RU2446522C2 - Экран для подавления многолучевого приема сигналов и антенная система с таким экраном - Google Patents

Экран для подавления многолучевого приема сигналов и антенная система с таким экраном Download PDF

Info

Publication number
RU2446522C2
RU2446522C2 RU2010114835/07A RU2010114835A RU2446522C2 RU 2446522 C2 RU2446522 C2 RU 2446522C2 RU 2010114835/07 A RU2010114835/07 A RU 2010114835/07A RU 2010114835 A RU2010114835 A RU 2010114835A RU 2446522 C2 RU2446522 C2 RU 2446522C2
Authority
RU
Russia
Prior art keywords
screen
pins
screen according
antenna
antenna system
Prior art date
Application number
RU2010114835/07A
Other languages
English (en)
Other versions
RU2010114835A (ru
Inventor
Дмитрий Витальевич Татарников (RU)
Дмитрий Витальевич Татарников
Андрей Витальевич Астахов (RU)
Андрей Витальевич Астахов
Антон Павлович Степаненко (RU)
Антон Павлович Степаненко
Original Assignee
Дмитрий Витальевич Татарников
Андрей Витальевич Астахов
Антон Павлович Степаненко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Витальевич Татарников, Андрей Витальевич Астахов, Антон Павлович Степаненко filed Critical Дмитрий Витальевич Татарников
Priority to RU2010114835/07A priority Critical patent/RU2446522C2/ru
Publication of RU2010114835A publication Critical patent/RU2010114835A/ru
Application granted granted Critical
Publication of RU2446522C2 publication Critical patent/RU2446522C2/ru

