RU2445262C1 - Способ производства аммиака - Google Patents

Способ производства аммиака Download PDF

Info

Publication number
RU2445262C1
RU2445262C1 RU2011100098/05A RU2011100098A RU2445262C1 RU 2445262 C1 RU2445262 C1 RU 2445262C1 RU 2011100098/05 A RU2011100098/05 A RU 2011100098/05A RU 2011100098 A RU2011100098 A RU 2011100098A RU 2445262 C1 RU2445262 C1 RU 2445262C1
Authority
RU
Russia
Prior art keywords
conversion
heat
natural gas
burner
gas
Prior art date
Application number
RU2011100098/05A
Other languages
English (en)
Inventor
Дмитрий Львович Астановский (RU)
Дмитрий Львович Астановский
Лев Залманович Астановский (RU)
Лев Залманович Астановский
Original Assignee
Дмитрий Львович Астановский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Львович Астановский filed Critical Дмитрий Львович Астановский
Priority to RU2011100098/05A priority Critical patent/RU2445262C1/ru
Application granted granted Critical
Publication of RU2445262C1 publication Critical patent/RU2445262C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение может быть использовано в химической промышленности. Природный газ компримируют, подогревают и очищают от соединений серы в реакторе радиально-спирального типа. Осуществляют двухступенчатую каталитическую конверсию метана под давлением в разделенном на две секции реакторе радиально-спирального типа. В первой секции при температуре 800-1000°С осуществляют паровую конверсию с использованием тепла газа, конвертированного во второй ступени, а также дополнительно сжигаемых на горелке части природного газа, продувочных и танковых газов. Температуру дымовых газов после горелки поддерживают в пределах 900-1100°С путем рециркуляции части охлажденных дымовых газов с подмешиванием их к воздуху, подаваемому на горелку. Подаваемую на горелку смесь газов предварительно подогревают с использованием тепла дымовых газов из первой секции. Во второй секции при температуре 900-1400°С осуществляют паровоздушную конверсию. Тепло конвертированного газа используют для подогрева исходного природного газа и для генерации водяного пара. Каталитическую конверсию оксида углерода осуществляют в одну ступень в реакторе радиально-спирального типа при температуре 200-220°С, которую поддерживают путем водяного испарительного охлаждения. Азотоводородную смесь очищают от диоксида углерода, от кислородсодержащих соединений в реакторе радиально-спирального типа, компримируют и подают на синтез аммиака в реактор радиально-спирального типа. Способ является экономичным и экологически чистым. 5 з.п. ф-лы, 1 ил.

