RU187529U1 - Спектральный преобразователь температуры - Google Patents

Спектральный преобразователь температуры Download PDF

Info

Publication number
RU187529U1
RU187529U1 RU2018137459U RU2018137459U RU187529U1 RU 187529 U1 RU187529 U1 RU 187529U1 RU 2018137459 U RU2018137459 U RU 2018137459U RU 2018137459 U RU2018137459 U RU 2018137459U RU 187529 U1 RU187529 U1 RU 187529U1
Authority
RU
Russia
Prior art keywords
temperature
optical fiber
housing
expansion
fiber
Prior art date
Application number
RU2018137459U
Other languages
English (en)
Inventor
Сергей Александрович Даниленко
Original Assignee
Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") filed Critical Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority to RU2018137459U priority Critical patent/RU187529U1/ru
Application granted granted Critical
Publication of RU187529U1 publication Critical patent/RU187529U1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Полезная модель относится к измерительной технике и может использоваться в датчиках температуры. Спектральный преобразователь температуры содержит корпус и закрепленное на нем оптическое волокно с волоконной решеткой Брэгга. Оптическое волокно закреплено на корпусе посредством конструктивных элементов, передающих температурные деформации корпуса на участок оптического волокна, содержащий волоконную решетку Брэгга, и выполненных из материала, значение температурного коэффициента расширения которого меньше значения температурного коэффициента расширения материала корпуса. Технический результат - расширение арсенала технических средств измерения температуры. 1 ил.