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

Настоящее изобретение относится к антенным системам и, в частности, к заземляющим экранам для подавления эффекта многолучевого приема в геодезических системах и глобальных системах определения местоположения. Техническим результатом является обеспечение более широкой диаграммы направленности и габаритного размера, небольшой вес и простота в изготовлении и настройке, возможность размещения внутри объема экранирующего основания - сферы дополнительных элементов схем обработки сигнала: малошумящего усилителя, GPS приемника, беспроводного модема и др. Предложеная антенная система с экраном для уменьшения эффекта приема многолучевого сигнала включает экран для уменьшения эффекта приема многолучевого сигнала, имеющий форму выпуклой поверхности, например сферы или ее части. На, по меньшей мере, части внешней поверхности сферы размещено множество рядов отдельных друг от друга проводящих штырей. Сверху экрана размещена антенна. 2 н. и 14 з.п. ф-лы, 28 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к антеннам и, в частности, к экранам (ground planes) для подавления эффекта многолучевого приема в геодезических системах и системах определения местоположения.
Уровень техники
В системах глобальной спутниковой навигации (GNSS) при приеме сигналов от спутников возникает эффект многолучевого приема сигнала. Принятый антенной сигнал представляет собой комбинацию основного (прямого) и отраженного от подстилающей поверхности и окружающих объектов сигналов. Наличие последнего негативно сказывается на работе всей системы. Поэтому для подавления эффекта многолучевого приема приемная антенна обычно располагается на экране. На практике используются различные типы экранов, например плоский металлический экран, экран типа дроссельных колец (choke-ring) и др.
Достоинством плоского металлического экрана является простота его конструкции, однако для эффективного подавления сигналов, отраженных от подстилающейся поверхности, он должен иметь достаточно большой размер, обычно порядка несколько длин волн принимаемого сигнала, что ограничивает его применение.
Заметно лучшим подавлением многолучевого сигнала при меньших габаритных размерах обладает экран типа Choke-Ring. Основы choke ring экранов показаны в J.M.Tranquilla et al. "Analysis of a Choke Ring Groundplane for Multipath Control in Global Positioning System (GPS) Applications", Proc. IEEE AP, vol.AP-42, No 7, pp.905-911, July 1994. Экран типа choke ring представляет собой набор вертикальных металлических ребер цилиндрической формы, расположенных на плоском металлическом диске. Благодаря этому удается существенно сократить уровень сигналов, отраженных от подстилающейся поверхности сигналов. Однако имеются и определенные недостатки у таких экранов, в частности использование экрана choke ring приводит к нежелательному обужению диаграммы направленности (ДН) антенны. Обужение ДН антенны приводит к недостаточным характеристикам слежения для спутников на низких углах возвышения. Структура choke ring экрана является частотно-зависимой. Глубина углублений составляет около четверти длины волны принимаемого сигнала. В настоящее время появляются новые GNSS сигналы (GPS L5, GLONASS L3, GALILEO Е6 and E5), и полный частотный спектр GNSS сигналов значительно увеличивается, что требует расширения диапазона частот в системе GSSN в каждом диапазоне, и характеристики традиционных choke ring экранов становятся ограниченными.
Известен патент US 6278407, где в канавках choke ring экрана размещены диафрагмы с микрополосковыми фильтрами. Фильтры настроены так, чтобы диафрагмы не препятствовали прохождению сигнала низкочастотного диапазона (GPS/GLONASS L2) и при этом отражали сигнал высокочастотного диапазона (GPS/GLONASS L1). Положение диафрагм выбирается так, чтобы обеспечить наилучшее подавление многолучевого сигнала в диапазоне L1. Однако такая конструкция является двухчастотной и не решает проблему обеспечения хорошего подавления многолучевого сигнала во всей полосе частот GNSS диапазона. Также сохраняется проблема обужения диаграммы направленности.
Таким образом, существует потребность в преодолении вышеуказанных проблем. Для этого согласно изобретению предложена конструкция экрана, позволяющая обеспечить широкую ДН при сохранении эффективного подавления многолучевого сигнала в широком диапазоне частот. А также обеспечить эффективное использование пространства внутри антенной системы для размещения различных схем обработки сигнала, таких как малошумящего усилителя (МШУ), GPS приемника, беспроводного модема и др.
Сущность изобретения
Согласно изобретению предложена конструкция экрана для уменьшения эффекта приема многолучевого сигнала, включающая: несущее основание, имеющее форму выпуклой поверхности, на, по меньшей мере, части внешней поверхности которого размещен набор отделенных друг от друга проводящих структур, например, в виде штырей.
Штыри 10 упорядоченно размещаются на выпуклой поверхности с определенным угловым расстоянием по меридиональному и азимутальному углам. Угловое расстояние по азимутальному углу может быть различным для разных меридиональных углов. Штыри могут располагаться как рядами или, как вариант, в шахматном порядке. Количество рядов штырей выбирается исходя из требуемых характеристик подавления эффекта многолучевого приема. Предпочтительно, но не ограничено этим, использовать по меньшей мере два ряда штырей. Плотность установки штырей 10 может меняться, например, по мере их приближения к экваториальной плоскости, чтобы расстояние между штырями не менялось, их количество может быть увеличено.
Каждый штырь характеризуется своим максимальным поперечным размером а, длиной L от основания сферы до конца штыря, а также расстоянием d между окончаниями близлежащих штырей. Поперечный размер а штыря намного меньше его длины L. Длина штыря имеет значение вблизи λ/4, где λ - длина волны на нижней частоте диапазона. Как вариант длина штыря может изменяться и варьируется в зависимости от меридиального угла, как показано на фиг.12. Как вариант длина штырей, расположенных по меридианной плоскости, уменьшается от верхней точки экрана, т.е. точки, на которой устанавливается антенна, к основанию экрана.
Штыри 10 располагаются с определенным шагом d в меридиальной и в экваториальной плоскостях так, чтобы расстояние между внешними их концами в ряду составляло от 0.05λ до 0.3λ. Поперечный размер а или диаметр штырей намного меньше его длины L и может составлять, например, от 4 мм до 20 мм.
Экран 20 представляет собой выпуклую поверхность, например, в форме полной сферы, эллипсоида или частей их поверхностей. Диаметр сферы может составлять, как пример, от λ до 3λ длины волны на нижней частоте диапазона.
Штыри 10 выполнены в виде элементов различного поперечного сечения, например цилиндрических или прямоугольных элементов, конических элементов, т.е. утолщаются по мере удаления от основания, цилиндрические со шляпкой на конце, т.е. имеющие утолщение на конце, в форме грибка, а также при исполнении из листового материала могут иметь форму трапеции, т-образной или г-образной формы.
Штыри 10 соединены с проводящей поверхностью сферы 20 различным образом, например, путем пайки, клепки, а также на различных соединительных 11 элементах: резьбовых, винтах и др.
Также предложена антенная система с экраном для уменьшения эффекта приема многолучевого сигнала, содержащая: экран 20, выполненный, согласно вышеописанной конструкции, в виде набора штырей 10, расположенных на проводящей выпуклой поверхности, и антенный элемент - антенна 30, которая расположена непосредственно на проводящем экране 20 или на поддерживающей опоре 40 на определенной высоте от экрана.
Поддерживающая опора 40 выполнена из проводящего или диэлектрического материала, например, представляет собой диэлектрические проставки. Дополнительно антенная система с экраном 20 может быть помещена под защитный колпак 50.
Эти и другие конструктивные особенности и преимущества предложенного изобретения описаны в предпочтительных вариантах изобретения, которое должно читаться совместно с сопроводительными чертежами, но не ограничиваться ими.
Краткое описание чертежей
Фиг.1 показывает приемную GNSS антенну над отражающей поверхностью.
Фиг.2a-2c показывает конструкцию известного экрана типа choke ring.
Фиг.3 показывает короткозамкнутый отрезок коаксиального волновода.
Фиг.4a-4b показывает импедансную структуру в виде набора проводящих штырей на плоской проводящей поверхности.
Фиг.5 показывает зависимость импеданса плоской вертикально поляризованной волны от угла падения θ.
Фиг.6a-6b показывает полусферическую импедансную поверхность и ее двумерную модель.
Фиг.7 показывает зависимость поверхностного адмитанса Y(θ) от угла θ.
Фиг.8 показывает диаграммы направленности в передней полусфере и диаграммы отношения D/U для двух вариантов в сравнении с плоским импедансным экраном.
Фиг.9 показывает в разрезе общий вид конструкции предложенной антенной системы с экраном.
Фиг.10a-10d показывают варианты выполнения штырей на поверхности выпуклого экрана.
Фиг.11a-11c показывает варианты размещения антенны на/сверху экране(а).
Фиг.12 показывает экран, у которого меняется длина L штырей в зависимости от угла θ.
Фиг.13a-13c показывает варианты экрана с различной формой выпуклой поверхности.
Фиг.14 показывает вид сверху экрана с точками для крепления рядов штырей.
Описание изобретения
Для оценки способности антенны подавлять отраженный от подстилающей поверхности сигнал мы используем отношение down/up (фиг.1), т.е.
Figure 00000001
Указанная характеристика D/U(θ) равна отношению уровня диаграммы направленности (ДН) антенны для некоторого угла θ ниже горизонта к тому же самому углу выше горизонта (фиг.1). Отношение в дБ имеет вид DU(θ)(dB)=20logDU(θ).
Общий вид экрана типа choke-ring показан на фиг.2a. Вид в разрезе показан на фиг.2b с импедансной поверхностью, которая показана пунктирной линией. Рассмотрим частотные свойства известного choke-ring экрана. Экран типа choke ring представляет собой набор вертикальных металлических ребер цилиндрической формы 1, расположенных на плоском металлическом диске 2. Каждое ребро гальванически соединено с диском по всему своему периметру. В центральной части экрана устанавливают приемную антенну 3. Структура экрана choke-ring, как известно, составляет так называемую импедансную поверхность, см. R.E.Collin "Field Theory of Guided Waves", Wiley-IEEE Press, 1990. Импедансная поверхность обладает свойством поддерживать постоянным соотношение касательных составляющих полей Е и H независимо от свойств источника этих полей. Известный choke-ring экран имеет зависимость импеданса на вершине углублений, и поверхность импеданса является плоской.
Рассмотрим частотную характеристику такого choke ring экрана, показанного на фиг.3. Углубление можно рассмотреть как часть коаксиального волновода, закороченного на заднем конце и открытого на верхнем конце. Доменные стенки углубления имеют радиусы
Figure 00000002
и
Figure 00000003
их можно рассматривать как короткозамкнутые отрезки коаксиального волновода (фиг.2b). Здесь Rn - средний радиус, Δ - расстояние между ребрами, которое считаем одинаковым для всех пар ребер. Будем считать, что n=1 соответствует внутренней паре ребер (фиг.2b):
Figure 00000004
. Обычно число таких коаксиальных волноводов составляет N=3…5.
Согласно теории волноводов, см. Р.С.Magnusson, G.C.Alexander, V.K.Tripathi, A.Weisshaar "Transmission Lines and Wave Propagation" CRC Press LLC, 2001, в коаксиальном волноводе может существовать дискретный набор собственных волн, каждая из которых характеризуются своим собственным числом χm. Эти числа являются решением соответствующего характеристического уравнения и зависят от внешнего и внутреннего радиусов коаксиального волновода. Распространяться могут только докритические волны, для которых выполняется условие
Figure 00000005
, где λ - длина волны в свободном пространстве. Для приложений GNSS обрабатываем сигнал RHCP. Такой сигнал имеет зависимость азимута в виде e-iφ, см. Y.T.Lo, S.W.Lee "Antenna Handbook" v.l, Van Nostrand Reinhold, 1993. Распространяющейся волной коаксиального волновода с наименьшей критической частотой будет волна типа TE11. Для радиусов Rn порядка 0.3…1λ и расстояний Δ порядка 0.1λ все остальные собственные волны коаксиального волновода будут закритическими. Соответственно волны типа ТЕ11 будет вносить основной вклад в работу экрана. Импеданс открытого конца коаксиального волновода (или адмитанс Y) будет равен:
