RU2435050C2 - Энергоаккумулирующая установка - Google Patents

Энергоаккумулирующая установка Download PDF

Info

Publication number
RU2435050C2
RU2435050C2 RU2009109123/06A RU2009109123A RU2435050C2 RU 2435050 C2 RU2435050 C2 RU 2435050C2 RU 2009109123/06 A RU2009109123/06 A RU 2009109123/06A RU 2009109123 A RU2009109123 A RU 2009109123A RU 2435050 C2 RU2435050 C2 RU 2435050C2
Authority
RU
Russia
Prior art keywords
working fluid
heat exchanger
energy
turbine
accumulator
Prior art date
Application number
RU2009109123/06A
Other languages
English (en)
Other versions
RU2009109123A (ru
Inventor
Николай Николаевич Пономарев-Степной (RU)
Николай Николаевич Пономарев-Степной
Павел Геннадьевич Цыбульский (RU)
Павел Геннадьевич Цыбульский
Вараздат Амаякович Казарян (RU)
Вараздат Амаякович Казарян
Анатолий Яковлевич Столяревский (RU)
Анатолий Яковлевич Столяревский
Original Assignee
Общество С Ограниченной Ответственностью "Центр Кортэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Центр Кортэс" filed Critical Общество С Ограниченной Ответственностью "Центр Кортэс"
Priority to RU2009109123/06A priority Critical patent/RU2435050C2/ru
Publication of RU2009109123A publication Critical patent/RU2009109123A/ru
Application granted granted Critical
Publication of RU2435050C2 publication Critical patent/RU2435050C2/ru

Links

Abstract

Изобретение относится преимущественно к автономным системам и установкам энергообеспечения, использующим как различные виды топлива, так и возобновляемые источники энергии, например энергию солнца, и предназначена для обеспечения отопительным теплом, горячей водой, холодом и электроэнергией различных объектов, имеющих неравномерную энергетическую нагрузку. Энергоаккумулирующая установка содержит турбину, приемник рабочего тела, подключенный к выходу турбины, компрессор и охлаждающий теплообменник, соединенный с аккумулятором рабочего тела, который через нагревающий теплообменник подключен ко входу в турбину. Внутренняя полость приемника рабочего тела сообщается с первым гидравлическим компенсатором давления. Внутренняя полость аккумулятора рабочего тела сообщается со вторым гидравлическим компенсатором давления, подключенным к системе накопления жидкости с возможностью использования гидростатического напора жидкости для компенсации давления рабочего тела. Изобретение направлено на повышение надежности установки и снижение стоимости производства энергии. 6 з.п. ф-лы, 1 ил.

Description

Изобретение относится преимущественно к автономным системам и установкам энергообеспечения, использующим как различные виды топлива, так и возобновляемые источники энергии, например энергию солнца, и предназначена для обеспечения отопительным теплом, горячей водой, холодом и электроэнергией различных объектов, имеющих неравномерную энергетическую нагрузку.
Известны энергоустановки, ветроустановки с электрогенераторами или приливные электростанции, преобразующие первичную энергию в электрическую, которая запасается в электроаккумуляторах и затем по необходимости подводится к различным потребителям электроэнергии. Применяются также различные энергоустановки, преобразующие тепловую (солнечную или геотермальную) энергию в электрическую энергию. Значительный потенциал имеют атомные энергоисточники, которые выгодно использовать при постоянной нагрузке, в то время как в энергосистеме существуют дневные пики и ночные провалы мощности. Как видно из приведенного перечисления особенностей работы различных энергогенерирующих систем, существует значительная разница во временных графиках выработки и потребления энергии. Таким образом, возникает задача создания энергоаккумулирующих установок и систем, способных обеспечивать потребителя различными видами энергии, вторичными энергоносителями и опресненной водой в требуемом по условиям потребления неравномерном режиме вне зависимости от графика расхода первичной энергии.
Энергетический потенциал атомных и возобновляемых источников энергии более чем на два порядка превышает потребность в энергии. Использование этого потенциала решит геополитические проблемы, связанные с неравномерностью размещения природных месторождений органического топлива, а также приведет к заметному восстановлению природного экологического потенциала и улучшению состояния окружающей среды.
Выравнивание графика нагрузок энергоисточников за счет применения традиционных накопителей электроэнергии или теплоаккумуляторов увеличивает стоимость производства энергии и усложняет регламент работы.
Проведенные исследования показали, что должны быть приняты меры по созданию специализированных энергоустановок с требуемыми технико-экономическими характеристиками на базе современных технологий аккумулирования энергии. Необходимость длительного экономичного хранения больших количеств энергии при суточном и недельном маневрировании требует использования аккумуляторов с низкими затратами на единицу запасенной энергии и малыми потерями энергии. К таковым относятся:
хемотермические системы (ХТС) накопления и передачи энергии, воздушно-аккумулирующие (ВАЭС) электростанции, аккумуляторы горячей (АГВ) и питательной (АПВ) вода, аккумуляторы фазового перехода (АФП), электрохимические (ЭХА) и термохимические (ТХА) накопители. При этом выбираемые аккумулирующие установки или устройства должны удовлетворять ряду требований, основными из которых являются:
- низкая удельная стоимость
- достаточно большой срок службы
- надежность и безопасность.
Аккумулирование тепловой и электрической энергии в часы спада ее потребления с целью использования в период минимума нагрузок позволяет в наибольшей степени выравнивать график электрической нагрузки. Для этого в энергосистемах должны предусматриваться специальные аккумулирующие электростанции или внутрисистемные аккумуляторы.
Аккумулирование энергии позволит увеличить мощность и время работы базовых электростанций, улучшив тем самым технико-экономические показатели крупных энергоблоков благодаря существенному уменьшению эксплуатационных расходов, уплотнить график нагрузки и компенсировать ее пиковые изменения. Кроме того, накопители могут существенно повысить устойчивость крупной станции при обеспечении баланса мощности электроэнергетической системы. Включение накопителя в энергосистему в качестве самостоятельной структурной единицы является объективной необходимостью и на ближайшую перспективу нет альтернативных решений для мощных ТЭС и АЭС с накопителями энергии. Использование возобновляемых источников энергии (ВИЭ) в принципе невозможно без накопителей энергии в связи с неравномерностью выработки тепловой и электроэнергии.
При стоимости пиковой электроэнергии на оптовом рынке в 7-10 раз выше ночной суммарная выручка от работы накопителей с учетом оплаты системных услуг обеспечивает инвестиционную привлекательность долгосрочных финансовых вложений в их строительство.
В частности, предложен способ работы ветроэлектростанции с водородным аккумулированием энергии, заключающийся в том, что воду разлагают на кислород и водород, отличающийся тем, что с целью повышения эффективности создают замкнутый цикл, где воду нагнетают насосом в пароохладитель и электролизер, из которого водород и кислород, как компоненты разложения воды, собирают в резервуары для раздельного хранения, сжигают в камере сгорания, а продукты сгорания в виде перегретого водяного пара направляют в пароохладитель, где впрыскивают воду и охлаждают перегретый водяной пар, энергию которого посредством паровой турбины, генератора, конденсатора и электрокотла преобразуют в электрическую и тепловую энергию, а конденсат сливают в конденсатную емкость (заявка РФ на изобретение №99102865, дата публикации 2000.12.20). Недостатком данного решения является высокая стоимость и низкая эффективность аккумулирования энергии, что связано с большими затратами на создание и эксплуатацию электролизеров (до 3000 дол. США/кВт) и систем хранения водорода и кислорода, а также относительно низким кпд паротурбинного цикла.
Более экономичное решение предложено в патенте РФ на изобретение №2023387 (дата публикации 1994.11.30), в котором перед подачей углекислого газа в теплицу осуществляют его многоступенчатое сжатие с промежуточным охлаждением в водоуглекислотных теплообменниках, аккумулирование сжиженного углекислого газа и его хранение, при этом после хранения осуществляют нагрев его в солнечном коллекторе для получения углекислотного пара, который направляют в углекислотную турбину с регулируемым давлением на выхлопе турбин - прототип. Недостатками данного решения являются относительно низкий кпд углекислотного цикла и необходимость подвода углекислоты от стороннего источника.
Техническим решением по устранению данного недостатка стало предложение по патенту РФ на изобретение №2273742, котором в энергоаккумулирующей установке, содержащей турбину, приемник рабочего тела, подключенный к выходу турбины, компрессор и охлаждающий теплообменник, соединенный с аккумулятором сжиженного рабочего тела, к которому подключен основной нагнетатель, установленный перед нагревающим теплообменником, включенным перед турбиной, компрессор соединен с приемником рабочего тела, выполненным в виде емкости, заполненной сорбентом рабочего тела, в которой размещен встроенный теплообменник, включенный между основным нагнетателем и нагревающим теплообменником. В данном предложении недостатком является необходимость создания сорбционных аккумуляторов высокой стоимости, обусловленной дороговизной эффективных сорбентов.
Цель изобретения - это создание энергоаккумулирующей установки, в которой устранены указанные выше недостатки.
Поставленная задача решается тем, что:
в энергоаккумулирующей установке, содержащей турбину, приемник рабочего тела, подключенный к выходу турбины, компрессор и охлаждающий теплообменник, соединенный с аккумулятором рабочего тела, который через нагревающий теплообменник подключен ко входу в турбину, внутренняя полость приемника рабочего тела сообщается с первым гидравлическим компенсатором давления, а внутренняя полость аккумулятора рабочего тела сообщается со вторым гидравлическим компенсатором давления, подключенным к системе накопления жидкости с возможностью использования гидростатического напора жидкости для компенсации давления рабочего тела;
- приемник рабочего тела выполнен в подземной полости;
- нагревающий теплообменник соединен с нагреваемой стороны с отбором тепла от теплового двигателя;
- нагревающий теплообменник соединен с нагреваемой стороны с аккумулятором тепла;
- в качестве рабочего тела выбрано вещество из ряда углеводороды, спирты, эфиры, фторхлоруглероды, перфторуглероды, аммиак, диоксид углерода или смесь перечисленных материалов;
- в качестве жидкости выбрана вода или водный раствор соли;
- выход компрессора и вход нагревающего теплообменника соединены через запирающий и/или регулирующий элемент;
- первый гидравлический компенсатор давления сообщается системой накопления жидкости со вторым гидравлическим компенсатором давления, выполненным во второй подземной полости.
На чертеже дано схемное решение предложенной энергоаккумулирующей установки.
Энергоаккумулирующая установка содержит турбину 1 с электрогенератором 2, к которой подводится из аккумулятора рабочего тела 3 рабочее тело, направляемое из турбины в приемник рабочего тела 4, запасающий рабочее тело после срабатывания на турбине теплосодержания, полученного в нагревающем теплообменнике 5, и возвращающий рабочее тело через компрессор 6 и охлаждающий теплообменник 7 в аккумулятор рабочего тела 3.
В зависимости от выбранного рабочего тела (аммиак, диоксид углерода, углеводород и т.д.) фазовое состояние рабочего тела в приемнике рабочего тела 4 и аккумуляторе рабочего тела 3 может быть различным: как твердым (например, диоксид углерода - «сухой лед»), так и жидким (спирт, эфиры, диоксид углерода, углеводороды и др.), или газообразным, что может вызывать отличия в конструкции приемника рабочего тела 4. Например, в случае жидкого рабочего тела аккумулятор рабочего тела 3 для снижения тепловых потерь может оснащаться теплоизоляцией (на чертеже не показана) или может быть снабжен узлом регенеративного теплообмена. Для отбора жидкого рабочего тела из аккумулятора рабочего тела 3, например в варианте выполнения в подземной полости, в него может быть введена сифонная трубка.
С целью уменьшения работы сжатия рабочего тела в режиме накопления энергии между компрессором 6 и приемником рабочего тела 4 включен отвод тепла 11, соединенный с аккумулятором тепловой энергии 12, выполненный в данном примере реализации с возможностью охлаждать рабочее тело как на входе в компрессор 6, так и между его ступенями сжатия, обеспечивая тем самым промежуточное охлаждение.
Для снижения температуры рабочего тела и/или его конденсации отвод тепла 11 может быть соединен с охлаждающей стороны с аккумулятором холода (на чертеже не показан), накопление холода в котором может осуществляться за счет низких температур окружающей среды или применения холодильных машин компрессионного или абсорбционного типа (на чертеже не показаны). Рационально накапливать холод в виде бинарных ледяных смесей так называемого «жидкого льда» (смесь воды, спирта и ингибирующей коррозию присадки).
Для более эффективного осуществления процессов накопления рабочего тела (в режиме выдачи пиковой энергии), снижения затрат на компрессию рабочего тела и увеличения объема запасаемого рабочего тела приемник рабочего тела 4 сообщается с гидравлическим компенсатором давления, подключенным к системе накопления жидкости 8 с возможностью использования гидростатического напора жидкости для компенсации давления рабочего тела внутри приемника рабочего тела 4, а также с возможностью нагрева или охлаждения рабочего тела внутри приемника за счет тепловой энергии, аккумулируемой жидкостью, и с возможностью использовать растворение рабочего тела в жидкости. Такой жидкостью преимущественно выбирается вода, поскольку существуют экономичные технологии ее применения в качестве гидравлической жидкости в требуемом диапазоне температур (5-180°С) или водный раствор соли, имеющий более низкую температуру замерзания и большую плотность.
В частности, сочетание воды в качестве гидравлической жидкости и диоксида углерода в качестве рабочего тела позволит в системе накопления жидкости запасать значительные объемы рабочего тела за счет эффекта высокой растворимости диоксида углерода в воде, составляющей при рабочем давлении, например, 2.5 МПа и температуре воды 25°С около 16 л CО2 на 1 л воды, что позволит использовать воду как дополнительный аккумулятор рабочего тела, способный служить балластирующим агентом, смягчающим газодинамические процессы внутри приемника рабочего тела 4.
Аналогично аккумулятор рабочего тела 3 снабжен гидравлическим компенсатором давления, подключенным к системе накопления жидкости 13.
Кроме того, вход в турбину 1 и выход из компрессора 6 снабжены регулируемыми клапанами 10, позволяющими создать циркуляцию рабочего тела мимо аккумулятора рабочего тела 3 для рационального использования вторичных тепловых ресурсов. Выход нагревающего теплообменника 5 соединен через регулируемый клапан 10 с входом турбины 1, а вход нагревающего теплообменника 5 через дополнительный регулируемый клапан 10 подключен к выходу компрессора 6 или одной из его ступеней.
Такое решение позволит использовать циркуляцию рабочего тела не только в режиме выдачи пиковой энергии, но и в режиме утилизации тепла, подводимого к теплообменнику 5 и используемого для нагрева рабочего тела перед турбиной 1 в режиме постоянной нагрузки. С этой целью целесообразно приемник рабочего тела 4 снабдить байпасным трубопроводом рабочего тела (на чертеже не показан).
В качестве рабочего тела целесообразно выбрать вещество с более низкой, чем у жидкости точкой кипения из ряда углеводороды, спирты, эфиры, фторхлоруглероды, перфторуглероды, аммиак, диоксид углерода или смесь перечисленных материалов.
С целью снижения давления паров рабочего тела в аккумуляторе рабочего тела 3 при хранении рабочего тела в жидкой фазе или, например, в варианте диоксида углерода, в сверхкритическом состоянии, с соответствующим уменьшением затрат на изготовление аккумулятора рабочего тела 3, после охлаждающего теплообменника 7 включен регулируемый клапан 10.
Принимая во внимание возможную неравномерность подвода тепловой энергии, например, при использовании возобновляемых источников, таких как солнечная энергия, нагревающий теплообменник 5 может быть подключен к аккумулятору тепла 9, который, в свою очередь, рационально выполнить в виде герметичной теплоизолированной емкости, заполненной теплоаккумулирующим веществом: жидким, например водой или маслом, или твердым, например солями и оксидами щелочных и щелочно-земельных металлов, а также минералами с высокой теплоемкостью.
Как и аккумуляторы тепла 12 и 9, аккумулятор рабочего тела 3 может быть выполнен изотермическим и снабжен теплоизоляционным кожухом.
Работает данная энергоаккумулирующая установка следующим образом на двух основных режимах: пиковом и накопительном. В пиковом режиме рабочее тело, например диоксид углерода (СО2), хранящийся в аккумуляторе рабочего тела 3, например в изотермической типовой емкости при температуре -35°С и давлении 1.6 МПа, начинают подавать насосом (на чертеже не показан) с повышением давления до 5 МПа в нагревающий теплообменник 5 с предварительным прохождением через теплообменник аккумулятора тепла 12 таким образом, что поступающий жидкий СО2 внутри теплообменника аккумулятора тепла 12 испаряют при температуре около 10°С за счет аккумулированной тепловой энергии. После испарения CО2 в газообразном состоянии подают на перегрев до 200°С в нагревающем теплообменнике 5, в который подводят тепло, например, из теплового аккумулятора 9 или сбросное тепло теплового двигателя, или отработанный пар паровой турбины АЭС, или тепло возобновляемого источника энергии, например геотермального. В варианте хранения рабочего тела в аккумуляторе рабочего тела 3 в газообразном состоянии при высоком давлении необходимость в насосе и испарении рабочего тела отсутствует.
Нагретый CО2 подают на вход турбины 1, где рабочее тело - CО2 расширяют до давления 1 МПа и температуры 70°С, после чего CО2 подают в приемник 4, где CО2 накапливается. Режим накопления энергии («зарядки») сводится к отбору CО2 из приемника 4, для чего из приемника 4 поток CО2 подают сначала на отвод тепла 11, а затем на вход в компрессор 6. Между ступенями сжатия компрессора 6 также производят с помощью отвод тепла 11 снижение температуры сжимаемого потока CО2.
Часть выходящего из компрессора 6 или отбираемого из одной из его ступеней потока CО2 могут, как описано выше, направлять в нагревающий теплообменник 5, а затем внутрь приемника 4.
Основной поток CО2, выходящий из компрессора 6 и сжатый до высокого давления, например 5 МПа, направляют через регулирующий элемент 14 в охлаждающий теплообменник 7, в котором при отводе тепла осуществляют конденсацию CО2, после чего жидкий CО2 накапливают в аккумуляторе рабочего тела 3. С целью уменьшения давления в аккумуляторе 3 сжиженный CО2 могут дросселировать в регулируемом клапане 10. Хранение CО2 в аккумуляторе 3 может, таким образом, осуществляться как при обычных, так и при криогенных температурах. И в том, и в другом случае с целью уменьшения теплоподвода к CО2, накапливаемому в аккумуляторе 3, последний целесообразно выполнить изотермическим. С целью уменьшения работы сжатия рабочего тела в компрессоре 6 конденсацию могут вести при температурах ниже комнатной (например, при 0°С), для чего охлаждающий теплообменник 7 и отвод тепла 11 по охлаждающей стороне подключают к аккумулятору тепла 12, заряжаемому, например, за счет теплоемкости материалов в окружающей среде (например, проточных водоемов в зимнее время года в средних и высоких широтах или грунта в варианте подземного хранения).
Пиковый и накопительный режим разнесены по времени суток таким образом, чтобы накопительный режим приходился на время провала нагрузки в сети, как правило, в ночные часы, а пиковый режим покрывал возрастающую нагрузку в сети, как правило, в утренние и вечерние часы. Это позволяет накапливать дешевую ночную энергию для выработки дорогой пиковой энергии.
Поскольку аккумулятор рабочего тела 3 может использоваться как источник жидкого CО2, это позволяет при необходимости осуществлять производство холода при подаче жидкого CО2 в отдельный испаритель (на чертеже не показан), подключенный по охлаждаемой стороне к потребителю холода, а по охлаждающей стороне выходящий в приемник рабочего тела 4.
Теплообменные поверхности аккумулятора тепла 12 могут использоваться для отопительных нужд, в том числе используя значительное количество тепловой энергии через тепловой насос.
Предложенная энергоаккумулирующая установка по сравнению с прототипом обладает следующими преимуществами:
- повышается мощность турбины и общая вырабатываемая пиковая энергия, поскольку требуемый расход энергии, подводимой в пиковом режиме от стороннего энергоисточника, составляет только 20-30% от энергии, подводимой к рабочему телу от стороннего источника в прототипном техническом решении;
- повышается надежность работы установки и снижается стоимость производства энергии за счет резкого (на несколько порядков) снижения подпитки рабочего тела в установку, подаваемого со стороны, что исключает также и зависимость от подвозки рабочего тела на площадку размещения установки;
- обеспечивается полная экологическая безопасность энергоаккумулирующей установки, поскольку рабочее тело не выбрасывается в окружающую среду;
- с помощью тепловых аккумуляторов установки запасается любое требуемое количество энергии, достаточное для обеспечения стабильной бесперебойной работы установки даже в периоды перерыва в подводе тепловой энергии от стороннего источника;
- обеспечивается возможность применения данной установки для выработки пиковой электроэнергии и снабжения различных объектов тепловой энергией и холодом в режиме разуплотненного графика их потребления;
- технически просто и надежно обеспечивается возможность аккумулирования провальной ночной энергии, отпускаемой по сниженному тарифу;
- обеспечивается возможность эффективной утилизации сбросного тепла различных тепловых двигателей, а также расширяется возможность применения возобновляемых природных источников энергии, обладающих значительным ресурсным потенциалом и, в то же время, высокой неравномерностью поступления их энергии, а также дополнительного повышения эффективности установки в холодные климатические периоды;
- повышается надежность работы и снижается стоимость изготовления установки за счет умеренных по температуре и давлению параметров рабочего тела.
Так, например, при расходе в период выдачи пиковой энергии 100 тыс. м32/ч и подводе 300 МВт тепловой энергии в теплообменнике 5 для нагрева CО2 с давлением 5 МПа до 200°С в турбине 1 при расширении рабочего тела до давления 1 МПа вырабатывается 200 МВт электрической энергии. Высокое значение противодавления в турбине 1 резко сокращает габариты и стоимость турбины. Для выдачи пиковой мощности в течение 8 ч/сутки емкость подземной полости аккумулятора рабочего тела 3 составит около 0.4 млн. м3, что освоено в отечественной практике, имеющей опыт создания подземных газохранилищ с давлением 10-12 МПа и емкостью около 1 млрд. куб. м активного газа.
Дополнительным положительным свойством данной энергоаккумулирующей установки является возможность использования уже существующих материалов, технических решений и оборудования, необходимых для ее создания.

Claims (7)

1. Энергоаккумулирующая установка, содержащая турбину, приемник рабочего тела, подключенный к выходу турбины, компрессор и охлаждающий теплообменник, соединенный с аккумулятором рабочего тела, который через нагревающий теплообменник подключен ко входу в турбину, отличающаяся тем, что внутренняя полость приемника рабочего тела сообщается с первым гидравлическим компенсатором давления, а внутренняя полость аккумулятора рабочего тела сообщается со вторым гидравлическим компенсатором давления, подключенным к системе накопления жидкости с возможностью использования гидростатического напора жидкости для компенсации давления рабочего тела.
2. Установка по п.1 или 2, отличающаяся тем, что приемник рабочего тела выполнен в подземной полости.
3. Установка по п.1 или 2, отличающаяся тем, что нагревающий теплообменник соединен с нагреваемой стороны с отбором тепла от теплового двигателя.
4. Установка по п.1 или 2, отличающаяся тем, что нагревающий теплообменник соединен с нагреваемой стороны с аккумулятором тепла.
5. Установка по п.1 или 2, отличающаяся тем, что в качестве рабочего тела выбрано вещество из ряда углеводороды, вода, спирты, эфиры, фторхлоруглероды, перфторуглероды, аммиак, диоксид углерода, или смесь перечисленных материалов.
6. Установка по п.1 или 2, отличающаяся тем, что в качестве жидкости выбрана вода или водный раствор соли.
7. Установка по п.1 или 2, отличающаяся тем, что выход компрессора и вход нагревающего теплообменника соединены через запирающий и/или регулирующий элемент.
RU2009109123/06A 2009-03-13 2009-03-13 Энергоаккумулирующая установка RU2435050C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009109123/06A RU2435050C2 (ru) 2009-03-13 2009-03-13 Энергоаккумулирующая установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009109123/06A RU2435050C2 (ru) 2009-03-13 2009-03-13 Энергоаккумулирующая установка

