RU2441205C1 - Волоконно-оптический термодатчик - Google Patents

Волоконно-оптический термодатчик Download PDF

Info

Publication number
RU2441205C1
RU2441205C1 RU2010121015/28A RU2010121015A RU2441205C1 RU 2441205 C1 RU2441205 C1 RU 2441205C1 RU 2010121015/28 A RU2010121015/28 A RU 2010121015/28A RU 2010121015 A RU2010121015 A RU 2010121015A RU 2441205 C1 RU2441205 C1 RU 2441205C1
Authority
RU
Russia
Prior art keywords
fiber
light guide
curtain
temperature
blind
Prior art date
Application number
RU2010121015/28A
Other languages
English (en)
Other versions
RU2010121015A (ru
Inventor
Александр Васильевич Шеляков (RU)
Александр Васильевич Шеляков
Николай Николаевич Ситников (RU)
Николай Николаевич Ситников
Алексей Павлович Менушенков (RU)
Алексей Павлович Менушенков
Александр Александрович Корнеев (RU)
Александр Александрович Корнеев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority to RU2010121015/28A priority Critical patent/RU2441205C1/ru
Publication of RU2010121015A publication Critical patent/RU2010121015A/ru
Application granted granted Critical
Publication of RU2441205C1 publication Critical patent/RU2441205C1/ru

Links

Images

Abstract

Изобретение может быть использовано в системах в качестве термореле, сигнализаторов в системах пожарной сигнализации; терморегуляторов в установках термостатирования или термодатчиков. Термодатчик содержит осветительный и приемный световоды, первые концы которых подсоединены к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность и выполненным в виде непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода. Шторке задана обратимая память формы на изгиб. В исходном состоянии, ниже температуры прямого мартенситного превращения, свободный конец шторки зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая апертуру световода. В состоянии выше температуры обратного мартенситного превращения свободный конец шторки отклонен на острый угол от плоскости торца измерительного световода. Технический результат - увеличение быстродействия за счет уменьшения размеров и массы термочувствительного элемента, упрощение, а так же уменьшение потерь при передаче отраженного светового потока в приемный световод и повышение чувствительности за счет существенного изменения интенсивности при малых изменениях температуры. 5 ил.

Description

Изобретение относится к измерительной технике и может быть использовано в системах температурного/теплового контроля в качестве термореле, сигнализаторов в системах пожарной сигнализации предприятий, жилых помещений, железнодорожного и автомобильного транспорта; терморегуляторов в установках термостатирования объектов различного назначения, включая биологические; датчиков перегрева жидкости и пара в радиаторах водяного охлаждения, в масляных рубашках охлаждения трансформаторов, в теплообменниках, в паровых котлах; термодатчиков для контроля технологических процессов и в других областях техники. Устройство может применяться для дистанционного измерения температуры, в том числе в условиях повышенного уровня радио и электромагнитных помех.
Известны волоконно-оптические датчики температуры, содержащие осветительный и приемный световоды и термочувствительный, элемент на основе брэгговских решеток (патент CN №101253392 (A), G01D 5/353; G01D 5/38; G01K 11/32; G01L 9/00, 27.08.2008; патент US №2006146909 (А1), G01J 5/00, 06.07.2006; патент US №2001022804 (А1), G01K 5/52; G01K 11/32; G01K 5/00; G01K 11/00, 20.09.2001) и на основе резонансных систем (патент US №2003118075 (А1), G01K 11/32, G01K 11/00, 26.06.2003; патент RU №2161783 C2, G01K 11/32, 30.12.1998; патент RU №2110049 C1, G01K 11/32, G02B 6/00, 23.08.1996; патент RU №2082119 C1, G01K 11/32, 20.05.1994; патент US №6141098, G01B 009/02, 31.10.2000), в которых регистрируется фазовая модуляция света, возникающая при изменении температуры окружающей среды. Известен волоконно-оптический датчик (патент US 5641955, G01D 5/26, G01D 5/353, G01K 5/48, G01K 5/00, H01J 005/16, 24.06.1997), содержащий термочувствительные элементы из сплава с эффектом памяти формы, которые при нагреве вспоминают заданную им форму и оказывают механическое давление на оптическое волокно, которое измеряется с помощью интерферометра. Однако такие датчики конструктивно сложны, для измерения температуры требуется специализированная дорогостоящая аппаратура.
Волоконно-оптические датчики, принцип действия которых основан на амплитудной модуляции света, распространяющегося в волокне, являются более простыми и дешевыми.
Например, известны волоконно-оптические датчики температуры (патент US №5419636, G01K 5/00, G01K 5/52, 30.05.1995; патент JP №2009052964 (A), G01K 11/12, G01K 11/00, 12.03.2009), в которых участок волоконного световода со снятой оболочкой покрывают материалом с отличающимся коэффициентом теплового расширения. Изменение температуры окружающей среды приводит к микроизгибу на чувствительном участке световода и, как следствие, к изменению интенсивности света, проходящего через этот участок.
Известен волоконно-оптический термодатчик (патент СА №2671146 (A1), G01K 5/00, G01K 5/48, G01K 15/00, 26.06.2008), который содержит по крайней мере одно испускающее свет оптическое волокно и одно волокно, принимающее свет, и расположенный между ними растяжимый объект, который перекрывает испускаемый свет при изменении температуры объекта.
Недостатком этих датчиков является их большая тепловая инерция, ограничивающая быстродействие устройств.
Известен волоконно-оптический датчик температуры (патент RU №2256890 С1, G01K 11/32, 03.03.2004), который содержит осветительный и приемный световоды, первые концы которых подсоединены, соответственно, к источнику света и фотоприемнику, а вторые - к капсуле, в которой за счет отражения от внутрикапсульного зеркала осуществляется передача светового потока от осветительного световода к приемному световоду. Подсоединение осветительного и приемного световодов к капсуле осуществлено через направленный Y-образный волоконно-оптический разветвитель, общий ввод-вывод которого закреплен в капсуле напротив внутрикапсульного зеркала, которое выполнено на торце стержня, закрепленного своим противоположным концом на дне капсулы с зазором по отношению к внутренней боковой поверхности капсулы. Капсула и стержень выполнены из диэлектрических материалов, различающихся своими коэффициентами температурного линейного расширения.
Принцип действия датчика-прототипа основан на фиксации изменения оптической связи между осветительным и приемным световодами на участке «торец осветительного световода - внутрикапсульное зеркало - торец приемного световода». Эта связь меняется при изменении температуры в результате различного теплового расширения капсулы и выступающего внутрь капсулы ввода-вывода Y-образного волоконно-оптического разветвителя, приводя к изменению интенсивности выходного светового потока.
Данное изобретение является наиболее близким аналогом к заявляемому устройству, т.е. прототипом.
Недостатком устройства-прототипа является ограничение по использованию, в частности, точного измерения температуры, при относительно высоких скоростях изменения температуры окружающей среды, поскольку, во-первых, необходимо значительное время для нагрева/охлаждения капсулы и стержня из диэлектрических материалов, во-вторых, принципиально разная скорость их нагрева/охлаждения, что приводит к ошибкам в измерении температуры.
Кроме того, устройство-прототип требует сложной юстировки и согласования внутрикапсульного зеркала и общего ввода-вывода волоконно-оптического разветвителя.
