RU2439359C2 - Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты) - Google Patents

Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты) Download PDF

Info

Publication number
RU2439359C2
RU2439359C2 RU2010105603/06A RU2010105603A RU2439359C2 RU 2439359 C2 RU2439359 C2 RU 2439359C2 RU 2010105603/06 A RU2010105603/06 A RU 2010105603/06A RU 2010105603 A RU2010105603 A RU 2010105603A RU 2439359 C2 RU2439359 C2 RU 2439359C2
Authority
RU
Russia
Prior art keywords
rocket
nozzle
liquid
fuel
base
Prior art date
Application number
RU2010105603/06A
Other languages
English (en)
Other versions
RU2010105603A (ru
Inventor
Андрей Леонидович Шпади (RU)
Андрей Леонидович Шпади
Original Assignee
Андрей Леонидович Шпади
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Леонидович Шпади filed Critical Андрей Леонидович Шпади
Priority to RU2010105603/06A priority Critical patent/RU2439359C2/ru
Publication of RU2010105603A publication Critical patent/RU2010105603A/ru
Application granted granted Critical
Publication of RU2439359C2 publication Critical patent/RU2439359C2/ru

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Изобретение относится к ракетной технике и может быть применено в пожаробезопасных реактивных двигателях с экологически чистым топливом, установленных на метеорологических ракетах многократного использования, макетах самолетов, игрушечных фейерверках и т.п. Способ создания реактивной тяги состоит в том, что замкнутую камеру заполняют при нормальном давлении и температуре метастабильной жидкостью, состоящей из однородной смеси жидкого горючего, окислителя и балласта, которую подвергают электролизу между электродами, разделенными пористым материалом, в условиях автоклава в присутствии электропроводящих и каталитических присадок. Полученную «газированную гремучую смесь» повышенной энтальпии, насыщенную растворенными в ней газообразным горючим и окислителем, в пенообразном состоянии дросселируют в щелевое сопло, где осуществляют каталитический процесс горения перегретого пара метастабильной жидкости и разогрев газообразной реактивной струи. Образовавшийся в результате вскипания двухфазный поток подвергают механическому воздействию, при котором происходит образование мелкодисперсной реактивной струи. Замкнутая камера ракеты на жидком топливе сообщается с соплом через герметизирующий элемент, например резиновую пробку-пыж, размещенный во внутреннем конце дросселирующей трубки, которая своим внешним концом через электроизолирующую прокладку закреплена в сужающейся части металлической камеры с закрепленным на ней щелевым соплом-стабилизатором в виде конической пружины из упругой металлической ленты. Пускозарядное устройство ракеты содержит основание с направляющим устройством для установки ракеты. Коробчатое основание из электроизоляционного материала снабжено металлической крышкой и изолирующей втулкой направляющего стержня со слабоконическим основанием. На основание плотно надета дросселирующая трубка камеры ракеты, электрически соединенной через щелевое сопло-стабилизатор с одним из полюсов источника электрического тока. Другой полюс через электрический дроссель и ограничительный резистор соединен с основанием направляющего стержня. Достигается увеличение удельного импульса тяги за счет повышения энтальпии исходного топлива, в частности воды, а также упрощение конструкции и процесса пуска - зарядки ракеты на жидком топливе. 3 н. и 5 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области ракетной техники и может быть использовано для создания реактивной тяги в пожаробезопасных двигателях с экологически чистым топливом, установленных, например, на метеорологических ракетах многократного применения, макетах самолетов, космических ракет, игрушечных фейерверков и т.п.
Известны реактивные двигатели на унитарном твердом топливе, состоящем из вещества в неустойчивом - метастабильном состоянии, которое при пуске ракеты разлагается на горючее и окислитель и сгорает с большим выделением тепла, обеспечивающим реактивную тягу газовой струи продуктов реакции /1/.
Существенным недостатком таких двигателей является их пожароопасность и однократность применения с малым удельным импульсом, что делает их малопригодными для безвредного исследования атмосферы и детского технического творчества в качестве модельных ракетных двигателей, заменяющих обычную пиротехнику.
Известен также пароводяной ракетный двигатель и соответствующий способ создания реактивной тяги, состоящий в том, что в камеру двигателя заключается перегретая вода, которая после заполнения под действием избыточного давления паровой подушки подается в сопло. На входе в сопло производят сепарацию крупных жидких частиц, появляющихся в паровом потоке в результате вскипания воды после разгерметизации камеры двигателя, что позволяет повысить однородность мелкодисперсного потока рабочего тела и тем самым снизить потери импульса тяги в сопле из-за не равновесности его двухфазного течения /2/.
Недостатком этого технического решения является сложная герметизация и заправка камеры двигателя перегретой водой под большим давлением, у которой недостаточно энтальпии, то есть запасенной тепловой энергии для компенсации теплоты испарения и превращения в перегретый пар, необходимый для получения высокотемпературной реактивной струи с большим удельным импульсом тяги.
К тому же запуск пароводяного двигателя должен производиться сразу после заправки, пока перегретая вода не остыла и не потеряла своего метастабильного состояния, то есть способности вскипать после снятия избыточного давления.
Задачей настоящего изобретения является создание простой группы технических решений, у которых безопасный и высокоэффективный способ получения реактивной тяги легко реализовывался в виде дешевой конструкции, использующей экологически чистые компоненты жидкого топлива и источники энергии, для многократного пуска - зарядки реактивного двигателя.
Указанная задача решается тем, что в известном способе создания реактивной тяги замкнутую камеру заполняют при нормальном давлении и температуре метастабильной жидкостью, состоящей из однородной смеси жидкого горючего, окислителя и балласта, которую подвергают электролизу между электродами, разделенными пористым материалом, в условиях автоклава в присутствии электропроводящих и каталитических присадок, а полученную «газированную гремучую смесь» повышенной энтальпии, насыщенную растворенными в ней газообразным горючим и окислителем, в пенообразном состоянии дросселируют в щелевое сопло, где осуществляют каталитический процесс горения перегретого пара метастабильной жидкости и разогрев газообразной реактивной струи.
При необходимости метастабильность жидкости повышают путем электролиза нейтрального балласта, например воды, в автоклаве с разложением ее на газообразное горючее и окислитель - водород и кислород, которыми создают газовую подушку повышенного давления и насыщают ими жидкость в присутствии катализаторов и электропроводящих присадок, с последующим дросселированием в сопло.
Кроме того, предварительно метастабильную жидкость получают непосредственным смешиванием жидкого горючего и окислителя, например спирта и пергидроля, с последующим электролизом в автоклаве с добавлением электропроводящих и каталитических присадок, например растворов кислот или их солей.
В простейшем случае камеру двигателя заполняют водой, при нормальном давлении и температуре, а перевод ее в метастабильное состояние осуществляют от внешнего источника электрической анергии путем перегрева топлива, повышения ее энтальпии и концентрации горючего и окислителя, которые после пуска каталитически сгорают, превращая нейтральный балласт, например, ту же воду, в перегретый пар, создающий механическую тягу.
Поставленная задача изобретения решается так же тем, что у известного реактивного двигателя камеру с перегретой жидкостью, через дроссельную трубку соединяют со щелевым соплом-стабилизатором в виде конической пружины из металлической упругой ленты. Камера ракеты может снабжаться носовым обтекателем полезной нагрузки с обратным клапаном, который закреплен на поперечной перемычке.
Кроме того, в единый изобретательский замысел входит и пускозарядное устройство, содержащее коробчатое основание из электроизолирующего материала с металлической крышкой и изоляционной втулкой направляющего стержня малой конусности, на который плотно надета дроссельная трубка камеры ракеты, электрически соединенной через коническое сопло-стабилизатор с одним из полюсов источника электрического тока.
Другой полюс этого источника через электрический дроссель и ограничительный резистор в виде индикаторной лампы накаливания подключен к основанию направляющего стержня.
Признаки, характеризующие варианты изобретения в части его устройства, являются технологическими эквивалентами признаков способа, что обеспечивает промышленную осуществимость изобретения и решение поставленной технической задачи.
Сущность изобретения поясняется чертежом, на котором представлена принципиальная схема, совмещенная с продольным разрезом предложенного устройства.
Осуществление предложенного способа создания реактивной тяги при помощи вариантов заявленного устройства начинают с заполнения камеры двигателя жидким топливом, в частности водой, используя медицинский шприц с длинной иглой, при нормальном давлении и температуре.
После заполнения камеры ее закрывают герметизирующим элементом, например резиновой пробкой-пыжом, который устанавливают у внутреннего конца дросселирующей трубки.
Затем производят энергетическую зарядку ракеты, то есть аккумулируют в ней достаточное количество энергии путем перевода части жидкого топлива в метастабильное состояние с повышенной энтальпией. Для этого дроссельную трубку плотно надевают на направляющий стержень так, чтобы образовалась замкнутая электрическая цепь с щелевым соплом-стабилизатором, металлической крышкой пускозарядного устройства, ограничительным резистором, дросселем и источником электрического тока. Этим током производят разогрев жидкого топлива и его электролиз на электродах, которыми являются никелевая дроссельная трубка и стенки камеры. Причем электролиз жидкого топлива производят в условиях замкнутого автоклава с проводящими и каталитическими присадками к топливу, которое разделяют на две приэлектродных части пористым материалом или ионообменной мембраной.
Благодаря нагреву и насыщению топлива, синтезированным на электродах горючим и окислителем получают «газированную гремучую смесь» с повышенной энтальпией и метастабильностью, а также газовую подушку высокого давления, которой выталкивают герметизирующую пробку-пыж из дроссельной трубки, изнутри покрытой разжигающим гремучую смесь катализатором, например пленкой хрома, двуокиси марганца или их солей. После сброса избыточного давления вскипевшую гремучую смесь в пенообразном состоянии дросселируют в сопло-стабилизатор, где осуществляют каталитический процесс горения перегретого пара метастабильного топлива и разогрев газообразной реактивной струи. Для увеличения удельного импульса камеру можно заполнять не водой, а заранее приготовленной стеохимической смесью жидкого горючего, например спирта или ацетона, с окислителем - пергидролем, содержащим 30-50% перекиси водорода.
При этом не прореагировавшие в дроссельной трубке компоненты горючего поджигают электрической искрой, которая возникает в момент разрыва индуктивной электрической цепи в месте контакта направляющего стержня с дроссельной трубкой или конического сопла-стабилизатора с металлической крышкой пускозарядного устройства.
В рассматриваемом способе уменьшение потерь импульса в сопле осуществляют не только термодинамическим процессом дросселирования пенообразного топлива, который сам по себе способен превратить перегретую жидкость в сухой пар, но и каталитическим сжиганием этого топлива без открытого пламени с последующим дожиганием его горючих компонентов притоком атмосферного воздуха в щели между витками ленты конического сопла-стабилизатора горения и аэродинамической ориентации ракеты.
По сравнению с прототипом предложенный способ газирования метастабильной жидкости по своей эффективности значительно превосходит все пароводяные двигатели, приближаясь по величине удельного импульса к наиболее мощным ракетным двигателям с раздельной подачей в сопло жидкого горючего и окислителя.
Ракета на жидком топливе, реализующая описанный способ и представленная на чертеже, состоит из топливной камеры 1, которая через дроссельную трубку 2 с герметизирующим элементом в виде резиновой пробки-пыжа 3, сообщается с щелевым соплом-стабилизатором 4. Это щелевое сопло выполнено как аэродинамический стабилизатор в виде конической пружины, навитой с радиальным шагом из упругой металлической ленты, которая закреплена на узком конце металлической камеры 1 с образованием электрического контакта, тогда как дроссельная трубка 2, обернутая пористым материалом 5, в этом месте покрыта и механически закреплена электроизолирующим клеевым компаундом 6. При этом на внутреннюю поверхность дроссельной трубки 2 нанесено каталитическое покрытие, которое из-за малой толщины на чертеже не показано. Внутреннее пространство камеры 1 заполнено жидким топливом 7, в качестве которого может использоваться обычная вода с электропроводящими и каталитическими присадками, в виде незначительного количества серной и соляной кислоты или их солей.
Можно использовать и унитарное жидкое топливо из стеохимической смеси пергидроля и органического горючего - спирта, растворенного водорода и т.п. На камеру 1 может быть надет обтекатель 8, заполненный полезной нагрузкой 9, например конфетти или цветным порошком для имитации дневного фейерверка.
В носовой части обтекателя 8 имеется небольшое отверстие, закрытое обратным клапаном 10, в виде резинового колпачка, который своей центральной частью прикреплен к перемычке 11.
Заправленная ракета плотно надевается дроссельной трубкой 2 на направляющий стержень 12 пускозарядного устройства, который у своего основания имеет утолщенную часть малой конусности. Основание стержня 12 крепится при помощи изолирующей втулки 13 в центре металлической крышки 14 коробчатого основания 15, изготовленного из электроизолирующего материала, и электрически соединяется с ограничительным резистором 16, например индикаторной лампой накаливания, и дросселем 17. Поскольку в исходном сжатом состоянии упругая лента конического сопла-стабилизатора упирается в металлическую крышку 14 коробчатого основания 15, снабженного клеммами 18 для подключения внешнего источника тока
Figure 00000001
, то образуется электрическая цепь индуктивного характера, замыкающаяся через слабопроводящее топливо 7, находящееся при нормальной температуре и давлении.
Варианты устройства данного изобретения работают следующим образом. После установки заправленной камеры ракеты 1 ее нижней частью с дроссельной трубкой 2 на утолщенное основание направляющего стержня 12 начинается прохождение электрического тока
Figure 00000002
через топливо 7, которое подвергается нагреву и частичному электролизу с увеличением энтальпии - Е, образованием газообразного водорода, кислорода и перекиси водорода по брутто формуле
Figure 00000003
При этом пористый материал 5 препятствует обратной релаксации атомарного кислорода и водорода, что обеспечивает их интенсивное выделение на электродах автоклава - никелевой дроссельной трубке 2 и стенках камеры 1. Вместо водорода может использоваться жидкое горючее - ацетон, который синтезируется вместе с окислителем - перекисью водорода из органической компоненты унитарного топлива - изопропилового спирта по известной формуле
Figure 00000004
Поскольку этот процесс идет в условиях автоклава замкнутой камеры 1 с повышающимся давлением, то в ней образуется газовая подушка из водорода и кислорода, а также жидкая гремучая смесь из перекиси водорода, насыщенной газообразным водородом или ацетоном.
При достижении давления, достаточного для преодоления сил трения основания направляющего стержня 12 с дроссельной трубкой 2 и выталкивания пробки-пыжа 3, происходит сброс давления и начинается движение ракеты вдоль направляющего стержня 12.
Перегретое и газированное топливо 7 вскипает и в виде пенообразной гремучей смеси поступает в дроссельную трубку 2 с внутренним каталитическим покрытием, где происходит термодинамическое преобразование пены в сухой пар, который дополнительно разогревается каталитическим окислением горючих компонентов топлива не только газообразным кислородом, но и атомарным кислородом, отщепленным от перекиси водорода.
Такой процесс образования реактивной тяги идет без открытого пламени, но не прореагировавшие компоненты горючего и окислителя могут воспламеняться электрической искрой, которая возникает в момент отрыва направляющего стержня 12 от дроссельной трубки 2 или металлической крышки 14 от последнего витка щелевого сопла-стабилизатора 4. Эти витки плоской ленты конической пружины, намотанные с определенным зазором, препятствуют распространению пламени в радиальном направлении, но хорошо продуваются в осевом, что обеспечивает полное дожигание горючего кислородом воздуха и увеличивает удельный импульс реактивной тяги.
При этом электрический дроссель 17 обеспечивает дугообразный характер электрической искры, а ограничительный резистор 16 в виде лампы накаливания - стабилизирует ее мощность и сигнализирует о скорости процесса зарядки ракеты. Во время разгона ракеты пространство внутри обтекателя 8 заполняется встречным потоком воздуха повышенного давления, который кратковременно открывает обратный клапан 10, а в момент зависания ракеты, когда лобовое давление на обтекатель исчезает - сбрасывает его и рассеивает конфетти, цветной порошок 9 или соответствующие химические реагенты.
В отличие от прототипа давление газовой подушки в камере 1 ракеты уже не ограничивается температурой перегрева воды и может быть существенно увеличено при умеренной температуре жидкого топлива 7, безопасной для конструктивных элементов ракеты и самого пользователя.
При соответствующем подборе концентрации исходных компонентов топлива или использовании одной лишь воды, пуск ракеты происходит без открытого пламени с выделением экологически чистых паров воды и углекислого газа, если используется и органическое горючее. Это гарантирует пожаробезопасность и многократность действия при достаточно высоком удельном импульсе тяги.
Натурные испытания различных вариантов предложенной ракеты, изготовленной из сифонных баллончиков для углекислого газа, подтвердили ее работоспособность и вышеуказанные данные.

Claims (8)

1. Способ создания реактивной тяги, состоящий в том, что замкнутую камеру, заполненную под давлением жидкостью при температуре, превышающей температуру ее кипения при нормальном атмосферном давлении, сообщают с соплом и подают в него перегретую жидкость избыточным давлением парогазовой подушки, а образовавшийся в результате вскипания двухфазный поток подвергают механическому воздействию, при котором происходит образование мелкодисперсной реактивной струи, отличающийся тем, что замкнутую камеру заполняют при нормальном давлении и температуре метастабильной жидкостью, состоящей из однородной смеси жидкого горючего, окислителя и балласта, которую подвергают электролизу между электродами, разделенными пористым материалом, в условиях автоклава в присутствии электропроводящих и каталитических присадок, а полученную «газированную гремучую смесь» повышенной энтальпии, насыщенную растворенными в ней газообразным горючим и окислителем, в пенообразном состоянии дросселируют в щелевое сопло, где осуществляют каталитический процесс горения перегретого пара метастабильной жидкости и разогрев газообразной реактивной струи.
2. Способ по п.1, отличающийся тем, что метастабильность жидкости повышают путем электролиза нейтрального балласта, например воды, в автоклаве с разложением ее на газообразное горючее и окислитель - водород и кислород, которыми создают газовую подушку повышенного давления и насыщают ими жидкость в присутствии катализаторов и электропроводящих присадок, с последующим дросселированием в сопло.
3. Способ по п.1, отличающийся тем, что метастабильную жидкость получают непосредственным смешиванием жидкого горючего и окислителя, например спирта и пергидроля, с последующим электролизом в автоклаве с добавлением электропроводящих и каталитических присадок, например растворов кислот или их солей.
4. Ракета на жидком топливе, заполняющем замкнутую камеру, которая через герметизирующий элемент сообщается с соплом, отличающаяся тем, что герметизирующий элемент, например резиновая пробка-пыж, размещен во внутреннем конце дросселирующей трубки, которая своим внешним концом через электроизолирующую прокладку закреплена в сужающейся части металлической камеры с закрепленным на ней щелевым соплом-стабилизатором в виде конической пружины из упругой металлической ленты.
5. Ракета по п.4, отличающаяся тем, что на внешней поверхности дроссельной трубки уложен пористый материал, а на внутренней - каталитическое покрытие.
6. Ракета по п.5, отличающаяся тем, что на ее камеру надет носовой обтекатель полезной нагрузки, снабженный отверстием с обратным клапаном, который закреплен на поперечной перемычке, а в качестве полезной нагрузки взят цветной порошок, конфетти или химические реагенты.
7. Пускозарядное устройство ракеты, содержащее основание с направляющим устройством для установки ракеты, отличающееся тем, что коробчатое основание из электроизоляционного материала снабжено металлической крышкой и изолирующей втулкой направляющего стержня со слабоконическим основанием, на которое плотно надета дросселирующая трубка камеры ракеты, электрически соединенной через щелевое сопло-стабилизатор с одним из полюсов источника электрического тока, у которого другой полюс через электрический дроссель и ограничительный резистор соединен с основанием направляющего стержня.
8. Пускозарядное устройство по п.1, отличающееся тем, что ограничительный резистор выполнен в виде индикаторной лампы накаливания.
RU2010105603/06A 2010-02-16 2010-02-16 Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты) RU2439359C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010105603/06A RU2439359C2 (ru) 2010-02-16 2010-02-16 Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010105603/06A RU2439359C2 (ru) 2010-02-16 2010-02-16 Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты)

Publications (2)

Publication Number Publication Date
RU2010105603A RU2010105603A (ru) 2011-08-27
RU2439359C2 true RU2439359C2 (ru) 2012-01-10

Family

ID=44756207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010105603/06A RU2439359C2 (ru) 2010-02-16 2010-02-16 Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты)

Country Status (1)

Country Link
RU (1) RU2439359C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637787C2 (ru) * 2015-06-26 2017-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ работы ракетного двигателя малой тяги
RU184710U1 (ru) * 2017-07-31 2018-11-06 Общество с ограниченной ответственностью "Институт Дизайна Инноваций" Пусковая установка для экспериментального запуска моделей ракет

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637787C2 (ru) * 2015-06-26 2017-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ работы ракетного двигателя малой тяги
RU184710U1 (ru) * 2017-07-31 2018-11-06 Общество с ограниченной ответственностью "Институт Дизайна Инноваций" Пусковая установка для экспериментального запуска моделей ракет

Also Published As

Publication number Publication date
RU2010105603A (ru) 2011-08-27

Similar Documents

Publication Publication Date Title
RU2303154C2 (ru) Устройство (варианты) и способ сжигания ракетного топлива
US2648951A (en) Combustor igniter cup which becomes incandescent from combustion therein
CN106134417B (zh) 小推力火箭发动机
US8024918B2 (en) Rocket motor having a catalytic hydroxylammonium (HAN) decomposer and method for combusting the decomposed HAN-based propellant
US3136119A (en) Fluid-solid propulsion unit and method of producing gaseous propellant
US20130255223A1 (en) Hypergolic hybrid motor igniter
CN112392629B (zh) 固液-固体共燃烧室组合动力火箭发动机及飞行器
CN104791135B (zh) 固液火箭发动机点火器
RU2439359C2 (ru) Способ создания реактивной тяги, ракета на жидком топливе и пускозарядное устройство для его осуществления (варианты)
US2708341A (en) Method of using a hot vapor igniter
RU2439358C2 (ru) Прямоточный воздушно-реактивный двигатель на порошкообразном металлическом горючем
KR101666776B1 (ko) 물과 반응하여 수소가스를 생성하는 파우더를 사용하는 제트 추진체 및 그의 작동방법.
Natan et al. Advances in gel propulsion
Chehroudi et al. Liquid propellants and combustion: fundamentals and classifications
RU2477383C1 (ru) Способ работы камеры ракетного двигателя малой тяги
CN113494386B (zh) 一种小型化多功能的火箭发动机
CN114718765A (zh) 一种用于微纳卫星的电弧点火器
US20150267615A1 (en) Alternative fuel rocket augmentation device
KR101596659B1 (ko) 액체메탄과 액체산소를 추진제로 사용하는 전추진제 다단연소사이클 액체로켓엔진 시스템
JP4719528B2 (ja) 点火薬、点火装置及び信号照明弾発射装置
RU2553583C1 (ru) Камера сгорания жрд с электроплазменным зажиганием
SU753436A1 (ru) Газогенерирующее устройство
US2617251A (en) Gas escape reaction propulsion device
Goldin et al. HYPERGOLIC IGNITION OF A KEROSENE-BASED GEL FUEL WITH HYDROGEN PEROXIDE IN ROCKET MOTORS
RU2511562C2 (ru) Генератор аэрозоля

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130217