрируют суммарный сигнал.
На Фиг. приведены графики изменения во времени тока ложного выходного сигнала (ЛВС) ИКД (IЛВС, верхний квадрант графика) и противотока (IПТ, нижний квадрант графика), формируемого в измерителе. По оси ординат отложен ток, по оси абсцисс отложено время, начиная с момента останова реактора (время стоянки). Через t1 обозначен момент времени повторного пуска реактора. Вертикальной пунктирной стрелкой показаны точки на кривых IЛВС и IПТ, соответствующие моменту времени t1, горизонтальными пунктирными стрелками показаны на оси ординат значения токов IЛВС и IПТ, соответствующие моменту времени t1.
Работа предложенного способа осуществляется следующим образом.
На первом этапе формируют экспериментальную базу данных ложного выходного тока ионизационной камеры, содержащую зависимости IЛВС(t) (где t - время после останова реактора) для различных условий работы реактора перед остановом, таких как плотность нейтронного потока и продолжительность работы реактора. При этом записывают IЛВС(t) после останова реактора, проработавшего заданное (известное) время на заданном (известном) уровне мощности. В процессе эксплуатации реактора формируют базу данных, состоящую из семейства зависимостей IЛВС(t), каждая из которых соответствует конкретным условиям работы реактора перед его остановом, и сохраняют эту информацию на внешнем носителе. На втором этапе, перед включением реактора, выбирают из сформированной базы данных IЛВС(t) такую зависимость, которая наиболее близко соответствует условиям работы реактора перед его последним остановом. Возьмем, в качестве примера, приведенную на Фиг. (верхний квадрант) зависимость IЛВС(t) камеры КНК-15-1 после облучения на реакторе (см. Газоразрядные детекторы для контроля ядерных реакторов. Е.К.Малышев и др., М.: Энергоатомиздат, 1991 г., стр.51). Далее, с учетом времени стоянки реактора, выбирают участок зависимости IЛВС(t), начало которого соответствует по времени ожидаемому моменту повторного пуска реактора t1. На Фиг. - это участок, соответствующий времени t≥t1. Как видно, начальное значение IЛВС на этом участке составляет 2·10-7 А, что примерно на порядок выше максимально допустимого значения IЛВС для ИКД КНК-15-1. На входе измерительного устройства, подключенного к электродам ИКД, при пуске реактора формируют противоток IПТ(t), направленный навстречу току IЛВС(t), что на Фиг. соответствует зеркальному отображению IЛВС(t) относительно оси абсцисс в нижнем квадранте. Таким образом, при пуске реактора через полчаса после останова будет создан противоток IПТ(t), с начальным значением 2·10-7 А, который обеспечит динамическую компенсацию ложного выходного тока ИКД. Необходимо пояснить, что импульсный диапазон работы камеры КНК-15-1 при настройке аппаратуры контроля ограничивают сверху величиной порядка (1-2)·106 имп/сек для исключения взаимного наложения выходных импульсов камеры, характерная длительность которых составляет величину порядка 100 нс. Величина заряда, передаваемого камерой КНК-15-1 в единичном импульсе, составляет 10-13 К и, с учетом этих обстоятельств, переход в токовый режим происходит при (1-2)·10-7 A, что определяется известной связью между параметрами, определяемой законом Кулона:
q=i/N, где
q - заряд, переносимый единичным импульсом тока ИКД;
i - среднее значение выходного тока ИКД;
N - скорость счета импульсов ИКД.
Как видно из вышесказанного, при работе по способу-прототипу величина полезного сигнала при переходе в токовый режим ((1-2)·10-7 А) сопоставима с величиной ЛВС (1,5·10-7 А, см. Фиг. в момент t=t2) и ошибка в определении мощности реактора в момент перехода из импульсного в токовый режим в процессе ее подъема после повторного пуска реактора составит в этом случае (100-200)%, что приведет к срабатыванию автоматической защиты по периоду реактора. Пуск реактора в этих условиях можно осуществлять для прототипа либо «вслепую», до того момента, пока ток ИКД, определяемый нейтронным потоком, не превысит токовый ЛВС активированного реактора, что недопустимо с точки зрения безопасности эксплуатации реактора, либо только через несколько суток после останова, когда ложный выходной ток ИКД спадет на один-два порядка. При использовании предложенного способа повторный пуск реактора может быть произведен в любой требуемый момент времени после останова реактора. Следует отметить, что наиболее важным с точки зрения расширения диапазона контроля мощности является пусковой интервал времени при небольших уровнях мощности реактора, начиная с минимально контролируемого уровня, когда плотность нейтронного потока невелика. В этих условиях не происходит заметного изменения активности радиатора ИКД при работе реактора ввиду малых величин нейтронного потока (≈10-6 от уровня, соответствующего номинальной мощности реактора), а следовательно, отсутствует влияние на величину IЛВС накопления активности радиатора на пусковом интервале.
Подходы к созданию маломощных источников тока, управляемых по заданному алгоритму, известны (см., например, В.С.Гутников. Интегральная электроника в измерительных устройствах, 2-е издание, Л.: Энергоатомиздат, Ленинградское отделение, 1988, с.70-74), что гарантирует возможность создания с их помощью противотоков с требуемыми амплитудно-временными характеристиками во внешнем измерительном устройстве.