Задачей заявляемого изобретения является увеличение быстродействия датчика за счет уменьшения размеров и массы термочувствительного элемента, а также упрощение устройства.
Кроме того, при реализации устройства достигается технический результат, заключающийся в уменьшении потерь при передаче отраженного светового потока в приемный световод и повышении чувствительности термодатчика за счет существенного изменения интенсивности возвращенного в приемный световод светового потока при малых изменениях температуры.
Данная задача решается созданием волоконно-оптического термодатчика, содержащего осветительный и приемный световоды, первые концы которых подсоединены, соответственно, к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность, за счет отражения от которой осуществляется передача светового потока от осветительного световода к приемному световоду, при этом термочувствительный элемент выполнен в виде миниатюрной тонкой непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода, соединенного с общим вводом-выводом разветвителя, а шторке задана обратимая память формы на изгиб таким образом, что в исходном состоянии (ниже температуры прямого мартенситного превращения в материале шторки) свободный конец шторки своей зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения в материале шторки отклонен на острый угол от плоскости торца измерительного световода.
Предлагаемое изобретение иллюстрируется схематическими, чертежами, на которых изображены:
Фиг.1 - волоконно-оптический термодатчик.
Фиг.2 - термочувствительный элемент из материала с ЭПФ.
Волоконно-оптический термодатчик (далее термодатчик) содержит (фиг.1) осветительный 1 и приемный 2 световоды, первые концы которых подсоединены, соответственно, к источнику света 3 и фотоприемнику 4, а вторые - к направленному Y-образному волоконно-оптическому разветвителю 5, при этом общий ввод-вывод разветвителя 5 соединен с одним торцом измерительного световода 6, на другом торце которого расположен термочувствительный элемент 7, имеющий зеркальную поверхность, обращенную к торцу световода 6, за счет отражения от которой осуществляется передача светового потока от осветительною световода 1 к приемному световоду 2. Световод 6 может иметь значительную длину для обеспечения дистанционного измерения температуры.
Термочувствительный элемент 7 выполнен в виде миниатюрной тонкой непрозрачной шторки из материала с эффектом памяти формы (ЭПФ), например из сплава Ti50Ni25Cu25 (ат.%), изготовленного методом сверхбыстрой закалки из расплава в виде ленты толщиной 10-50 мкм и шириной 1-10 мм. Шторка 7 одним концом закреплена на торце световода 6, например термостойким (до 1000°С) клеем ТК-1000, а другой ее конец свободен (фиг.2). Шторка 7 может крепиться как непосредственно на плоскости торца световода 6 (фиг.2а, б), так и на его боковой поверхности (фиг.2в, г).
С помощью специального метода термомеханической обработки шторке 7 задана обратимая память формы на изгиб таким образом, что в исходном состоянии (ниже температуры прямого мартенситного превращения Мк в материале шторки 7) свободный конец шторки 7 своей зеркальной стороной плотно прижат к торцу световода 6, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения Ак в материале шторки отклонен на острый угол от плоскости торца световода 6. Величина угла рассчитывается или выбирается экспериментально в зависимости от размеров поперечного сечения световода 6 и его светонаправляющей части, например диаметров волокна и его сердцевины, а также от размеров шторки 7 и места ее крепления таким образом, чтобы величина светового потока, отраженного от зеркальной поверхности шторки 7 и попавшего в световод 6, была близка к нулю.
Шторка 7, например, размером 500×300×10 мкм изготовлена из ленты или пленки сплава с ЭПФ одним из известных способов: механической вырубки (вырезки), лазерной резки, фотолитографии.
Метод придания обратимой памяти формы шторке 7 может быть реализован, например, следующим образом. Отрезок ленты из аморфного быстрозакаленного сплава TiNiCu изгибается вокруг цилиндрической оправки, фиксируется в этом положении и отжигается в печи для кристаллизации сплава, например, при температуре 500°С в течение 3-30 минут. Диаметр оправки и режим кристаллизационного отжига выбираются таким образом, что после охлаждения и освобождения шторки 7 она способна совершать обратимые угловые перемещения до 90 градусов при циклическом изменении температуры в интервале мартенситного превращения.
Другой способ придания обратимой памяти формы заключается в следующем. На поверхность предварительно растянутой (до величины относительной деформации, не превышающей величину максимального мартенситного сдвига) ленты или пленки с ЭПФ наносится (например, гальваническим методом или вакуумным напылением) металлический (например, никель или платина) слой. При нагреве ленты этот слой будет препятствовать восстановлению за счет ЭПФ исходной длины ленты, что приведет к изгибной деформации такого композита.
Зеркальная поверхность шторки обеспечивается, например, изготовлением ее из аморфного быстрозакаленного сплава на основе TiNiCu с кристаллизационным отжигом в вакуумной печи или нанесением тонкого металлического слоя, например алюминия или серебра, методом вакуумного напыления.