Description

Изобретение относится к процессам химической технологии, а именно к способам производства аммиака из природного газа (ПГ), и может быть использовано в химической и нефтехимической промышленности.
Известен способ получения аммиака из углеводородного сырья, водяного пара, воздуха и кислорода, включающий очистку сырья от соединений серы, парокислородовоздушную каталитическую конверсию метана в шахтном конверторе, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородсодержащих соединений, компримирование и проведение синтеза аммиака в замкнутом цикле (Справочник азотчика. - М., Химия, 1967, т.1, с.95-98, 211, 366).
Основным недостатком данного способа является использование технического кислорода при проведении конверсии метана, что сопряжено с большими капитальными и энергетическими затратами на кислородную установку.
Известен также способ получения аммиака из ПГ, предусматривающий очистку ПГ от соединений серы, двухступенчатую паровую (I ступень) и паровоздушную (II ступень) конверсию ПГ соответственно в трубчатой печи и в шахтном реакторе, двухступенчатую конверсию оксида углерода, очистку конвертированного газа от диоксида углерода, метанирование оксида и диоксида углерода, компрессию азотоводородной смеси, синтез аммиака при давлении свыше 30 МПа (Справочник азотчика. - М., Химия, 1986, т.1, с.83, 84, 113, 213, 222, 360-364).
Основными недостатками данного способа являются следующие:
- паровая конверсия ПГ осуществляется в трубчатой печи, для которой характерны большие размеры и металлоемкость, а также недостаточная надежность, связанная с частым прогоранием реакционных труб, несмотря на использование для их изготовления дорогостоящих жаропрочных никельсодержащих сплавов;
- для паровоздушной конверсии ПГ используется шахтный реактор, для которого характерны большое гидравлическое сопротивление, неравномерное распределение реагентов по зернистому слою катализатора, а также неравномерное распределение температур по высоте и по поперечному сечению аппарата;
- для размещения трубчатой печи и шахтного реактора необходима большая производственная площадь;
- проведение каталитической конверсии ПГ последовательно в двух аппаратах сопровождается большими потерями тепла как непосредственно от аппаратов, так и от соединяющей их «горячей» трубы, по которой частично конвертированный газ из трубчатой печи подается в шахтный конвертор;
- проведение синтеза аммиака при высоком давлении (свыше 30 МПа) связано с повышенными капитальными затратами и с большим расходом энергии на привод компрессоров.
Известен также наиболее близкий к предлагаемому способу и принятый в качестве прототипа способ получения аммиака из углеводородного сырья, водяных паров и воздуха, включающий компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородсодержащих соединений, компримирование, синтез аммиака в замкнутом цикле, использование неочищенного от соединений серы сырья в качестве топлива, утилизацию тепла дымовых газов (ДГ) и их выделение в окружающую среду; отличительная особенность данного способа заключается в том, что незначительную часть углеводородного сырья, прошедшего очистку от соединений серы, сжигают в смеси с компримированным воздухом, а полученные ДГ подают на паровоздушную каталитическую конверсию метана ((патент RU №2196733, М. кл. С01С 1/04, опубл. 20.01.2003, бюл. №2). Как следует из примеров, приведенных в патенте, предусмотрено проведение синтеза аммиака при давлении 33,5 МПа.
Недостатки способа заключаются в следующем:
- в качестве топлива используют сырье, не очищенное от соединений серы, что приводит к выбросу в окружающую среду вместе с ДГ диоксида серы;
- сжигание части углеводородного сырья, прошедшего очистку от соединений серы, в смеси с компримированным воздухом, и подача полученных ДГ на паровоздушную каталитическую конверсию метана, приводит к усложнению и удорожанию установки;
- проведение синтеза аммиака при высоком давлении (свыше 33,5 МПа) связано с повышенными капитальными затратами и с большим расходом энергии на привод компрессоров;
- преимущества способа весьма незначительны - как указано в патенте, по сравнению с принятым в нем прототипе, количество газовых выбросов в атмосферу сокращаются всего на 0,18%, а расход углеводородного сырья уменьшается всего на 0,12%.
Задачей предлагаемого изобретения является повышение экономичности получения аммиака.
Задачей изобретения является также снижение металлоемкости отдельных элементов схемы и установки производства аммиака в целом;
Задачей изобретения является также уменьшение количества ДГ, выбрасываемых в атмосферу;
Задачей изобретения является также исключение или минимизация выбросов вредных веществ (СО и NOx) в окружающую среду с отходящими ДГ.
Поставленная задача достигается тем, что в способе производства аммиака из природного газа, включающем компримирование, подогрев и очистку природного газа от соединений серы, двухступенчатую каталитическую конверсию метана под давлением, в том числе паровую конверсию в первой ступени и паровоздушную конверсию во второй ступени, с использованием тепла газа, конвертированного во второй ступени, а также дополнительно сжигаемых на горелке части природного газа, продувочных и танковых газов для проведения конверсии в первой ступени процесса конверсии, каталитическую конверсию содержащегося в конвертированном газе оксида углерода с получением азотоводородной смеси, очистку ее от диоксида углерода, очистку от кислородсодержащих соединений путем метанирования, компримирование очищенной азотоводородной смеси, синтез аммиака в замкнутом цикле и выделение полученного аммиака с последующей выдачей его потребителю, а также утилизацию тепла ДГ и их выделение в окружающую среду, согласно изобретению предусмотрено следующее:
- двухступенчатую конверсию природного газа осуществляют в одном, разделенном на две секции реакторе радиально-спирального типа, с проведением процесса паровой конверсии в первой секции при температуре 800-1000°С и паровоздушной конверсии во второй секции при температуре 900-1400°С;
- каталитическую конверсию оксида углерода проводят при температуре 200-220°С в одну ступень в реакторе радиально-спирального типа, причем требуемую температуру процесса поддерживают путем водяного испарительного охлаждения с выдачей товарного насыщенного водяного пара потребителю;
- очистку природного газа от соединений серы, очистку азотоводородной смеси от кислородсодержащих соединений и синтез аммиака проводят также в реакторах радиально-спирального типа;
- температуру ДГ после горелки перед первой секцией реактора конверсии природного газа поддерживают в пределах 900-1100°С с помощью рециркуляции части охлажденных ДГ с подмешиванием их к воздуху, подаваемому на горелку;
- тепло конвертированного газа используют для подогрева исходного природного газа перед сероочисткой и для генерации водяного пара, направляемого затем для проведения паровой и паровоздушной конверсии природного газа, а тепло ДГ после первой секции реактора конверсии природного газа используют для предварительного подогрева подаваемых на горелку смеси воздуха с охлажденными ДГ, продувочных и танковых газов;
- синтез аммиака проводят при давлении 12-18 МПа;
- в качестве топливного газа для сжигания на горелку подают природный газ, очищенный от соединений серы;
- сжигание топливного, продувочных и танковых газов перед первой ступенью реактора конверсии природного газа осуществляют на горелке беспламенного типа;
- в процессе утилизации тепла ДГ путем предварительного подогрева подаваемых на горелку смеси воздуха с охлажденными ДГ, продувочными и танковыми газами, ДГ охлаждают до температуры 70-80°С, после чего их перед сбросом в окружающую среду доохлаждают хладоносителем от внешнего источника в концевом теплообменнике до температуры 30-50°С, а образующийся водяной конденсат сепарируют и направляют в установку водоподготовки;
- процессы рекуперации и утилизации тепла технологических и энергетических потоков рабочих сред, а также отвод тепла от рабочих сред хладоносителями от внешних источников проводят преимущественно в теплообменных аппаратах радиально-спирального типа.
Предлагаемый способ имеет ряд существенных преимуществ по сравнению с известными техническими решениями, в том числе:
1) Проведение двухступенчатой паровой и паровоздушной каталитической конверсии ПГ в одном двухсекционном реакторе радиально-спирального типа вместо двух аппаратов (трубчатой печи и шахтного реактора) позволяет уменьшить габариты, занимаемую производственную площадь и потери тепла (в частности, за счет исключения «горячей» трубы), снизить металлоемкость и стоимость блока конверсии ПГ.
2) Использование реактора радиально-спирального типа с водяным испарительным охлаждением для каталитической конверсии оксида углерода дает возможность проводить процесс в одну ступень со стабильным поддержанием оптимальной температуры конверсии и более полной утилизацией тепла конвертированного газа.
3) Использование реакторов радиально-спирального типа для очистки природного газа от соединений серы, очистки азотоводородной смеси от кислородсодержащих соединений, синтеза аммиака, а также для проведения каталитических процессов на других этапах реализации способа обеспечивает эффективный подвод тепла непосредственно в зону реакции при эндотермических каталитических процессах и отвод тепла непосредственно из зоны реакции при экзотермических каталитических процессах с поддержанием оптимального температурного режима на всем пути реагентов, а также позволяет использовать мелкозернистый катализатор при низкой потере давления реагентов, проходящих через зернистый слой; причем использование мелкозернистых катализаторов существенно уменьшает металлоемкость и габаритные размеры аппаратов.
4) Проведение процессов подвода и отвода тепла при внутренней рекуперации, а также при теплоотдаче к внешним источникам в теплообменных аппаратах радиально-спирального типа позволяет существенно интенсифицировать теплопередачу, уменьшить потери напора рабочих сред, а также массу и габариты аппаратов.
5) Благодаря глубокой утилизации тепла конвертированного газа и ДГ достигается существенное снижение расхода ПГ в качестве топлива и количества ДГ, а соответственно и парниковых газов, сбрасываемых в окружающую среду; при этом увеличивается выход конечного продукта - аммиака на единицу расходуемого ПГ.
6) С помощью рециркуляции части охлажденных ДГ с подмешиванием их к воздуху, подаваемому на горелку, обеспечивается поддержание температуры ДГ за горелкой перед первой ступенью реактора конверсии ПГ в пределах 900-1100°С, благодаря чему исключается образование в процессе горения и выброс с ДГ в окружающую среду вредных примесей (СО и NOx).
7) Благодаря использованию в качестве топливного газа ПГ, очищенного от соединений серы, исключается выброс в окружающую среду с ДГ диоксида серы.
8) Благодаря использованию горелки беспламенного типа обеспечивается устойчивый процесс горения, несмотря на пониженное содержание кислорода в смеси воздуха и рециркулирующих ДГ, подводимой к горелке.
9) Снижение давления, при котором в замкнутом цикле осуществляется синтез аммиака, до 12-18 МПа позволяет существенно уменьшить капитальные затраты на установку, а также расход энергии на компримирование азотоводородной смеси.
10) Охлаждение ДГ в процессе внутренней рекуперации тепла до температуры 70-80°С и последующее доохлаждение их в концевом теплообменнике хладоносителем от внешнего источника до температуры 30-50°С перед сбросом в окружающую среду позволяет выделять и сепарировать значительное количество конденсата, направляемого затем в установку водоподготовки.
Ниже изобретение поясняется конкретным примером его выполнения и прилагаемым чертежом, на котором изображена принципиальная технологическая схема производства аммиака из природного газа (ПГ).
На схеме обозначены следующие элементы:
1 - газовый компрессор; 2 - воздушный компрессор; 3 - теплообменник; 4 - блок сероочистки; 5 - каталитический реактор конверсии ПГ; 6 и 7 - соответственно I и II секции реактора 5 конверсии ПГ; 8 и 9 - радиально-спиральные теплообменные поверхности; 10 - канал конвертируемого газа; 11 - канал конвертированного газа; 12 - горелка; 13 - паровой котел-утилизатор; 14 - каталитический реактор конверсии оксида углерода; 15 - воздухоподогреватель; 16 - подогреватель продувочных и танковых газов; 17 - водяной холодильник; 18 - сепаратор; 19 -дымосос; 20 - вентилятор; 21 - блок очистки АВС от диоксида углерода; 22 - блок метанирования; 23 - компрессор АВС; 24 - отделение синтеза аммиака; 25 - сборник жидкого аммиака; 26 - узел водоподготовки; 27 и 28 - водяные насосы; 29-47 - линии подвода-отвода рабочих сред.
Природный газ (ПГ) с давлением 0,4 МПа подводится к газовому компрессору 1, в котором сжимается до давления 4 МПа с повышением температуры до 145°С, нагревается в теплообменнике 3 до температуры 340°С конвертированным газом, поступающим по линии 29 из реактора 5, и подается в блок сероочистки 4. Затем ПГ, очищенный от соединений серы, разделяется на два потока: первый поток смешивается с насыщенным водяным паром, поступающим по линии 30 из котла-утилизатора 13, после чего образовавшаяся смесь по линии 31 подводится к секции 6 реактора 5, где осуществляется первая ступень каталитической конверсии ПГ - паровая конверсия.
Второй поток ПГ, очищенного от соединений серы, подводится по линии 32 на сжигание к горелке 12. Газ, конвертированный в секции 6, с температурой 900°С по каналу 10 подается в верхнюю полость секции 7 реактора 5 для проведения второй ступени конверсии ПГ - паровоздушной конверсии.
Воздух, необходимый для проведения паровоздушной конверсии, поступает в установку по линии 33, сжимается компрессором 2 до давления 4 МПа, смешивается с водяным паром, подводимым по линии 34 от котла-утилизатора 13, и по линии 35 подается в верхнюю полость секции 7, где смешивается с конвертируемым газом, поступающим по каналу 10.
Конвертированный газ из секции 7 с температурой 930°С по каналу 11 поступает в размещенную в секции 6 радиально-спиральную теплообменную поверхность 8 и охлаждается в ней до температуры 550°С, отдавая тепло конвертируемому ПГ для покрытия эндотермического эффекта процесса паровой конверсии.
Из радиально-спиральной поверхности 8 конвертированный газ направляется через теплообменник 3, охлаждаясь до температуры 515°С, затем через котел-утилизатор 13, в котором генерируется водяной пар с давлением 4 МПа, необходимый для проведения паровой и паровоздушной конверсии ПГ. Питательная вода подается в котел-утилизатор 13 по линии 36 насосом 27 из установки водоподготовки 26.
Конвертированный газ, охлажденный в котле-утилизаторе 13 до температуры 215°С, подается по линии 37 в каталитический реактор 14 радиально-спирального типа, в котором в одну ступень осуществляется конверсия СО. Постоянная температура экзотермического процесса конверсии СО в реакторе 14 в пределах 200-220°С поддерживается с помощью водяного испарительного охлаждения, вода для которого подается в реактор 14 насосом 28 по линии 38 из установки водоподготовки 26. Насыщенный водяной пар с давлением 1,5 МПа, образующийся в реакторе 14 в процессе испарительного охлаждения, направляется по линии 39 потребителю.
После реактора 14 полученная азотоводородная смесь (АВС) проходит блок очистки от диоксида углерода 21, блок метанирования 22 и направляется в компрессор 23, в котором сжимается до давления 15 МПа, а затем по линии 40 направляется в отделение синтеза аммиака 24, процесс в котором осуществляется в замкнутом цикле. Полученный жидкий аммиак сливается в сборник аммиака 25, а продувочные и танковые газы отводятся по линии 43.
Дополнительное тепло, необходимое для проведения эндотермической реакции паровой конверсии ПГ, вносится в секцию 6 с помощью размещенной в ней радиально-спиральной теплообменной поверхности 9, обогреваемой ДГ, поступающими с температурой 915°С из горелки 12 беспламенного типа, к которой подводятся следующие среды: воздух, отбираемый из линии 33 перед компрессором 2 по линии 41; топливная часть ПГ, поступающая по линии 32; часть охлажденных ДГ, отбираемых по линии 42 за напорным патрубком дымососа 19; продувочные и танковые газы, которые отводятся по линии 43 из отделения синтеза аммиака 24. При этом холодный воздух и ДГ, поступающие соответственно по линии 41 и линии 42, смешиваются в линии 44 в соотношении, обеспечивающем поддержание адиабатической температуры горения в пределах 900-1100°С, прокачиваются вентилятором 20 через воздухоподогреватель 15, после нагрева в котором до температуры 550°С по линии 45 подводятся к горелке 12; продувочные и танковые газы подогреваются в теплообменнике 16 до температуры 230°С, после чего по линии 46 подводятся к горелке 12.
ДГ, отдав тепло конвертируемому газу через стенки теплообменной поверхности 9, размещенной в секции 6, и охладившись до температуры 570°С, прокачиваются дымососом 19 последовательно через воздухоподогреватель 15 и теплообменник 16, нагревая соответственно смесь воздуха и охлажденных ДГ, а также продувочные и танковые газы; в результате температура ДГ снижается до 75°С, после чего они дополнительно охлаждаются до температуры 40°С в теплообменнике 17 водой от внешнего источника.
Конденсат, образовавшийся при охлаждении ДГ, отделяется в сепараторе 18 и по линии 47 направляется в установку водоподготовки 26, а осушенные охлажденные ДГ откачиваются дымососом 19, после чего разделяются на два потока: одна часть сбрасывается в окружающую среду, а вторая - по линии 42 направляется на смешение с холодным воздухом, подаваемым вентилятором 20 через воздухоподогреватель 15 на горелку 12.