Claims (1)

  1. Способ контроля плотности нейтронного потока, включающий формирование выходного тока ионизационной камеры деления в виде суммы прямого тока указанной камеры, возникающего за счет ионизации газоразрядного промежутка между основными электродами ионизационной камеры осколками деления материала радиатора ионизационной камеры, обусловленными нейтронным потоком реактора, а также за счет ионизации гамма-излучением реактора и излучением конструкционных материалов и активных продуктов радиатора ионизационной камеры, и противотока, возникающего за счет ионизации газоразрядного промежутка между дополнительными электродами ионизационной камеры гамма-излучением реактора и излучением конструкционных материалов ионизационной камеры, обратного по направлению прямому току ионизационной камеры и равного по величине части прямого тока, формируемой основными электродами ионизационной камеры под воздействием гамма-излучения реактора и конструкционных материалов ионизационной камеры, отличающийся тем, что формируют дополнительный противоток на входе размещенного за пределами ионизационной камеры измерительного устройства, причем на первом этапе формируют базу данных ложного выходного тока ионизационной камеры, содержащую зависимости ложного выходного тока от времени после останова реактора, при этом указанные зависимости учитывают плотность нейтронного потока и продолжительность работы реактора перед остановом; на втором этапе, непосредственно перед повторным пуском реактора, выбирают из сформированной базы данных временную зависимость изменения ложного выходного тока с учетом флюенса и времени стоянки реактора после останова и на основе указанной зависимости формируют на входе измерительного устройства в момент повторного пуска реактора дополнительный противоток, суммируют его с выходным током ионизационной камеры и регистрируют суммарный сигнал.
RU2010140577/07A 2010-10-04 2010-10-04 Способ контроля плотности нейтронного потока ядерного реактора RU2447521C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010140577/07A RU2447521C1 (ru) 2010-10-04 2010-10-04 Способ контроля плотности нейтронного потока ядерного реактора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010140577/07A RU2447521C1 (ru) 2010-10-04 2010-10-04 Способ контроля плотности нейтронного потока ядерного реактора

Publications (1)

Publication Number Publication Date
RU2447521C1 true RU2447521C1 (ru) 2012-04-10

Family

ID=46031821

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010140577/07A RU2447521C1 (ru) 2010-10-04 2010-10-04 Способ контроля плотности нейтронного потока ядерного реактора

Country Status (1)

Country Link
RU (1) RU2447521C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542896C1 (ru) * 2014-06-05 2015-02-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для измерения плотности потока нейтронов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223519C1 (ru) * 2002-08-14 2004-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" Ионизационная камера деления
RU2339975C1 (ru) * 2007-07-04 2008-11-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Способ измерения флюенса быстрых нейтронов полупроводниковым детектором
WO2010076538A1 (fr) * 2008-12-30 2010-07-08 Areva Np Procédé de mesure du flux neutronique dans le coeur d'un réacteur nucléaire a l'aide d'un détecteur au cobalt et dispositif associé

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223519C1 (ru) * 2002-08-14 2004-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" Ионизационная камера деления
RU2339975C1 (ru) * 2007-07-04 2008-11-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Способ измерения флюенса быстрых нейтронов полупроводниковым детектором
WO2010076538A1 (fr) * 2008-12-30 2010-07-08 Areva Np Procédé de mesure du flux neutronique dans le coeur d'un réacteur nucléaire a l'aide d'un détecteur au cobalt et dispositif associé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Белозеров В.Г. и др. Широкодиапазонная камера деления для СУЗ ядерных реакторов. Атомная энергия, 1979, т.47, вып.4, с.271, 272. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542896C1 (ru) * 2014-06-05 2015-02-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для измерения плотности потока нейтронов

Similar Documents

Publication Publication Date Title
JP5703512B2 (ja) 実効中性子増倍係数の制御を伴う加速器駆動原子力システム
JP7308009B2 (ja) 未臨界炉心反応度バイアスを予想する方法
US9435899B1 (en) Radioactive gas monitoring device
Spriggs In-pile measurement of the decay constants and relative abundances of delayed neutrons
CN109817360B (zh) 预测核热功率偏差及RPN系统Gk参数走势的预测方法
Cao Determining reactor neutrino flux
RU2447521C1 (ru) Способ контроля плотности нейтронного потока ядерного реактора
US9640284B2 (en) Reactor shutdown trip algorithm using derivatives
JPH0477877B2 (ru)
JP2882807B2 (ja) ボロン濃度自動分析装置
US20210255283A1 (en) Light detection system and discharge probability calculating method
US20210262855A1 (en) Light detection system, discharge probability calculating method, and received light quantity measuring method
Michálek et al. Determination of the effective delayed neutron fraction for training reactor VR-1
RU2302676C1 (ru) Способ определения эффективной интенсивности источника нейтронов заглушенного ядерного реактора
Bizzeti et al. The absolute cross sections for the Na23 (n, α) and I127 (n, α) reactions at 14 MeV
Berezhnoy et al. Estimation of the metrological performance instability for measuring channels of research reactors
CN110555192A (zh) 一种基于数字电路消除自给能中子探测器延迟效应的方法
KR101975986B1 (ko) 방사능 측정 장치 및 이를 이용하여 방사능을 검출하는 방법
Ding Solving Bateman equation for xenon transient analysis using numerical methods
EP3719459B1 (en) Ultraviolet flame sensor with dynamic excitation voltage generation
Tsypin et al. 16N γ-ray diagnostics of a nuclear reactor in a nuclear power plant
In et al. Preliminary start-up the HANARO after the Long-term Shut-down
JPH0310917B2 (ru)
Lee et al. Spurious Trip Reduction Methodology for the Plant Protection System Using a Variable Trip Approach
Serov et al. CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak