RU2435649C1 - Топливный кавитатор - Google Patents

Топливный кавитатор Download PDF

Info

Publication number
RU2435649C1
RU2435649C1 RU2010128402/05A RU2010128402A RU2435649C1 RU 2435649 C1 RU2435649 C1 RU 2435649C1 RU 2010128402/05 A RU2010128402/05 A RU 2010128402/05A RU 2010128402 A RU2010128402 A RU 2010128402A RU 2435649 C1 RU2435649 C1 RU 2435649C1
Authority
RU
Russia
Prior art keywords
fuel
zone
cavitation
parts
truncated cone
Prior art date
Application number
RU2010128402/05A
Other languages
English (en)
Inventor
Дмитрий Вадимович Потапков (RU)
Дмитрий Вадимович Потапков
Степан Васильевич Любинский (RU)
Степан Васильевич Любинский
Original Assignee
Дмитрий Вадимович Потапков
Степан Васильевич Любинский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Вадимович Потапков, Степан Васильевич Любинский filed Critical Дмитрий Вадимович Потапков
Priority to RU2010128402/05A priority Critical patent/RU2435649C1/ru
Priority to PCT/RU2011/000680 priority patent/WO2012011851A2/ru
Application granted granted Critical
Publication of RU2435649C1 publication Critical patent/RU2435649C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/08Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by sonic or ultrasonic waves

Abstract

Изобретение относится к жидкостным распылительным устройствам эжекционного типа и может быть использовано в энергетике при сжигании жидкого топлива, в водоснабжении при удалении двухвалентного железа из подземных вод, в системах аэрации для окисления бытовых сточных и близких к ним по составу вод, в кондиционировании при насыщении влагой обрабатываемого воздуха, при охлаждении воды в контурах оборотного водоснабжения, в противопожарной технике. В топливном кавитаторе корпус выполнен как одно целое. Зона подачи топлива выполнена из трех частей: обратного усеченного конуса, цилиндрической части и конической части. Зона кавитации выполнена в виде частей: канала, цилиндрических частей, усеченного конуса и зоны отвода топлива с цилиндрической частью. Благодаря обработке с использованием кавитации топливо становиться мелкодисперсионным, температура возгорания смеси падает и позволяет сжигать все поступившее топливо. При сжигании всего впрыскиваемого топлива возрастает мощность автомобиля, в разы уменьшается содержание вредных веществ в выхлопных газах автомобиля, уменьшение расхода топлива до 30%. Топливный кавитатор прост в изготовлении и легко монтируется в топливную систему автомобиля. 3 з.п. ф-лы, 2 ил., 1 табл.

Description

Изобретение относится к жидкостным распылительным устройствам эжекционного типа и может быть использовано в энергетике при сжигании жидкого топлива, в водоснабжении при удалении двухвалентного железа из подземных вод, в системах аэрации для окисления бытовых сточных и близких к ним по составу вод, в кондиционировании при насыщении влагой обрабатываемого воздуха, при охлаждении воды в контурах оборотного водоснабжения, в противопожарной технике.
Известно устройство для обработки жидкого топлива кавитацией, которое содержит цилиндрический корпус с патрубками подачи и удаления жидкого топлива. В корпусе размещен ультразвуковой струйный излучатель. Излучатель выполнен в виде двух спиралей Архимеда, лопасти которых имеют противоположные направления и расположены один между другим. Устройство дополнительно снабжено камерой переменного сечения, расположенной за струйным излучателем. (см. патент РФ на ИЗ №2075619 по кл. МПК F02M 27/07, 1997).
Недостатком указанного устройства является сложность конструкции и высокая стоимость его изготовления.
Известен также распылитель для улучшения смесеобразования, состоящий из корпуса с последовательно выполненными входным каналом, тороидальной камерой и выходным клапаном. Входной клапан сообщен с форсункой, размещенной в проточном канале. Камера обеспечивает создание резонансного режима движения вихревого потока и увеличение интенсивности кавитации (см. заявка на ИЗ №94027355 по кл. МПК F02M 61/10, 1996).
Указанный распылитель предназначен для смешения топлива с воздухом.
Наиболее близким по технической сущности является устройство для диспергирования жидкости, состоящее из корпуса со ступенчатыми зонами: зоной подачи топлива и зоной кавитации. Зона подачи топлива выполнена в виде полого усеченного конуса, переходящего в цилиндрическую часть. Зона кавитации выполнена с кавитационным стержнем и со ступенчатой частью в виде профилированных колец нарастающего диаметра (см. патент РФ на ИЗ №2159684 по кл. МПК B05B 1/00, B05B 1/30, B05B 1/32, 2000).
Указанная конструкция сложная при изготовлении.
Техническая задача, решаемая данным изобретением, - упрощение конструкции устройства для кавитации топлива, повышение КПД и экономичности двигателя, снижение вредных примесей за счет интенсификации процесса кавитации, а также упрощение монтажа в топливную систему автомобиля.
Поставленная задача решается тем, что топливный кавитатор, состоящий из корпуса, выполненного как единое целое с зонами: зоной подачи топлива с усеченным конусом, переходящим в цилиндрическую часть, зоной кавитации, выполненной с каналом и со ступенчатой частью с элементами переменного диаметра и зоной отвода с цилиндрической частью с диаметром d4. Причем зона подачи топлива выполнена из трех частей: обратного усеченного конуса, цилиндрической части с диаметром d3 и конической части с диаметром в основании d2 и с внутренним диаметром сопла d1, а зона кавитации выполнена в виде частей: канала с внутренним диаметром d1, цилиндрических частей с диметрами d5 и d6, усеченного конуса.
Кроме того, соотношение размеров в зоне подачи топлива выбрано d1:d2:d3=1:10:16.
А соотношение размеров в зоне кавитации выбрано d1:d4:d5:d6=1:7:16:10. Кроме того, соотношение длины частей устройства выбрано l1:l2:l3:l4:l5:l6=.8:26:9:17:14:9, где l1 - длина канала, l2 - длина конической части зоны подачи топлива, l3 - длина цилиндрической части зоны подачи топлива, l4 - длина усеченного конуса зоны кавитации, l5, l6 - длина цилиндрических частей зоны кавитации.
Новым в данном техническом решении является то, что корпус выполнен как одно целое. Зона подачи топлива выполнена из трех частей: обратного усеченного конуса, цилиндрической с диаметром d3 и конической с диаметром в основании d2 и с внутренним диаметром сопла d1. Зона кавитации выполнена в виде частей: канала с внутренним диаметром d1, цилиндрических частей с диметрами d5 и d6, усеченного конуса. Зона отвода топлива выполнена в виде цилиндрической части с диаметром d4.
Кроме того, соотношение размеров в зоне подачи топлива выбрано d1:d2:d3=1:10:16.
А соотношение размеров в зоне кавитации выбрано d1:d4:d5:d6=1:7:16:10. Кроме того, соотношение длины частей устройства выбрано l1:l2:l3:l4:l5:l6=.8:26:9:17:14:9, где l1 - длина канала, l2 - длина конической части зоны подачи топлива, l3 - длина цилиндрической части зоны подачи топлива, l4 - длина усеченного конуса зоны кавитации, l5, l6 - длина цилиндрических частей зоны кавитации.
Предлагаемое техническое решение имеет существенные признаки, которые в совокупности влияют на достигнутый результат. Благодаря выбранной конструкции и точно подобранной внутренней геометрии при входящем давлении от 0,2-0,25 мПа возникает эффект кавитации и топливо становиться мелко дисперсионным, температура возгорания смеси падает и позволяет сжигать все поступившее топливо, что повышает мощность двигателя, позволяет получить экономию топлива и уменьшить выброс вредных газов в 2-3 раза. Благодаря обработке с использованием кавитации топливо становиться мелкодисперсионным, температура возгорания смеси падает и позволяет сжигать все поступившее топливо. При сжигании всего впрыскиваемого топлива возрастает мощность автомобиля, в разы уменьшается содержание вредных веществ в выхлопных газах автомобиля, уменьшается расход топлива до 30%.
Кавитация сопровождается и частичным разрушением самих молекул с образованием свободных радикалов, которые еще больше инициируют процессы сгорания. Таким образом, облегченный фракционный состав (при том же типе воздушного потока) не только облегчает зимний пуск ДВС, но делает сгорание топлива равномерным и экономичным. Моторное топливо, обогащенное свободными радикалами, частично поглощает конденсат из бака, что не просто приводит к его удалению (это как спирт в бак залить), но и насыщает топливо дополнительным водородом и кислородам. В результате улучшается теплотворная способность топлива, обеспечивается еще более полное сгорание тяжелых углеводородов, что очищает топливную систему. Содержащиеся в топливе высокодисперсные частицы водной фазы при его прогреве в цилиндре превращаются в паровые пузырьки, мгновенно дробящие топливные капли на мельчайшие частицы, которые быстрее прогреваются и интенсивнее взаимодействуют вначале с кислородом, образующимся в результате диссоциации воды, воспламеняются, и, перемешиваясь с кислородом воздушного заряда, ускоренно сгорают. Механическое разрушение в топливе твердых частиц приводит к снижению загрязнения продуктами сгорания топлива цилиндро-поршневой группы и выпускных клапанов.
Сущность изобретения поясняется чертежами: на фиг.1 показано предлагаемое устройство, на фиг.2 - соотношение размеров геометрии устройства.
Топливный кавитатор состоит из корпуса 1, выполненного как одно целое, со ступенчатыми зонами: зоной подачи топлива 2 и зоной кавитации 3. Зона подачи топлива 2 выполнена в виде полого усеченного конуса 4, переходящего в цилиндрическую часть 5, а зона кавитации 3 выполнена ступенчатой с каналом 4 и со ступенчатой частью с элементами нарастающего диаметра. Зона подачи топлива 2 выполнена из трех частей: обратного усеченного конуса 4, цилиндрической части 5 с диаметром d3 и конической части 6 с диаметром в основании d2 и с внутренним диаметром d1 сопла 7. Зона кавитации выполнена с: каналом 4 с внутренним диаметром d1, цилиндрических частей 8 и 9 с диметрами d5 и d6, усеченного конуса 10, переходящей в зоны отвода топлива с цилиндрической частью 11 с диаметром d4. Для подсоединения к топливной системе автомобиля выполнен штуцер 12.
На чертеже показано: l1 - длина канала, l2 - длина конической части зоны подачи топлива, l3 - длина цилиндрической части зоны подачи топлива, l4 - длина усеченного конуса зоны кавитации, l5, l6 - длина цилиндрических частей зоны кавитации.
Предложенное устройство работает следующим образом.
Монтаж устройства производится прямо в топливную систему автомобиля непосредственно перед впрыском топлива, после бензонасоса; в случае отсутствия нагнетающего насоса (дизельные двигатели) в топливную систему дополнительно устанавливается проточный насос с пресостатом для регулировки давления. Настройки или иных манипуляций не требует и можно сразу использовать автомобиль.
Соотношение размеров топливного кавитатора выбрано в результате испытаний. Соотношение размеров в зоне подачи топлива: d1:d2:d3=1:10:16, соотношение размеров в зоне кавитации выбрано d1:d4:d5:d6=1:7:16:10, соотношение длины частей устройства - l1:l2:l3:l4:l5:l6=.8:26:9:17:14:9.
Пример осуществления решения.
Минимальные требования для топливной системы автомобиля:
- диаметр топливного шланга от 4 до 8 мм
- давление насоса от 250 кПа (2.5 бар)
При увеличении диаметра топливного шланга необходимо увеличение давления насоса, чтобы скорость движения топлива на входе системы была не менее 30 м/с.
Расчет кавитации производился по формуле
x=2(P-Ps)/u*(V*V),
где
P - гидростатическое давление набегающего потока, Па; - давление насоса
Ps - давление насыщенных паров жидкости при определенной температуре окружающей среды, Па;
u - плотность среды, кг/м3;
V - скорость потока на входе в систему, м/с.
В зависимости от величины x можно различают четыре вида потоков: докавитационный - сплошной (однофазный) поток при x>1, кавитационный - (двухфазный) поток при х~1, пленочный - с устойчивым отделением кавитационной полости от остального сплошного потока (пленочная кавитация) при x<1, суперкавитационный - при x<<1.
При расчете по выше приведенной формуле с использованием усредненных показателей характеристик топлива и топливных насосов с использованием предложенного устройства были получены следующие индексы кавитации (число кавитации x):
- бензины всех марок - x=1.07221
- дизельное топливо всех марок без использования дополнительного насоса - х=1.33996
- дизельное топливо всех марок с использованием дополнительного проточного насоса от 5 бар - x=0.47023
При увеличении диаметра топливного шланга необходимо увеличение давления насоса, чтобы скорость движения топлива на входе системы была не менее 30 м/с. Благодаря обработке с использованием кавитации топливо становиться мелкодисперсионным, температура возгорания смеси падает, и позволяет сжигать все поступившее топливо. При сжигании всего впрыскиваемого топлива возрастает мощность автомобиля, в разы уменьшается содержание вредных веществ в выхлопных газах автомобиля, уменьшение расхода топлива до 30%. Ниже приведена таблица с данными по нашим испытаниям.
Предлагаемый топливный кавитатор имеет преимущество перед известными устройствами данного типа:
- не имеет механических движущих частей;
- не подключается к электросети автомобиля;
- работает в любой топливной системе автомобиля при наличии входящего рабочего давления;
- очень просто и быстро устанавливается или демонтируется на любом автомобиле;
- имеет высокие показатели улучшения в работе двигателя.
Благодаря обработке с использованием кавитации топливо становиться мелкодисперсионным, температура возгорания смеси падает и позволяет сжигать все поступившее топливо. При сжигании всего впрыскиваемого топлива возрастает мощность автомобиля, в разы уменьшается содержание вредных веществ в выхлопных газах автомобиля, уменьшение расхода топлива до 30%. Предлагаемое устройство простое в изготовлении и легко монтируется в топливную систему автомобиля.
Таблица
№ п/п Марка машины Объем двигателя (L) Пробег после установки (км) Процент экономии* Стиль вождения Дата установки
1 Mazda 626 2L 1500 12% Умеренно агрессивно Март 2010
2 Nissan Tiida 1.6L 3500 10% Агрессивно Март 2010
3 ВАЗ 2111 1.5L 2400 31% Спокойно Март 2010
4 ВАЗ 2115 1.5L 1200 25% Агрессивно Апрель 2010
5 Nissan Almera 1.6L 1300 18% Умеренно агрессивно Апрель 2010
* Процент экономии вычислялся путем определения разницы в расходе до установки устройства и после

Claims (4)

1. Топливный кавитатор, состоящий из корпуса с зонами: зоной подачи топлива с усеченным конусом, переходящим в цилиндрическую часть, и зоной кавитации, выполненной со ступенчатой частью с элементами переменного диаметра, отличающийся тем, что корпус выполнен как одно целое, причем зона подачи топлива выполнена из трех частей: обратного усеченного конуса, цилиндрической части с диаметром d3 и конической части с диаметром в основании d2 и с внутренним диаметром сопла d1, а зона кавитации выполнена в виде частей: канала с внутренним диаметром d1, цилиндрических частей с диметрами d5 и d6, усеченного конуса и дополнен зоной отвода топлива с цилиндрической частью с диаметром d4.
2. Топливный кавитатор по п.1, отличающийся тем, что соотношение размеров в зоне подачи топлива выбрано d1:d2:d3=1:10:16.
3. Топливный кавитатор по п.1, отличающийся тем, что соотношение размеров в зоне кавитации выбрано d1:d4:d5:d6=1:7:16:10.
4. Топливный кавитатор по п.1, отличающийся тем, что соотношение длины частей устройства - l1:l2:l3:l4:l5:l6=8:26:9:17:14:9, где l1 - длина канала, l2 - длина конической части зоны подачи топлива, l3 - длина цилиндрической части зоны подачи топлива, l4 - длина усеченного конуса зоны кавитации, l5, l6 - длина цилиндрических частей зоны кавитации.
RU2010128402/05A 2010-07-08 2010-07-08 Топливный кавитатор RU2435649C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2010128402/05A RU2435649C1 (ru) 2010-07-08 2010-07-08 Топливный кавитатор
PCT/RU2011/000680 WO2012011851A2 (ru) 2010-07-08 2011-09-07 Топливный кавитатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010128402/05A RU2435649C1 (ru) 2010-07-08 2010-07-08 Топливный кавитатор

Publications (1)

Publication Number Publication Date
RU2435649C1 true RU2435649C1 (ru) 2011-12-10

Family

ID=45405498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010128402/05A RU2435649C1 (ru) 2010-07-08 2010-07-08 Топливный кавитатор

Country Status (2)

Country Link
RU (1) RU2435649C1 (ru)
WO (1) WO2012011851A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612712C1 (ru) * 2013-04-26 2017-03-13 Фискарс Ойй Абп Распылительная насадка для текучей среды
RU169235U1 (ru) * 2016-10-27 2017-03-13 Владимир Владимирович Остертах Форсунка конусовидная

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748753C2 (ru) * 2019-04-18 2021-05-31 Общество с ограниченной ответственностью "Статус" Форсунка оросительная
WO2022054271A1 (ja) * 2020-09-14 2022-03-17 水素パワー株式会社 燃料改質装置
JP7042540B1 (ja) * 2021-11-16 2022-03-28 株式会社アプライド・エナジー・ラボラトリー 燃焼効率改善装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075619C1 (ru) * 1994-10-13 1997-03-20 Алексей Викторович Афанасьев Устройство для обработки жидкого топлива кавитацией
RU2159684C1 (ru) * 2000-02-07 2000-11-27 ООО "Самаратрансгаз" ОАО "ГАЗПРОМ" Устройство для диспергирования жидкости
RU2305589C1 (ru) * 2006-03-01 2007-09-10 Яков Михайлович Каган Гидродинамический кавитационный реактор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612712C1 (ru) * 2013-04-26 2017-03-13 Фискарс Ойй Абп Распылительная насадка для текучей среды
US9656282B2 (en) 2013-04-26 2017-05-23 Fiskars Oyj Abp Fluid flow nozzle
RU169235U1 (ru) * 2016-10-27 2017-03-13 Владимир Владимирович Остертах Форсунка конусовидная

Also Published As

Publication number Publication date
WO2012011851A3 (ru) 2012-03-15
WO2012011851A2 (ru) 2012-01-26

Similar Documents

Publication Publication Date Title
RU2435649C1 (ru) Топливный кавитатор
US8381701B2 (en) Bio-diesel fuel engine system and bio-diesel fuel engine operating method
JP5913106B2 (ja) 燃料均質化向上システム
KR100679869B1 (ko) Dpf시스템용 플라즈마 반응기와 이를 이용한 입자상물질의 저감 장치
CN102721081B (zh) 一种等离子强化雾化喷嘴
US6817347B2 (en) Fuel converter
CN102351361B (zh) 一种高盐油田污水处理和稠油开采相结合的装置及工艺
JP2011032998A (ja) 内燃機関
JP2002030937A (ja) エンジン及びシステム
CN103352775B (zh) 发动机尾气治理节能减排方法及其系统
RU143472U1 (ru) Устройство для приготовления водно-топливной эмульсии
KR101077852B1 (ko) 친환경 연료 활성화 장치
RU148002U1 (ru) Топливный кавитатор
US20040255873A1 (en) System and method for effervescent fuel atomization
CN115111092A (zh) 内燃机燃油加氧器
CN202757149U (zh) 一种等离子强化雾化喷嘴
CN104132338A (zh) 燃油喷嘴和燃烧装置
CN203927906U (zh) 燃油喷嘴和燃烧装置
CN105126508A (zh) 一种基于水雾的船舶尾气pm2.5去除装置
RU2327894C1 (ru) Двигатель внутреннего сгорания
RU2187753C2 (ru) Вихревая форсунка
US7383828B2 (en) Method and apparatus for use in enhancing fuels
CN102301099B (zh) 燃料分配装置
TW201412402A (zh) 乳化柴油生產製造過程
KR200169740Y1 (ko) 자동차용 엘피지 연료장치의 믹서

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130709