RU2435175C1 - Автономный цифровой сейсмометр - Google Patents

Автономный цифровой сейсмометр Download PDF

Info

Publication number
RU2435175C1
RU2435175C1 RU2010126232/28A RU2010126232A RU2435175C1 RU 2435175 C1 RU2435175 C1 RU 2435175C1 RU 2010126232/28 A RU2010126232/28 A RU 2010126232/28A RU 2010126232 A RU2010126232 A RU 2010126232A RU 2435175 C1 RU2435175 C1 RU 2435175C1
Authority
RU
Russia
Prior art keywords
output
input
data
synchronization
analog
Prior art date
Application number
RU2010126232/28A
Other languages
English (en)
Inventor
Игорь Порфирьевич Башилов (RU)
Игорь Порфирьевич Башилов
Юрий Николаевич Зубко (RU)
Юрий Николаевич Зубко
Сергей Георгиевич Волосов (RU)
Сергей Георгиевич Волосов
Сергей Анатольевич Королёв (RU)
Сергей Анатольевич Королёв
Original Assignee
Учреждение Российской академии наук Институт динамики геосфер РАН (ИДГ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт динамики геосфер РАН (ИДГ РАН) filed Critical Учреждение Российской академии наук Институт динамики геосфер РАН (ИДГ РАН)
Priority to RU2010126232/28A priority Critical patent/RU2435175C1/ru
Application granted granted Critical
Publication of RU2435175C1 publication Critical patent/RU2435175C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к приемникам сейсмических сигналов и может быть использовано при создании систем регистрации сейсмических данных. Устройство содержит сейсмопреобразователь, аналого-цифровой преобразователь, канал передачи данных, формирователь сигналов астрономического времени, тактовый генератор, контроллер управления. Дополнительно в устройство введен блок синхронизации. Заключенная в контроллер управления программа обеспечивает одновременный прием данных с аналого-цифрового преобразователя и формирователя сигналов астрономического времени и передачу данных через канал передачи данных на выход устройства.
Технический результат - повышение точности синхронизации сейсмических данных с астрономическим временем. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к сейсмологии, а точнее, к аппаратуре для сейсмических исследований и может быть использовано при создании систем регистрации сейсмических данных.
Известен сейсмометр, содержащий последовательно соединенные сейсмопреобразователь и аналого-цифровой преобразователь, а также блок памяти, контроллер управления, который имеет программу, заключенную в нем, обеспечивающую прием данных с аналого-цифрового преобразователя, запись данных в блок памяти [1].
Недостатком известного устройства является то, что привязка собираемых им данных к астрономическому времени возможна лишь только фиксацией начального момента запуска устройства, т.к. оно не имеет средств для синхронизации с астрономическим временем. При достаточно большом времени (несколько суток или месяцев) непрерывного сбора данных в автономном режиме отклонение внутренних часов устройства от астрономического времени может достигать минут, что совершенно недопустимо при сейсмологических наблюдениях.
Известен также автономный цифровой сейсмометр, содержащий последовательно соединенные сейсмопреобразователь и аналого-цифровой преобразователь, а также блок энергонезависимой памяти, канал передачи данных, формирователь сигналов астрономического времени, контроллер управления, вход данных которого соединен с выходом данных аналого-цифрового преобразователя, выход записи-чтения данных и выход управления памятью соединены с входом-выходом и управляющим входом соответственно блока энергонезависимой памяти, а выход передачи данных соединен с входом канала передачи данных, выход которого является выходом сейсмометра, причем контроллер управления имеет программу, заключенную в нем, обеспечивающую прием данных с аналого-цифрового преобразователя, запись и чтение данных из блока энергонезависимой памяти и передачу данных через канал передачи данных на выход устройства [2].
Недостатком известного технического решения является сложность привязки сейсмических данных к астрономическому времени, т.к., хотя импульс секундной метки приемника глобального позиционирования, который может выполнять функции формирователя сигналов астрономического времени, сам по себе точно синхронизирован с астрономическим временем, но различить, к какой секунде какой из импульсов относится, затруднительно, не имея сообщения приемника об этом. Зафиксировать же в полевых условиях точную секунду астрономического времени начала регистрации данных сейсмометром сложно или для этого нужно иметь дополнительные специальные средства.
Наиболее близким техническим решением к настоящему изобретению, принятым за прототип, является автономный цифровой сейсмометр, содержащий последовательно соединенные сейсмопреобразователь и аналого-цифровой преобразователь, а также канал передачи данных, формирователь сигналов астрономического времени, тактовый генератор, контроллер управления, вход данных которого соединен с выходом данных аналого-цифрового преобразователя, тактовый вход соединен с выходом тактового генератора, вход метки времени соединен с первым выходом формирователя сигналов астрономического времени, а выход передачи данных соединен с входом канала передачи данных, выход которого является выходом сейсмометра, причем контроллер управления имеет программу, заключенную в нем, обеспечивающую одновременный прием данных с аналого-цифрового преобразователя и формирователя сигналов астрономического времени, запись и чтение данных из блока энергонезависимой памяти и передачу данных через канал передачи данных на выход устройства [3].
К недостаткам известного технического решения можно отнести то, что синхронизация сейсмических данных с астрономическим временем обеспечивается с точностью до периода выборки аналого-цифрового преобразователя, т.к. моменты выборки никак не связаны с астрономическим временем. В результате установить, в какой момент между выборками поступил передний фронт сигнала астрономического времени, невозможно. Уменьшение этого периода выборки для увеличения точности временной синхронизации приводит к увеличению шумов аналого-цифрового преобразователя, т.е. снижению динамического диапазона сигналов сейсмопреобразователя.
Целью изобретения является повышение точности синхронизации сейсмических данных с астрономическим временем.
Поставленная цель достигается тем, что автономный цифровой сейсмометр, содержащий последовательно соединенные сейсмопреобразователь и аналого-цифровой преобразователь, а также канал передачи данных, формирователь сигналов астрономического времени, тактовый генератор, контроллер управления, вход данных которого соединен с выходом данных аналого-цифрового преобразователя, тактовый вход соединен с выходом тактового генератора, вход метки времени соединен с первым выходом формирователя сигналов астрономического времени, а выход передачи данных соединен с входом канала передачи данных, выход которого является выходом сейсмометра, причем контроллер управления имеет программу, заключенную в нем, обеспечивающую одновременный прием данных с аналого-цифрового преобразователя и формирователя сигналов астрономического времени, запись и чтение данных из блока энергонезависимой памяти и передачу данных через канал передачи данных на выход устройства, дополнительно содержит блок синхронизации, выход которого соединен с входом синхронизации аналого-цифрового преобразователя, выход готовности данных которого соединен с входом разрешения приема данных контроллера управления и входом запрета синхронизации блока синхронизации, тактовый вход которого соединен с выходом тактового генератора, а вход метки времени соединен со вторым выходом формирователя сигналов астрономического времени.
Кроме того, блок синхронизации состоит из счетчика, одновибратора и триггера-защелки, вход разрешения защелкивания и выход которого являются соответственно входом запрета синхронизации и выходом блока синхронизации, а вход данных соединен с выходом счетчика, тактовый вход которого является тактовым входом блока синхронизации, а вход сброса соединен с выходом одновибратора, вход которого является входом метки времени блока синхронизации.
Совокупность существенных признаков предложенного устройства: «блок синхронизации, выход которого соединен с входом синхронизации аналого-цифрового преобразователя, тактовый вход соединен с выходом тактового генератора, а вход метки времени соединен со вторым выходом формирователя сигналов астрономического времени» - обеспечивает повышение точности синхронизации сейсмических данных с астрономическим временем. Это достигается за счет того, что цикл выборки данных перезапускается блоком синхронизации каждый раз по переднему фронту периодических сигналов астрономического времени. В результате момент оцифровки жестко связывается с приходом сигналов астрономического времени. За время между ними циклы выборки формируются обычным путем - делением частоты тактового генератора.
Существенные признаки данного технического решения: «выход готовности данных аналого-цифрового преобразователя соединен с входом разрешения приема данных контроллера управления и входом запрета синхронизации блока синхронизации» - необходимы для обеспечения согласованной работы блока синхронизации и аналого-цифрового преобразователя. Обычно во время преобразования на аналого-цифровые преобразователи не допускается подача сигнала запуска оцифровки. С другой стороны, из-за отклонения частоты тактового генератора от номинала неизвестно, когда поступит сигнал астрономического времени. Он может поступить и во время преобразования. В этом случае блок синхронизации обеспечивает формирование сигнала запуска преобразования по окончании запрещающего сигнала от аналого-цифрового преобразователя.
Совокупность дополнительных существенных признаков предложенного устройства: «блок синхронизации состоит из счетчика, одновибратора и триггера-защелки, вход разрешения защелкивания и выход которого являются соответственно входом запрета синхронизации и выходом блока синхронизации, а вход данных соединен с выходом счетчика, тактовый вход которого является тактовым входом блока синхронизации, а вход сброса соединен с выходом одновибратора, вход которого является входом метки времени блока синхронизации» - показывает пример реализации блока синхронизации сейсмометра.
На фиг.1 представлена блок-схема автономного цифрового сейсмометра, на фиг.2 - схема блока синхронизации, на фиг.3 и 4 - временные диаграммы работы устройства.
Автономный цифровой сейсмометр содержит сейсмопреобразователь 1, аналого-цифровой преобразователь (АЦП) 2, контроллер 3 управления, тактовый генератор 4, формирователь 5 сигналов астрономического времени, канал 6 передачи данных, блок 7 синхронизации. Сейсмопреобразователь 1 обычно состоит из сейсмического датчика 8 и блока 9 фильтрации, но наличие последнего не обязательно. В качестве формирователя 5 сигналов астрономического времени может быть использована известная схема, состоящая из приемника 10 глобального позиционирования, блока 11 согласования логических уровней и формирователя 12 минутной метки. Формирователь 5 сигналов астрономического времени на первом выходе выдает импульс, передний фронт которого совпадает с началом первой секунды каждой минуты. В качестве второго выхода формирователя 5 используется выход секундной метки приемника 10. На втором выходе формирователя 5 импульсы выдаются каждую секунду, а их передние фронты совпадают с началом секунд.
Программа, заключенная в контроллере 3, обеспечивает управление работой АЦП 2, прием данных с него и с формирователя сигналов астрономического времени с частотой, кратной частоте тактового генератора 4, а также передачу данных на выход устройства через канал 6 передачи данных.
Блок 7 синхронизации может состоять из счетчика 13, триггера-защелки 14 и одновибратора 15. Тактовый вход счетчика 13 является тактовым входом 16 блока 7, вход одновибратора 15 является входом 17 метки времени блока 7 синхронизации, а вход разрешения защелкивания и выход триггера-защелки 14 являются соответственно входом 18 запрета синхронизации и выходом 19 блока 7. Элементы блока 7 могут представлять собой серийно выпускаемые отечественные микросхемы 555ИЕ7 (счетчик 13), 555ТМ5 (триггер-защелка 14), 555АГ3 (одновибратор 15) или их зарубежные аналоги. Кроме того, блок 7 синхронизации может быть реализован и любым другим способом, например на основе микроконтроллера.
Устройство работает следующим образом.
Приемник 10 глобального позиционирования на выходе PPS каждую секунду вырабатывает импульс, передний фронт которого совпадает с началом секунды астрономического времени [4]. Одновременно на выходе RS-232 приемника 10 каждый импульс сопровождается последовательным кодом, содержащим информацию о его времени. Блок 11 согласования логических уровней преобразует уровни электрических сигналов, соответствующих стандарту RS-232 в стандартные логические уровни микросхем, например ТТЛ. Формирователь 12 минутной метки по данным приемника 10 выдает на своем первом выходе импульсы, передний фронт которых совпадает с началом первой секунды каждой минуты астрономического времени, а на втором выходе - импульсы, передний фронт которых совпадает с каждой секунды астрономического времени.
Сейсмический датчик 8 устанавливается в грунт. Он преобразует параметры колебания грунта (смещение, скорость или ускорение в зависимости от типа датчика) в электрический аналоговый сигнал. При необходимости этот сигнал поступает на блок 9 фильтрации, где отфильтровываются его частотные составляющие, выходящие за рабочую полосу частот датчика 8. Далее аналоговый сигнал поступает в АЦП 2, где происходит его оцифровка, процесс которой синхронизируется блоком 7 синхронизации.
При отсутствии положительного перепада напряжения (из «0» в «1») на входе 17 метки времени блока 7 последний делит частоту тактового генератора 4 в 2n раз, где n - номер разряда счетчика 13. Номер разряда выбирается таким образом, чтобы на выходе 20 счетчика 13 формировались импульсы с периодом Тдел, соответствующим периоду выборки АЦП 2.
Начало каждого преобразования аналогового сигнала начинается по отрицательному фронту этих импульсов (переключение из «1» в «0» выхода 20 счетчика 13). Получив указанный фронт на своем входе синхронизации, АЦП 2 начинает преобразование и одновременно сбрасывает в «0» выход готовности данных. Он остается в этом состоянии на время tпр, пока не закончится преобразование и данные не станут доступными для чтения контроллером 3. Пока идет преобразование АЦП 2, подавать на него сигнал синхронизации не допускается. Низкий уровень с выхода готовности данных АЦП 2 поступает на вход 18 запрета синхронизации блока 7, т.е. на вход разрешения защелкивания триггера-защелки 14. На выходе триггера-защелки 14, а значит, и на выходе 19 блока 7 синхронизации зафиксируется низкий уровень напряжения, который поступал на его вход данных с выхода 20 счетчика 13 в момент защелкивания. Этот уровень на выходе 19 не изменится, пока идет преобразование АЦП 2, независимо от изменений напряжения на выходе 20 счетчика 13.
По окончании преобразования АЦП 2 изменяет на выходе готовности данных уровень с низкого на высокий. Получив этот сигнал, триггер-защелка 14 выходит из режима защелкивания, и на выход 19 блока 7 начинает проходить напряжение с выхода 20 счетчика 13. Контроллер 3 принимает данные с АЦП 2 и одновременно уровень сигнала на входе метки времени и передает их на выход сейсмометра через канал 6 передачи данных. Когда счетчик 13 досчитает 2n импульсов с тактового генератора 4, он переполнится и все его разряды, в том числе и Qn, обнулятся. На выходе 20 счетчика 13 возникает отрицательный перепад напряжения, который через открытый триггер-защелку 14 проходит на выход 19 блока 7 синхронизации. Тем самым запускается новый цикл оцифровки данных.
В начале каждой астрономической секунды формирователь 5 подает на вход 17 метки времени блока 7 положительный перепад напряжения, по которому одновибратор 15 формирует на своем выходе 21 короткий импульс отрицательной полярности, сбрасывающий счетчик 13. В результате счетчик 13 начнет формировать новый цикл Тдел деления частоты тактового генератора 4 с момента появления переднего фронта сигнала метки времени. Таким образом, время ближайшего и всех последующих моментов оцифровки аналоговых данных может быть определено относительно начала сигнала метки времени.
Высокий уровень метки времени удерживается в течение нескольких периодов оцифровки данных. Каждый раз, принимая сейсмические данные из АЦП 2, контроллер 3 фиксирует и соответствующее им состояние на своем входе метки времени. Первые данные, принятые от АЦП 2, соответствующие логическому уровню метки времени «1», оцифрованы в момент tmдел, где tm - астрономическое время начала минуты. Моменты оцифровки всех последующих данных отличаются на величину Тдел. Определить минуту, на которой был включен сейсмометр, несложно даже в полевых условиях.
Обычно частота оцифровки используется такой, что в секунде укладывается целое количество периодов Тдел. В таком случае начало следующей метки времени должно совпасть с началом периода деления. Но из-за отклонений частоты генератора 4 от номинала, а также влияния внешних факторов в реальности этого не происходит. Относительная погрешность периода сигнала генератора 4 на самом плохом кварцевом резонаторе не превышает 10-4, т.е. за 1 с ошибка определения времени оцифровки не может составить более tсвд=100 мкс. Каждая новая метка времени производит сдвиг начала периода оцифровки в ту или иную сторону на величину tсвд, обеспечивая тем самым подстройку моментов оцифровки под астрономическое время.
Если начало метки времени поступает в момент, когда АЦП 2 находится в режиме преобразования (фиг.3), то на выходе счетчика 13 может возникнуть отрицательный перепад напряжения. Защелкнутый на время преобразования триггер-защелка 14 не пропустит этот перепад на выход 19 блока 7, обеспечивая тем самым корректную работу АЦП 2. Сигнал, запускающий преобразование, АЦП 2 получит через время Тдел после прихода фронта метки времени.
Если же передний фронт метки поступает, когда АЦП 2 готово к выдаче данных (фиг.4), то отрицательный фронт, возникающий на выходе 20 счетчика 13 при его сбросе, через открытый триггер-защелку 14 проходит на вход синхронизации АЦП 2. Последний немедленно приступает к преобразованию имеющегося на его входе аналогового сигнала.
Высокая точность синхронизации сейсмических данных с астрономическим временем необходима для функционирования мобильных сетей наблюдения из автономных сейсмометров, имеющих своей целью построение скоростных моделей строения земной коры и мантии и определение местоположения эпицентра источников сейсмических колебаний. Сейсмометры располагаются на расстояниях в десятки и сотни километров друг от друга и фиксируют колебания земной поверхности по трем координатам. Анализ и сопоставление сейсмограмм со всех сейсмометров сети позволяет проследить направление и скорость прохождения волнового фронта, а также затухание волны. Для сопоставления сейсмограмм, полученных от разных сейсмометров, и требуется их возможно более точная синхронизация. В предложенном устройстве моменты оцифровки данных синхронизируются фронтами секундных меток, вырабатываемых приемниками глобального позиционирования. Эти метки поступают на все сейсмометры сети, где бы они ни находились, одновременно с точностью до 1 мкс, обеспечивая расхождение между «одновременными» отсчетами разных сейсмометров, как было показано выше, не более 100 мкс.
Предложенное устройство было разработано для проведения прецизионных сейсмологических измерений в рамках реализации проекта РФФИ 09-05-12023-офи_м «Инициирование и накопление деформаций в блочной геофизической среде в результате электромагнитных и механических воздействий 2009-2010» и использовалось при регистрации карьерных взрывов на территории центральной и северо-западной частей России. Проведенные работы подтвердили достижение в предложенной совокупности существенных признаков поставленной цели изобретения.
Список литературы
1. Патент РФ №2265867, МПК G01V 1/00, от 29.12.2003 г.
2. Патент РФ №2323455, МПК G01V 1/00, от 22.04.2003 г., фиг.1А.
3. Патент РФ по заявке №2009101905/28, МПК G01V 1/16, от 21.01.2009 г., решение о выдаче патента от 20.04.2010 г.
4. GARMIN. GPS 25 LP series GPS sensor boards GPS25-LVC, GPS25-LVS, GPS25-HVS. Technical Specification.