Description

Полезная модель относится к измерительной технике, а именно к элементам датчиков физических величин.
Известен волоконно-оптический термодатчик, содержащий осветительный и приемный световоды, первые концы которых подсоединены к источнику света и фотоприемнику, а вторые – к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность и выполненным в виде непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода. Патент Российской Федерации на изобретение RU 2441205, МПК G01K 11/00, G02B 6/26, 27.01.2012.
Принцип действия описанного устройства основан на смещении свободного конца шторки относительно плоскости торца измерительного световода, вызванном температурной деформацией материала. Изменение апертуры отраженного светового потока и, таким образом, интенсивности излучения служит информационным сигналом.
Устройство обладает простым в исполнении термочувствительным элементом – шторкой, однако при этом имеет низкую разрешающую способность и малый температурный диапазон применения, поскольку даже небольшие отклонения шторки, соединенной с торцом световода, оказывают существенное влияние на регистрируемый фотоприемником световой поток. Ввиду этого заявленная область использования устройства ограничена системами терморегуляции и сигнализации и, в особенности, термореле.
Известен термочувствительный спектральный преобразователь, выполненный в виде пластины, в которой сформирован волновод, содержащей приемный и излучающий элементы в виде дифракционных решеток. Патент Российской Федерации на полезную модель RU 154470, МПК G01K 11/00, 27.08.2015.
Устройство имеет низкую разрешающую способность и малый температурный диапазон применения, поскольку дифракционные решетки сформированы в материале пластины, температурные деформации которой ограничены ее физическими свойствами. При этом пластина может быть изготовлена только из материалов, используемых при создании интегральных оптико-электронных схем, позволяющих сформировать в ней оптический волновод для передачи излучения. В связи с этим область использования устройства ограничена узкой сферой микроэлектроники и интегральной фотоники.
Известен волоконно-оптический датчик температуры, содержащий чувствительный элемент, выполненный в виде волоконно-оптического световода с полиамидным покрытием и записанной в нем волоконно-оптической решеткой Брэгга, снабженный корпусом, на внешней стенке которого закреплен световод. Патент Российской Федерации на полезную модель RU 140576, МПК G01K 11/32, 10.05.2014. Данное техническое решение принято в качестве прототипа.
Недостатком прототипа является низкая разрешающая способность и низкая температурная чувствительность ввиду значительной длины участка закрепленного световода, в котором записана решетка Брэгга, поскольку при температурном растяжении волокна относительное удлинение самой решетки будет тем меньше, чем длиннее участок волокна, подвергающийся воздействию этих растяжений. В описанном устройстве отсутствуют конструктивные элементы, позволяющие усилить деформацию решетки Брэгга, и, таким образом, деформации решетки Брэгга определены физическими свойствами материала корпуса. Также, ввиду конструктивных особенностей расположения чувствительного элемента на внешней стенке корпуса и невысокой термостойкости полиамидного покрытия световода, устройство имеет ограниченную область применения.
Задачей полезной модели является создание спектрального преобразователя температуры с высокой разрешающей способностью и высокой температурной чувствительностью.
Техническим результатом является расширение арсенала технических средств измерения температуры.
Технический результат достигается тем, что спектральный преобразователь температуры содержит корпус и закрепленное на нем оптическое волокно с волоконной решеткой Брэгга, оптическое волокно закреплено на корпусе посредством конструктивных элементов, передающих температурные деформации корпуса на участок оптического волокна, содержащий волоконную решетку Брэгга, и выполненных из материала, значение температурного коэффициента расширения которого меньше значения температурного коэффициента расширения материала корпуса.
Сущность полезной модели поясняется чертежом, где:
1 – излучатель;
2 – приемник излучения;
3 – оптическое волокно;
4 – волоконная решетка Брэгга;
5 – корпус;
6 – транслятор деформации;
7 – адгезионный материал.
Спектральный преобразователь температуры содержит корпус 5, выполненный из термочувствительного материала с высоким значением температурного коэффициента расширения (ТКР), например из алюминиевого сплава. Оптическое волокно 3 расположено в корпусе 5 таким образом, чтобы волоконная решетка Брэгга 4 была закреплена между трансляторами деформации 6 посредством адгезионного материала 7.
Трансляторы деформации 6 выполнены из материала с низким значением коэффициента температурного расширения, например из кварца. Назначение трансляторов деформации состоит в передаче деформации корпуса 5, вызванной температурным воздействием и приходящейся на всю его длину, к малому участку оптического волокна 3, содержащему волоконную решетку Брэгга 4. Ввиду того, что ТКР корпуса выше ТКР трансляторов деформации, осевые деформации волоконной решетки Брэгга 4, вызванные температурной деформацией корпуса, превышают ее осевые деформации, вызванные температурной деформацией трансляторов. При этом, разрешающая способность спектрального преобразования может быть определена не только за счет выбора материалов корпуса и трансляторов, но и соотношением их длин. Все это рассчитывают в зависимости от требуемого в каждом конкретном случае температурного разрешения устройства и диапазона изменений температуры.
Корпус и трансляторы деформаций устройства могут быть выполнены в виде герметичных цилиндрических элементов – трубок, как это представлено на чертеже, а также в виде открытой конструкции.
В качестве адгезионного материала для закрепления оптического волокна может применяться стеклоприпой СЦНК 77–2 или клей, например, марки К300.
Спектральный преобразователь температуры работает следующим образом.
Деформации корпуса 1, вызванные температурным расширением его материала, посредством трансляторов деформации 6 передают на малый участок оптического волокна 3, содержащий волоконную решетку Брэгга 4. Деформации волоконной решетки Брэгга, сопровождающиеся изменением ее внутренней структуры, изменяют спектральные свойства излучения, прошедшего через оптическое волокно от излучателя 1 к приемнику излучения 2 (излучатель и приемник излучения на чертеже изображены условно).
Применение конструктивных элементов с низким значением ТКР, транслирующих деформацию корпуса, выполненного в свою очередь из материала с высоким значением ТКР, позволяет увеличить разрешающую способность спектрального преобразователя температуры и, таким образом, создать новый вид устройств спектрального преобразования, расширив арсенал технических средств измерения температуры.

Claims (1)

  1. Спектральный преобразователь температуры, содержащий корпус и закрепленное на нем оптическое волокно с волоконной решеткой Брэгга, отличающийся тем, что оптическое волокно закреплено на корпусе посредством конструктивных элементов, передающих температурные деформации корпуса на участок оптического волокна, содержащий волоконную решетку Брэгга, и выполненных из материала, значение температурного коэффициента расширения которого меньше значения температурного коэффициента расширения материала корпуса.
RU2018137459U 2018-10-24 2018-10-24 Спектральный преобразователь температуры RU187529U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137459U RU187529U1 (ru) 2018-10-24 2018-10-24 Спектральный преобразователь температуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137459U RU187529U1 (ru) 2018-10-24 2018-10-24 Спектральный преобразователь температуры

Publications (1)

Publication Number Publication Date
RU187529U1 true RU187529U1 (ru) 2019-03-12

Family

ID=65758882

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137459U RU187529U1 (ru) 2018-10-24 2018-10-24 Спектральный преобразователь температуры

Country Status (1)

Country Link
RU (1) RU187529U1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126666A (zh) * 2007-09-27 2008-02-20 天津大学 高灵敏度光纤温度传感器
EP2251648A2 (en) * 2009-05-14 2010-11-17 General Electric Company Fiber-optic dynamic sensing modules and methods
CN202599565U (zh) * 2012-05-18 2012-12-12 南开大学 非金属封装光纤光栅传感器
CN202869692U (zh) * 2012-08-31 2013-04-10 武汉理工光科股份有限公司 微型石英fbg感温传感器
RU140576U1 (ru) * 2013-12-17 2014-05-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Волоконно-оптический датчик температуры
RU154470U1 (ru) * 2014-11-24 2015-08-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Термочувствительный спектральный преобразователь

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126666A (zh) * 2007-09-27 2008-02-20 天津大学 高灵敏度光纤温度传感器
EP2251648A2 (en) * 2009-05-14 2010-11-17 General Electric Company Fiber-optic dynamic sensing modules and methods
CN202599565U (zh) * 2012-05-18 2012-12-12 南开大学 非金属封装光纤光栅传感器
CN202869692U (zh) * 2012-08-31 2013-04-10 武汉理工光科股份有限公司 微型石英fbg感温传感器
RU140576U1 (ru) * 2013-12-17 2014-05-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Волоконно-оптический датчик температуры
RU154470U1 (ru) * 2014-11-24 2015-08-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Термочувствительный спектральный преобразователь

Similar Documents

Publication Publication Date Title
US5419636A (en) Microbend fiber-optic temperature sensor
JP3040130B2 (ja) 3つのパラメータを測定できる光学繊維センサとそのシステム
RU2464537C2 (ru) Волоконно-оптический датчик температуры
US9995628B1 (en) Fiber-optic temperature and flow sensor system and methods
CA2772019C (en) Miniature fiber optic temperature sensors
US4822135A (en) Optical wave guide band edge sensor and method
US7714271B1 (en) Simple fiber optic seismometer for harsh environments
US20110247430A1 (en) Measuring arrangement with an optical sensor
US6069985A (en) Cross-fiber Bragg grating transducer
SE7812949L (sv) Fiberoptiskt metdon
ES2297946T3 (es) Sensor de temperatura, de fibra optica.
CN108931262A (zh) 一种用于监测建筑结构安全的光纤传感系统
US4674900A (en) Optoelectromechanical apparatus for measuring physical parameters, especially pressure or force
US20170199093A1 (en) Multi-parameter Sensing based on Few-mode Fiber Bragg Gratings using Femtosecond IR Laser
JP4344093B2 (ja) 温度感知装置
RU149551U1 (ru) Радиационно-стойкий преобразователь деформации
RU187529U1 (ru) Спектральный преобразователь температуры
CN208595984U (zh) 一种高灵敏度光纤温度传感器
Grattan et al. Fiber‐optic absorption temperature sensor using fluorescence reference channel
US20190056275A1 (en) Fiber Optic Thermometer
RU154470U1 (ru) Термочувствительный спектральный преобразователь
CN113551802A (zh) 光纤布拉格光栅温度传感器及其对温度的检测方法
RU77420U1 (ru) Универсальный волоконно-оптический модульный телеметрический комплекс, регистрирующий модуль, сенсорная головка и модуль расширения числа оптических каналов
RU2441205C1 (ru) Волоконно-оптический термодатчик
JP2006071549A (ja) 温度センサ