Claims (6)

1. Способ производства аммиака из природного газа, включающий компримирование, подогрев и очистку природного газа от соединений серы, двухступенчатую каталитическую конверсию метана под давлением, в том числе паровую конверсию в первой ступени и паровоздушную конверсию во второй ступени, с использованием тепла газа, конвертированного во второй ступени, а также дополнительно сжигаемых на горелке части природного газа, продувочных и танковых газов для проведения конверсии в первой ступени процесса конверсии, каталитическую конверсию содержащегося в конвертированном газе оксида углерода с получением азотоводородной смеси, очистку ее от диоксида углерода, очистку от кислородсодержащих соединений путем метанирования, компримирование очищенной азотоводородной смеси, синтез аммиака в замкнутом цикле и выделение полученного аммиака с последующей выдачей его потребителю, а также утилизацию тепла дымовых газов и их выделение в окружающую среду, отличающийся тем, что двухступенчатую конверсию природного газа осуществляют в разделенном на две секции реакторе радиально-спирального типа с проведением процесса паровой конверсии в первой секции при температуре 800-1000°С и паровоздушной конверсии во второй секции при температуре 900-1400°С, каталитическую конверсию оксида углерода проводят при температуре 200-220°С в одну ступень в реакторе радиально-спирального типа, причем требуемую температуру процесса поддерживают путем водяного испарительного охлаждения с выдачей товарного насыщенного водяного пара потребителю, очистку природного газа от соединений серы, очистку азотоводородной смеси от кислородсодержащих соединений, и синтез аммиака проводят также в реакторах радиально-спирального типа, причем температуру дымовых газов после горелки перед реактором конверсии природного газа первой ступени поддерживают в пределах 900-1100°С с помощью рециркуляции части охлажденных дымовых газов с подмешиванием их к воздуху, подаваемому на горелку, при этом тепло конвертированного газа используют для подогрева исходного природного газа перед сероочисткой и для генерации водяного пара, направляемого затем для проведения паровой и паровоздушной конверсии природного газа, а тепло дымовых газов после реактора конверсии природного газа первой ступени используют для предварительного подогрева подаваемых на горелку смеси воздуха с дымовыми газами, продувочными и танковыми газами.
2. Способ производства аммиака по п.1, отличающийся тем, что синтез аммиака проводят при давлении 12-18 МПа.
3. Способ производства аммиака по п.1, отличающийся тем, что в качестве топливного газа для сжигания на горелку подают природный газ, очищенный от соединений серы.
4. Способ производства аммиака по п.1, отличающийся тем, что сжигание топливного, продувочных и танковых газов перед первой ступенью реактора конверсии природного газа осуществляют на горелке беспламенного типа.
5. Способ производства аммиака по п.1, отличающийся тем, что в процессе утилизации тепла дымовых газов путем предварительного подогрева подаваемых на горелку смеси воздуха с дымовыми газами, продувочными и танковыми газами, дымовые газы охлаждают до температуры 70-80°С, после чего их перед сбросом в окружающую среду доохлаждают хладоносителем от внешнего источника в концевом теплообменнике до температуры 30-50°С, а образующийся водяной конденсат сепарируют и направляют в установку водоподготовки.
6. Способ производства аммиака по п.1, отличающийся тем, что процессы рекуперации и утилизации тепла технологических и энергетических потоков рабочих сред, а также отвод тепла от рабочих сред хладоносителями от внешних источников проводят преимущественно в теплообменных аппаратах радиально-спирального типа.
RU2011100098/05A 2011-01-11 2011-01-11 Способ производства аммиака RU2445262C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011100098/05A RU2445262C1 (ru) 2011-01-11 2011-01-11 Способ производства аммиака