Claims (2)

1. Автономный цифровой сейсмометр, содержащий последовательно соединенные сейсмопреобразователь и аналого-цифровой преобразователь, а также канал передачи данных, формирователь сигналов астрономического времени, тактовый генератор, контроллер управления, вход данных которого соединен с выходом данных аналого-цифрового преобразователя, тактовый вход соединен с выходом тактового генератора, вход метки времени соединен с первым выходом формирователя сигналов астрономического времени, а выход передачи данных соединен с входом канала передачи данных, выход которого является выходом сейсмометра, причем контроллер управления имеет программу, заключенную в нем, обеспечивающую одновременный прием данных с аналого-цифрового преобразователя и формирователя сигналов астрономического времени и передачу данных через канал передачи данных на выход устройства, отличающийся тем, что он дополнительно содержит блок синхронизации, выход которого соединен с входом синхронизации аналого-цифрового преобразователя, выход готовности данных которого соединен с входом разрешения приема данных контроллера управления и входом запрета синхронизации блока синхронизации, тактовый вход которого соединен с выходом тактового генератора, а вход метки времени соединен со вторым выходом формирователя сигналов астрономического времени.
2. Автономный цифровой сейсмометр по п.1, отличающийся тем, что блок синхронизации состоит из счетчика, одновибратора и триггера-защелки, вход разрешения защелкивания и выход которого являются соответственно входом запрета синхронизации и выходом блока синхронизации, а вход данных соединен с выходом счетчика, тактовый вход которого является тактовым входом блока синхронизации, а вход сброса соединен с выходом одновибратора, вход которого является входом метки времени блока синхронизации.
RU2010126232/28A 2010-06-25 2010-06-25 Автономный цифровой сейсмометр RU2435175C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010126232/28A RU2435175C1 (ru) 2010-06-25 2010-06-25 Автономный цифровой сейсмометр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010126232/28A RU2435175C1 (ru) 2010-06-25 2010-06-25 Автономный цифровой сейсмометр

Publications (1)

Publication Number Publication Date
RU2435175C1 true RU2435175C1 (ru) 2011-11-27

Family

ID=45318287

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010126232/28A RU2435175C1 (ru) 2010-06-25 2010-06-25 Автономный цифровой сейсмометр

Country Status (1)

Country Link
RU (1) RU2435175C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616346C1 (ru) * 2016-03-28 2017-04-14 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Многоканальный цифровой регистратор сигналов
RU218261U1 (ru) * 2022-11-29 2023-05-17 Общество с ограниченной ответственностью "ГЕОЛТЕХ" (ООО "ГЕОЛТЕХ") Цифровой сейсмометр

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616346C1 (ru) * 2016-03-28 2017-04-14 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Многоканальный цифровой регистратор сигналов
RU218261U1 (ru) * 2022-11-29 2023-05-17 Общество с ограниченной ответственностью "ГЕОЛТЕХ" (ООО "ГЕОЛТЕХ") Цифровой сейсмометр
RU2805775C1 (ru) * 2023-06-06 2023-10-24 Федеральное государственное бюджетное учреждение науки Институт динамики геосфер имени академика М.А. Садовского Российской академии наук Формирователь сигналов астрономического времени для автономных цифровых сейсмометров

Similar Documents

Publication Publication Date Title
CA2741865C (en) Practical autonomous seismic recorder implementation and use
KR101179135B1 (ko) 위성 항법 시각 생성 장치 및 방법
US7885143B2 (en) Seismic acquisition system
US9645272B2 (en) Method and apparatus for synchronizing clocks underwater using light and sound
CN104535992B (zh) 人造卫星激光测距系统
NO331496B1 (no) System og fremgangsmate for synkronisering av systemgenererte seismiske hendelser
RU2587504C1 (ru) Способ и схема для синхронизации сейсмических и сейсмоакустических измерительных сетей, особенно шахтных искробезопасных сетей
Kebkal et al. Underwater acoustic modems with integrated atomic clocks for one-way travel-time underwater vehicle positioning
CN104122789A (zh) 高精度分布式同步时钟系统及方法
CN109738954B (zh) 一种时钟同步电路、时钟同步方法和海底地震仪
RU2435175C1 (ru) Автономный цифровой сейсмометр
Fischell et al. Design, implementation, and characterization of precision timing for bistatic acoustic data acquisition
RU2434249C1 (ru) Автономный цифровой сейсмометр
CN110471087A (zh) 一种空间飞行器的时间漂移计算方法和系统
CN210119579U (zh) 一种适用于井下槽波地震仪
RU2400777C1 (ru) Автономный сейсмоприемник с цифровой регистрацией сейсмических данных
Pelletier et al. Delivery of Accurate Timing to Subsea Instruments via Optical Modem Technology with the Added Benefit of Optical Range Measurement
Bashilov et al. The ADSS-3 broadband stand-alone digital seismic station
Pallarés et al. Contribution to COBS synchronization with PTP IEEE std. 1588
RU2805775C1 (ru) Формирователь сигналов астрономического времени для автономных цифровых сейсмометров
RU2821149C1 (ru) Способ определения местоположения подводных объектов, излучающих звуки
CN201222100Y (zh) 地震采集系统
RU2794700C1 (ru) Способ позиционирования подводного объекта на больших дистанциях
CN101477209A (zh) 地震采集系统
RU2468388C2 (ru) Гидроакустическая синхронная дальномерная навигационная система

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130626