В качестве источника света 3 может быть применен лазерный модуль ДМПО131-14 с кабельным многомодовым волоконным выходом, оканчивающимся оптическим разъемом типа FC/PC, а в качестве фотоприемника 4 - приемный модуль ДФД70-ММ, в состав которого входит InGaAs PIN фотодиод и оптический соединитель типа FC/PC.
Световоды 1 и 2 могут представлять собой многомодовые оптические волокна «кварц/кварц» типа ММ ⌀50/125 мкм с оптическими разъемами типа FC/PC, a разветвитель 5 - стандартный волоконно-оптический ответвитель 1×2 (50×50%) типа ММ ⌀50/125 мкм. При этом световоды 1 и 2, разветвитель 5 и один конец световода 6 снабжены оптическими разъемами типа FC/PC, второй конец световода 6 имеет отполированный торец или заделан в керамическую вставку, например, диаметром 1 мм.
Для работы термодатчика в особых условиях термочувствительный элемент 7 может быть снабжен защитным тонкостенным металлическим колпачком, например, диаметром 1,2 мм и длиной 2 мм из меди. Защитный колпачок крепится герметично, например, с помощью термостойкого клея, на конце световода 6, предотвращая внешнее механическое воздействие на шторку. В то же время он эффективно передает тепло из окружающей среды на шторку, обеспечивая работу термодатчика как в газовой и твердой, так и в жидкой среде.
Заявляемый волоконно-оптический термодатчик работает следующим образом.
В исходном состоянии при температуре ниже Мк свободный конец шторки 7 прижат к торцу световода 6 (фиг.2а, в), при этом оптическое излучение от источника света 3, пройдя световод 1, разветвитель 5 и световод 6, попадает на зеркальную поверхность шторки 7 (фиг.1). Свет, отразившийся от поверхности шторки 7, вводится назад в световод 6, и часть излучения, пройдя световод 2, попадает на фотоприемник 4, на выходе которого световой поток преобразуется в электрический сигнал. Увеличение температуры среды, в которой находится термодатчик, приводит к тому, что в материале шторки 7 начинает происходить структурное фазовое превращение мартенситного типа, сопровождающееся изменением формы шторки 7 за счет реализации ЭПФ. В соответствии с предварительно заданной формой шторка 7 начинает изгибаться, увеличивая угол отклонения от плоскости световода 6 с ростом температуры, при этом часть светового потока, отраженного от зеркальной поверхности шторки 7, не попадает в световод 6 и на фотоприемник 4. В результате этого происходит снижение интенсивности сигнала на выходе фотоприемника 4, достигающего своего минимального значения после достижения температуры обратного мартенситного превращения Ак в материале шторки 7, когда шторка 7 оказывается в конечном состоянии (фиг.2б, г). При охлаждении до температуры Мк шторка 7 возвращается в исходное состояние за счет реализации обратимого ЭПФ, прижимаясь зеркальной поверхностью к торцу световода 6, и интенсивность выходного сигнала на фотоприемнике 4 вновь возрастает до максимальной величины.
Плотное прижатие шторки 7 своей зеркальной поверхностью к торцу измерительного световода 6 обеспечивает максимальный возврат отраженного светового потока назад в световод 6, тем самым повышая чувствительность устройства за счет увеличения соотношения сигнал/шум. При этом отклонение шторки 7 на небольшой угол от плоскости торца световода 7 (при малых изменениях температуры) приводит к существенному изменению интенсивности возвращенного в световод 6 светового потока и, соответственно, интенсивности выходного сигнала на фотоприемнике 4, например, при использовании многомодового оптического волокна типа ММ ⌀50/125 мкм в качестве измерительного световода отклонение шторки 7 от плоскости торца световода 6 даже на угол 1-5 градусов может привести к уменьшению интенсивности возвращенного в световод 6 светового потока на 60-90%. Таким образом, это позволяет существенно повысить чувствительность термодатчика.
Устройство может использоваться как для измерения температуры, так и в качестве порогового температурного датчика. В первом случае для изготовления шторки 7 предпочтительно выбирается безгистерезисный материал с ЭПФ, обладающий большим температурным интервалом мартенситного превращения, а во втором случае - главным образом материал с ЭПФ с максимально узким интервалом мартенситного превращения.
Температурный диапазон работы термодатчика определяется критическими температурами фазового мартенситного превращения в материале с ЭПФ и может варьироваться в широком интервале (например, от -150 до +400°С) за счет изменения композиции сплава.
Заявляемый волоконно-оптический термодатчик обеспечивает увеличение быстродействия датчика по сравнению с аналогами за счет значительного уменьшения размеров и массы термочувствительного элемента, а также позволяет существенно упростить устройство.
Кроме того, заявляемое устройство обеспечивает уменьшение потерь при вводе отраженного от шторки светового потока в измерительный световод по сравнению с известными устройствами, тем самым повышая чувствительность устройства.
Кроме того, заявляемое изобретение позволяет повысить чувствительность термодатчика за счет существенного изменения интенсивности возвращенного в измерительный световод светового потока при малых углах отклонения шторки от плоскости торца измерительного световода, т.е. при малых изменениях температуры.
При этом термодатчик оптически пассивен и обладает повышенной стойкостью к электромагнитным шумам.