Figure 00000006
где
Figure 00000007
,
Figure 00000008
-
длина волны в волноводе с радиусом Rn, χn - поперечное волновое число, которое определяется как корень характеристического уравнения для волны H11 коаксиального волновода. Чтобы выполнить условие (1), длина ребер L должна иметь длину чуть больше, чем четверть наибольшей длины волны
Figure 00000009
.
Здесь W=120π Ом. Глубина углубления выбрана из
Figure 00000010
с самой эффективной характеристикой экрана на резонансной угловой частоте ω0, когда
Figure 00000011
Частотные свойства экрана определяются производной адмитанса по частоте вблизи области значений, где выполняется условие (1). Тогда из выражения (3) следует, что:
Figure 00000012
здесь λ0 - длина волны в свободном пространстве на резонансной частоте ω0,
Figure 00000013
сохраняется для любого углубления,
Figure 00000014
является наибольшим для углубления с наименьшим Rn. Это означает, что первое углубление с радиусом R1 определяет частотное поведение экрана в большой степени.
Чтобы сделать производную (4) меньшей, мы рассматриваем структуру, показанную на фиг.4а. Структура содержит матрицу прямых металлических штырьков длиной L и радиусом a/2, соединенных с металлической плоскостью. Мы предполагаем, что <<Tx, Ty, где Tx, Ty  являются периодами матрицы.
Детали алгоритма предоставлены в Приложении А.
Мы интересуемся отражением электромагнитной плоской волны от структуры (фиг.4b). Как только коэффициент отражения С известен, эквивалентный поверхностный импеданс структуры вычислен как
Figure 00000015
Фиг.5 показывает мнимую часть импеданса как функцию падающего угла 9. Пунктиром показана зависимость импеданса вдоль поверхности, отстоящей от идеально-проводящей плоской поверхности на расстояние L для случая, когда штыревая структура отсутствует. Чтобы оценить частотную характеристику структуры, мы отмечаем, что для падающего угла
Figure 00000016
вектор Е-поля падающей волны перпендикулярен штырькам. Следовательно, никакой электрический ток на штырьках не происходит. Волна отражается металлической плоскостью с импедансом на вершине штырьков, равным
Figure 00000017
Для скользящего падения волны θ≈0° импеданс (Appendix A)
Figure 00000018
Частотные свойства вблизи режима холостого хода одинаковы в обоих предельных случаях (6) и (7)
Figure 00000019
Видно, что (8) меньше (4). В частности, для типичного значения R1=0.25λ0 производная (8) на 30% меньше по сравнению с (4). Таким образом, такая штыревая импедансная структура обладает более широкополосными свойствами по сравнению с коаксиально-волноводной структурой.
Теперь сравним плоский и выпуклый импедансный экран. Выбираем всенаправленный магнитный ток линии как источник, чтобы выполнить более точные вычисления, мы используем технологию интегральных уравнений с числовыми схемами Galerkine.
Фиг.2с показывает электромагнитную 2-D проблему для плоского случая. Здесь мы показываем импедансную поверхность (толстая пунктирная линия), возбуждаемую всенаправленным источником, помещенным в середине структуры. Интегральное уравнение, которое будет решено,
Figure 00000020
Здесь f(x) - неизвестная функция, равная тангенциальному распределению компонента Е-поля вдоль поверхности, finc(x) - то же самое для источника, G(x, x') - функция Green's, Y(x) - распределение импеданса. В нашем случаем электромагнитное поле значительно подавляется частью импеданса круга. Следовательно, основание - идеально проводящая часть, не затрагивает результат.
Предполагаем, что структура симметрична относительно штрихпунктирной линии (фиг.6b), т.е. Y(θ)=Y(180°-θ). Уравнение, которое будет решено для круглой проблемы,
Figure 00000021
Детали решения представлены в Приложении В.
На фиг.7 показано два случая, в первом случае (отмечен треугольниками) адмитанс является гомогенным вокруг структуры с Im(Y)=0.126/W0. Во втором случае адмитанс изменяется вдоль выпуклой поверхности так, что Im(Y) становится немного отрицательным, приближаясь к горизонту.
Обычно с отрицательным Im(Y) обычная структура не работает, в нашем выпуклом случае небольшая поверхностная волна не разрушает D/U, а, скорее, способствует дальнейшему улучшению коэффициента усиления антенны для верхней полусферы. Согласно настоящему изобретению заданные распределения импедансов с законами распределения согласно фиг.7 реализуются с помощью описанной выше штыревой структуры. Длины штырей определяются выражением (6). Различные варианты конструкций выпуклых экранов с импедансной поверхностью в виде штыревой структуры показаны на фиг.10-14.
Фиг.8 показывает диаграммы направленности в передней полусфере и диаграммы отношения D/U для двух вариантов в сравнении с плоским импедансным экраном. Размеры структур выбраны 2r0=D=2λ, которые являются близкими к практическому случаю. Замечено, что выпуклый экран обеспечивает улучшение на 5 dB для диаграммы направленности антенны для направления горизонт, не затрагивая D/U. С улучшением на 10 dB D/U мог стать немного хуже, что не является критичным, поскольку уменьшение D/U в абсолютном значении замечено для угловых участков с DU(θ)≤-20dB.
Общее представление макета антенны базовой станции показано на фиг.9. Антенна содержит структуру штырьков, распределенную вдоль полусферической металлической несущей конструкции - каркаса. Диаметр сферы составляет 290 мм, но не ограничен этим размером. Антенна включает широкополосный GNSS антенный элемент.
Таким образом, согласно вышеизложенному описанию, предложена конструкция антенной системы с экраном для приема сигналов GNSS. Антенна 30 устанавливается на выносной опоре 40. Опора 40 прикреплена с помощью крепежных элементов 21 к поверхности проводящего экрана 20. Экран 20 представляет собой несущую проводящую поверхность с размещенными на ней проводящими штырями. Несущая поверхность представляет собой выпуклую поверхность предпочтительно сферической формы (эллипсоид вращения, полуэллипсоид) или ее части.
На внешней поверхности экрана 20 с помощью соединительных элементов 11 прикреплено множество рядов отдельных друг от друга проводящих элементов. В качестве таких элементов используются проводящие элементы, поперечный размер которых намного меньше их длины, например штыри, тонкие ребра, зубцы 10. Штыри 10 обладают симметрией вращения, а в меридиональной плоскости их размещение может быть произвольным.
Экран позволяет разместить внутри своего объема дополнительные схемы приема и обработки сигнала, различные датчики (оптические датчики положения и другие), МШУ или навигационный многочастотный приемник 70, например, сигналов GPS/Глонасс/GALILEO/COMPASS. Антенная система, содержащая экран и антенный элемент (приемную антенну), может помещаться в защитный всепогодный антивандальный кожух 50.
На фиг.10a-10d показаны варианты выполнения штырей на поверхности экрана. Штыри имеют различную форму поперечного сечения: цилиндрическую или прямоугольную, квадратную или любую другую. Они выполняются в форме конических элементов фиг.10c, т.е. утолщаются по мере удаления от основания экрана, на котором они закреплены, в форме цилиндрических элементов, имеющих утолщение - шляпку на конце, как показано на фиг.10b. Штыри могут быть выполнены из тонких металлических пластин г-образной формы или т-образной для прикрепления к поверхности экрана, как показано на фиг.10d.
На фиг.11a-11c показаны варианты размещения приемной антенны 30 на экране 20. В одном варианте фиг.11а антенна 30 в защитном кожухе размещена на поддерживающей опоре 40 на определенной высоте над экраном 20. В другом варианте фиг.11b антенна 30 располагается на выступающем элементе экрана 45 на определенной высоте над ним или на фиг.11с устанавливается непосредственно на поверхность экрана 20.
На фиг.12 показана конструкция экрана 20, в которой длина L штырей 10 в каждом ряду уменьшается от меридионального угла θ.
На фиг.13a-13c показаны варианты конструкции проводящего экрана с различной формой поверхности и расположенным на нем набором штырей. Форма поверхности представляет собой, соответственно: полусферу фиг.13a, части поверхности сферы фиг.13b или полную сферу фиг.13c.
На фиг.14 показан вид сверху конструкции несущего экрана 20, имеющего сферическую форму для установки четырех рядов штырей. Позицией 15 обозначены соответствующие посадочные места для крепления штырей, а позицией 30 обозначено место для размещения антенны, например микрополосковой двухдиапазонной антенны.
Мы показали, что разработанная конструкция импедансного экрана на основе штыревой структуры позволяет по сравнению с choke ring экраном заметно расширить ДН при сохранении требуемого отношения характеристики D/U. Также предложенная конструкция имеет меньший вес, проста в изготовлении и настройке и позволяет обеспечить более эффективное использование конструкции для размещения внутри объема экрана различных дополнительных элементов и схем обработки сигнала, схем питания.
Хотя выше были описаны различные варианты осуществления настоящего изобретения, следует понимать, что они были представлены только для примера, а не для ограничения. Таким образом, объем изобретения не должен ограничиваться вышеописанными вариантами осуществления.
Приложение А. Численная процедура вычисления импеданса штырьевой структуры.
Рассмотрим падение плоской однородной волны вертикальной поляризации на бесконечную периодическую решетку штырей (рис.3a), расположенных на металлическом экране.
Figure 00000022
Из граничных условий для касательной составляющей электрического поля на поверхности штыря следует уравнение для электрического тока штыря
Figure 00000023
:
Figure 00000024
Здесь
Figure 00000025
- электрическое поле суммы падающей и отраженной от плоского экрана волн, S - поверхность штыря.
Уравнение (A2) решалось методом моментов с использованием разложения электрического тока по треугольному базису с носителем 2Δz. Считалось, что азимутальные вариации тока штыря отсутствуют, что справедливо для малых радиусов штыря а<<λ.
Figure 00000026
где
Figure 00000027
Тогда (A2) сводится к системе линейных уравнений с неизвестными Ia. Элементы матрицы системы линейных уравнений представляют собой взаимные сопротивления:
Figure 00000028
Здесь электрическое поле токов штыря находилось путем разложения по пространственным гармоникам Флоке
Figure 00000029
:
Figure 00000030
Коэффициенты Anm могут быть найдены с помощью леммы Лоренца.
После определения коэффициентов Iα может быть вычислено полное поле и соответственно импеданс.
Численно было показано, что при расстояниях Tx и Ty порядка 0.1λ распределение тока по штырю близко к косинусному, т.е. ток по штырю может быть представлен в виде:
Figure 00000031
Тогда амплитуда I определяется аналитически, и при θ=90° получается выражение (7).
Приложение В.
Рассмотрим плоскость длиной L c реактивным поверхностным адмитансом Y(x), возбуждаемую сторонним источником в виде нити магнитного тока, расположенной в центре экрана.
Figure 00000032
Здесь
Figure 00000033
- поверхностная плотность магнитного тока, U0 - амплитуда в вольтах.
Наличие импедансной границы можно описать с помощью эквивалентного магнитного тока на идеально-проводящем экране:
Figure 00000034
Тогда граничные условия имеют вид:
Figure 00000035
Представляя поле Hy в виде интеграла по поверхности экрана:
Figure 00000036
получаем уравнение (9). Это уравнение решалось численно методом Галеркина, ток
Figure 00000037
представлялся путем разложения по кусочно-постоянному базису:
Figure 00000038
где:
Figure 00000039
Элементы матрицы СЛАУ представляют взаимные проводимости источников (В7), в диагональных элементах упомянутые проводимости суммируются с адмитансом поверхности:
Figure 00000040
где
Figure 00000041
Проводимости (B8) вычислялись в приближении бесконечного экрана:
Figure 00000042
После вычисления распределения магнитного тока
Figure 00000043
Figure 00000044
диаграмма направленности вычислялась с помощью выражения:
Figure 00000045
Здесь диаграмма направленности Fq(x,θ) элементарного источника, расположенного на металлическом экране длиной L, вычислялась в приближении Кирхгофа.
Уравнение (10) для круглой импедансной поверхности получается аналогично. При этом магнитный ток на поверхности цилиндра также представляется разложением по кусочно-постоянному базису:
Figure 00000046
где
Figure 00000047
Поле представлялось в виде суммы цилиндрических гармоник:
Figure 00000048
тогда выражения для элементов матрицы СЛАУ и диаграммы точечного источника Fq(θ) имеют вид:
Figure 00000049
Figure 00000050
Диаграмма направленности антенны вычислена как
Figure 00000051

Claims (16)

1. Экран для уменьшения эффекта приема многолучевого сигнала, состоящий из: проводящего экрана, имеющий форму выпуклой поверхности на, по меньшей мере, части внешней поверхности которого размещено множество рядов отдельных друг от друга проводящих элементов, в котором упомянутые элементы размещаются рядами на поверхности экрана таким образом, что каждый ряд при повороте на заданный угол имел симметрию вращения.
2. Экран по п.1, в котором проводящие элементы представляют собой штыри, поперечный размер которых меньше их длины.
3. Экран по п.2, в котором штыри выполнены в виде элементов различного поперечного сечения, например, цилиндрических или прямоугольных элементов, конических элементов, цилиндрические со шляпкой на конце, трапеции, т-образной формы или г-образной формы на конце.
4. Экран по п.2, в котором используют, по меньшей мере, два ряда штырей.
5. Экран по п.2, в котором зависимость плотности размещения штырей от угла места меняется по мере их приближения к экваториальной плоскости.
6. Экран по п.2, в котором штыри размещают таким образом, чтобы они имели симметрию вращения по азимуту.
7. Экран по п.2, в котором длина штырей от основания сферы меньше, чем их поперечный размер, и составляет порядка λ/4, где λ - длина волны принимаемого сигнала, расстояние между внешними концами в ряде между штырями составляет от 0.05λ до 0.3λ.
8. Экран по п.6, в котором длина штырей, расположенных по меридианной плоскости, уменьшается от верхней точки экрана к основанию экрана.
9. Экран по любому из пп.1-8, в котором упомянутая выпуклая поверхность представляет полную сферу или, по меньшей мере, часть поверхности сферы.
10. Экран по п.9, в котором диаметр упомянутой сферы составляет от λ до 3λ.
11. Антенная система с экраном для уменьшения эффекта приема многолучевого сигнала, включающая экран для уменьшения эффекта приема многолучевого сигнала, выполненный по любому из пп.1-10, и антенну, размещенную сверху упомянутого экрана.
12. Антенная система с экраном по п.11, в которой антенна расположена непосредственно на упомянутом экране.
13. Антенная система с экраном по п.11, в которой антенна расположена на поддерживающей опоре на определенной высоте от упомянутого экрана.
14. Антенная система с экраном по п.14, в которой опора выполнена из проводящего материала.
15. Антенная система с экраном по п.14, в которой опора выполнена из диэлектрика и представляет собой диэлектрические проставки.
16. Антенная система с экраном по любому из пп.12-15, в которой антенна соединена с малошумящим усилителем и/или приемником GPS, размещенными внутри упомянутого экрана.
RU2010114835/07A 2010-04-14 2010-04-14 Экран для подавления многолучевого приема сигналов и антенная система с таким экраном RU2446522C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010114835/07A RU2446522C2 (ru) 2010-04-14 2010-04-14 Экран для подавления многолучевого приема сигналов и антенная система с таким экраном

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010114835/07A RU2446522C2 (ru) 2010-04-14 2010-04-14 Экран для подавления многолучевого приема сигналов и антенная система с таким экраном

Publications (2)

Publication Number Publication Date
RU2010114835A RU2010114835A (ru) 2011-11-27
RU2446522C2 true RU2446522C2 (ru) 2012-03-27

Family

ID=45317330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010114835/07A RU2446522C2 (ru) 2010-04-14 2010-04-14 Экран для подавления многолучевого приема сигналов и антенная система с таким экраном

Country Status (1)

Country Link
RU (1) RU2446522C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168505A1 (en) * 2013-04-11 2014-10-16 Llc "Topcon Positioning Systems" Ground planes for reducing multipath reception by antennas
WO2015108437A1 (en) * 2014-01-16 2015-07-23 Llc "Topcon Positioning Systems" Methods for modeling multipath reflections of gnss signals using a test installation and apparatuses for implementing test methods
GB2561997A (en) * 2013-04-11 2018-10-31 Topcon Positioning Systems Llc Ground planes for reducing multipath reception by antennas
US10403972B2 (en) 2013-04-11 2019-09-03 Topcon Positioning Systems, Inc. Ground planes for reducing multipath reception by antennas
RU2796579C1 (ru) * 2022-10-20 2023-05-25 Федеральное государственное бюджетное учреждение науки Института астрономии Российской академии наук Многодиапазонная совмещенная антенна

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2029412A1 (de) * 1970-06-10 1971-12-16 Licentia Gmbh Antenne aus mehreren Einzelstrahlern
US6040805A (en) * 1998-05-08 2000-03-21 Antcom Corp. Low profile ceramic choke
US6278407B1 (en) * 1998-02-24 2001-08-21 Topcon Positioning Systems, Inc. Dual-frequency choke-ring ground planes
US6411261B1 (en) * 2001-02-26 2002-06-25 E-Tenna Corporation Artificial magnetic conductor system and method for manufacturing
RU2368040C1 (ru) * 2008-05-05 2009-09-20 Ооо "Топкон Позишионинг Системс Снг" Антенный блок для глобальной навигационной спутниковой системы (gnss)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2029412A1 (de) * 1970-06-10 1971-12-16 Licentia Gmbh Antenne aus mehreren Einzelstrahlern
US6278407B1 (en) * 1998-02-24 2001-08-21 Topcon Positioning Systems, Inc. Dual-frequency choke-ring ground planes
US6040805A (en) * 1998-05-08 2000-03-21 Antcom Corp. Low profile ceramic choke
US6411261B1 (en) * 2001-02-26 2002-06-25 E-Tenna Corporation Artificial magnetic conductor system and method for manufacturing
RU2368040C1 (ru) * 2008-05-05 2009-09-20 Ооо "Топкон Позишионинг Системс Снг" Антенный блок для глобальной навигационной спутниковой системы (gnss)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168505A1 (en) * 2013-04-11 2014-10-16 Llc "Topcon Positioning Systems" Ground planes for reducing multipath reception by antennas
GB2528204A (en) * 2013-04-11 2016-01-13 Llc Topcorn Positioning Systems Ground planes for reducing multipath reception by antennas
RU2602772C2 (ru) * 2013-04-11 2016-11-20 Общество с ограниченной ответственностью "Топкон Позишионинг Системс" Экраны для уменьшения эффекта многолучевого приема
US9673519B2 (en) 2013-04-11 2017-06-06 Topcon Positioning Systems, Inc. Ground planes for reducing multipath reception by antennas
GB2528204B (en) * 2013-04-11 2018-09-26 Topcon Positioning Systems Llc Ground planes for reducing multipath reception by antennas
GB2561997A (en) * 2013-04-11 2018-10-31 Topcon Positioning Systems Llc Ground planes for reducing multipath reception by antennas
GB2561997B (en) * 2013-04-11 2019-05-01 Topcon Positioning Systems Llc Ground planes for reducing multipath reception by antennas
US10403972B2 (en) 2013-04-11 2019-09-03 Topcon Positioning Systems, Inc. Ground planes for reducing multipath reception by antennas
WO2015108437A1 (en) * 2014-01-16 2015-07-23 Llc "Topcon Positioning Systems" Methods for modeling multipath reflections of gnss signals using a test installation and apparatuses for implementing test methods
RU2615012C2 (ru) * 2014-01-16 2017-04-03 ООО "Топкон Позишионинг Системс" Способы моделирования многолучевых отражений сигналов глобальных навигационных спутниковых систем с помощью испытательных стендов и устройства для реализации способов испытаний
US9702978B2 (en) 2014-01-16 2017-07-11 Topcon Positioning Systems, Inc. Methods for modeling multipath reflections of GNSS signals using a test installation and apparatuses for implementing test methods
RU2796579C1 (ru) * 2022-10-20 2023-05-25 Федеральное государственное бюджетное учреждение науки Института астрономии Российской академии наук Многодиапазонная совмещенная антенна

Also Published As

Publication number Publication date
RU2010114835A (ru) 2011-11-27

Similar Documents

Publication Publication Date Title
US8441409B2 (en) Broadband convex ground planes for multipath rejection
US8174450B2 (en) Broadband micropatch antenna system with reduced sensitivity to multipath reception
US8842045B2 (en) Compact multipath-resistant antenna system with integrated navigation receiver
Yang et al. Comparison of two decade-bandwidth feeds for reflector antennas: The eleven antenna and quadridge horn
RU2446522C2 (ru) Экран для подавления многолучевого приема сигналов и антенная система с таким экраном
Hamad et al. High gain triple band microstrip antenna based on metamaterial super lens for wireless communication applications
Wang et al. Circularly Polarized Wideband Uniplanar Crossed-Dipole Antenna With Folded Striplines and Rectangular Stubs
US20150009084A1 (en) Electromagnetic band gap device
US10403972B2 (en) Ground planes for reducing multipath reception by antennas
Liu et al. Analysis of Performance Degradation Introduced by Radome for High‐Precision GNSS Antenna
RU2602772C2 (ru) Экраны для уменьшения эффекта многолучевого приема
Virone et al. Broadband array element for the SKA low-frequency aperture array
Yang et al. Millimeter wave Fabry-Perot resonator antenna fed by CPW with high gain and broadband
Bernhardt Radar backscatter from conducting polyhedral spheres
RU2483404C2 (ru) Компактная антенная система для уменьшения эффекта многолучевого приема сигналов с интегрированным приемником
Kim et al. 0.4-1.2 GHz hybrid Al-CFRP open-boundary quad-ridge horn
Kyriakou et al. Spectral Smoothness of ground plane backed Log-Periodic Dipole Antennas for radioastronomical applications
Liu et al. Dielectric lens with stacked cone‐shaped cavity for broadside radiation enhancement of circularly polarised patch antenna
Navarro et al. Modeling of thin curved sheets with the curvilinear FDTD
Ahmad et al. Ground plane impact on quadrifilar helix antenna performance with respect to deployment heights
Younes et al. TSA antennas performance comparison for focal plane array
Cavallo Applications of Artificial Dielectric Layers for mm-Wave Antennas
Sarkis et al. Thick Vivaldi antenna for focal plane applications
Sharma et al. Investigations on beam focusing properties of circular monopole array antenna on a finite ground plane
Basilio et al. A New GPS Microstrip Antenna with Low Susceptibility to Multipath Interference

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20130329

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130415