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011100098/05A RU2445262C1 (ru) 2011-01-11 2011-01-11 Способ производства аммиака

Publications (1)

Publication Number Publication Date
RU2445262C1 true RU2445262C1 (ru) 2012-03-20

Family

ID=46030080

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011100098/05A RU2445262C1 (ru) 2011-01-11 2011-01-11 Способ производства аммиака

Country Status (1)

Country Link
RU (1) RU2445262C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808330C1 (ru) * 2023-08-30 2023-11-28 Публичное акционерное общество "НОВАТЭК" Способ получения низкоуглеродного аммиака из природного газа "Аммиак декарбонизированный - 2500"

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2196733C1 (ru) * 2001-05-23 2003-01-20 Московский государственный университет инженерной экологии Способ получения аммиака
RU2252914C1 (ru) * 2004-05-28 2005-05-27 Астановский Дмитрий Львович Способ получения синтез-газа

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2196733C1 (ru) * 2001-05-23 2003-01-20 Московский государственный университет инженерной экологии Способ получения аммиака
RU2252914C1 (ru) * 2004-05-28 2005-05-27 Астановский Дмитрий Львович Способ получения синтез-газа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СЕМЕНОВ В.П. Производство аммиака. - М.: Химия, 1985, с.24-25, 44-45, 52-57. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808874C1 (ru) * 2023-08-23 2023-12-05 Публичное акционерное общество "НОВАТЭК" Способ получения низкоуглеродного аммиака из природного газа "Аммиак декарбонизированный-3000"
RU2808330C1 (ru) * 2023-08-30 2023-11-28 Публичное акционерное общество "НОВАТЭК" Способ получения низкоуглеродного аммиака из природного газа "Аммиак декарбонизированный - 2500"

Similar Documents

Publication Publication Date Title
CN1295140C (zh) 提高反应器产量的方法
RU2394754C1 (ru) Способ получения водорода из углеводородного сырья
EA005783B1 (ru) Способ получения углеводородов
JP2008512336A5 (ru)
CN101190781A (zh) 小型轻烃水蒸气转化制氢工艺方法
WO2007075160A1 (en) Method of and apparatus for producing methanol
CN102796561A (zh) 生物质燃料二氧化碳循环无氧气化方法及设备
CN102498060A (zh) 用于生产甲醇的联合转化方法
WO2021031894A1 (zh) 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺
RU2008113706A (ru) Способ создания водородного энергохимического комплекса и устройство для его реализации
JP5963848B2 (ja) 非触媒性の復熱式改質装置
RU2664526C2 (ru) Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов
RU2252209C1 (ru) Способ получения метанола (варианты)
RU2254322C1 (ru) Способ получения метанола из газа газовых и газоконденсатных месторождений
RU2445262C1 (ru) Способ производства аммиака
CN106397121A (zh) 一种沼气与焦炉煤气联合生产甲醇装置
RU2515477C2 (ru) Способ получения водорода
RU2283272C2 (ru) Способ получения текучего теплоносителя, используемого в качестве косвенного источника тепла при проведении эндотермических реакций, и способ проведения реакций риформинга углеводородов
JP2017113746A (ja) 放射状の非触媒性の回収改質装置
RU2587736C1 (ru) Установка для утилизации низконапорного природного и попутного нефтяного газов и способ её применения
CN104058368A (zh) 一种含烃尾气转化制氢工艺及系统
CN103693616B (zh) 甲烷非催化部分氧化与甲烷蒸汽转化联产合成气的方法和系统
CN110127611A (zh) 合成氨工艺原料气转换供热系统
CN114804025B (zh) 一种基于零能耗碳捕集甲醇重整制氨的方法及系统
US9803153B2 (en) Radiant non-catalytic recuperative reformer