Claims (1)

  1. Волоконно-оптический термодатчик, содержащий осветительный и приемный световоды, первые концы которых подсоединены соответственно к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность, за счет отражения от которой осуществляется передача светового потока от осветительного световода к приемному световоду, отличающийся тем, что термочувствительный элемент выполнен в виде непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода, соединенного с общим вводом-выводом разветвителя, при этом шторке задана обратимая память формы на изгиб таким образом, что в исходном состоянии, ниже температуры прямого мартенситного превращения в материале шторки, свободный конец шторки своей зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения в материале шторки отклонен на острый угол от плоскости торца измерительного световода.
RU2010121015/28A 2010-05-24 2010-05-24 Волоконно-оптический термодатчик RU2441205C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010121015/28A RU2441205C1 (ru) 2010-05-24 2010-05-24 Волоконно-оптический термодатчик

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010121015/28A RU2441205C1 (ru) 2010-05-24 2010-05-24 Волоконно-оптический термодатчик

Publications (2)

Publication Number Publication Date
RU2010121015A RU2010121015A (ru) 2011-11-27
RU2441205C1 true RU2441205C1 (ru) 2012-01-27

Family

ID=45317802

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010121015/28A RU2441205C1 (ru) 2010-05-24 2010-05-24 Волоконно-оптический термодатчик

Country Status (1)

Country Link
RU (1) RU2441205C1 (ru)

Also Published As

Publication number Publication date
RU2010121015A (ru) 2011-11-27

Similar Documents

Publication Publication Date Title
CA1158888A (en) Optical fiber temperature sensor
CN101216351B (zh) 双金属片型光纤微弯温度传感器
CA2740372C (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
US5419636A (en) Microbend fiber-optic temperature sensor
CA2772019C (en) Miniature fiber optic temperature sensors
US10520355B1 (en) Fiber-optic temperature and flow sensor system and methods
JP2740206B2 (ja) 熱放射形低温度測定器
CN103148956B (zh) 一种基于涂覆微纳光纤进行温度测量的装置及方法
Guo et al. High-temperature sensor instrumentation with a thin-film-based sapphire fiber
EP0425229A1 (en) High temperature sensor
CN208595984U (zh) 一种高灵敏度光纤温度传感器
RU2441205C1 (ru) Волоконно-оптический термодатчик
GB2122337A (en) Fibre optic sensing device
US6980708B2 (en) Device for fibre optic temperature measurement with an optical fibre
Riza et al. All-silicon carbide hybrid wireless-wired optics temperature sensor network basic design engineering for power plant gas turbines
CN108007602A (zh) 一种基于分布式光纤光栅与热传导的高温测量装置
CN113551802A (zh) 光纤布拉格光栅温度传感器及其对温度的检测方法
Han et al. Fiber-optic Temperature and flow sensory system and methods
US20030185274A1 (en) Intensity modulated fiber optic temperature switching immersion probe
RU187529U1 (ru) Спектральный преобразователь температуры
Saito et al. Radiation thermometry for low temperatures using an infrared hollow waveguide
Mamidi et al. High-temperature measurement using fiber Bragg grating integrated with a transducer
RU2816112C1 (ru) Оптоволоконный преобразователь температуры
Daneman Fiber-Optic Thermometers
Khan et al. Fiber Bragg Grating Temperature Sensor and its Interrogation Techniques

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190525