Publications (2)

Publication Number Publication Date
RU2009109123A RU2009109123A (ru) 2010-09-20
RU2435050C2 true RU2435050C2 (ru) 2011-11-27

Family

ID=42938827

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009109123/06A RU2435050C2 (ru) 2009-03-13 2009-03-13 Энергоаккумулирующая установка

Country Status (1)

Country Link
RU (1) RU2435050C2 (ru)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119327A1 (en) * 2012-02-09 2013-08-15 Leonid Goldstein Thermodynamic energy storage
WO2014124061A1 (en) * 2013-02-05 2014-08-14 Johnson Keith Sterling Improved organic rankine cycle decompression heat engine
RU2578385C1 (ru) * 2012-11-01 2016-03-27 Сканска Свериге Аб Способ работы системы для аккумулирования тепловой энергии
RU2578380C1 (ru) * 2012-11-01 2016-03-27 Сканска Свериге Аб Аккумулятор энергии
RU178533U1 (ru) * 2017-05-11 2018-04-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный гуманитарно-педагогический университет" Комбинированная силовая установка
RU2654266C1 (ru) * 2014-06-16 2018-05-17 Сименс Акциенгезелльшафт Система и способ для снабжения энергосистемы энергией от источника возобновляемой энергии периодического действия
RU2654551C1 (ru) * 2014-06-16 2018-05-21 Сименс Акциенгезелльшафт Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии
RU2679582C1 (ru) * 2018-05-11 2019-02-11 Алексей Васильевич Корнеенко Энергетический комплекс
RU2681725C1 (ru) * 2018-05-07 2019-03-12 Алексей Юрьевич Кочубей Термальный генератор
US10323545B2 (en) 2015-06-02 2019-06-18 Heat Source Energy Corp. Heat engines, systems for providing pressurized refrigerant, and related methods
RU2696721C1 (ru) * 2018-08-16 2019-08-05 Алексей Васильевич Корнеенко Энергетический комплекс
RU2704591C2 (ru) * 2014-12-11 2019-10-29 Апт Гмбх-Ангевандте Физик & Текноложи Устройство и способ для временного аккумулирования газа и тепла
RU2716933C1 (ru) * 2019-08-06 2020-03-17 Алексей Васильевич Корнеенко Энергетический комплекс
RU2720368C1 (ru) * 2019-09-19 2020-04-29 Алексей Васильевич Корнеенко Энергетический комплекс
RU2726443C1 (ru) * 2020-02-18 2020-07-14 Алексей Васильевич Корнеенко Энергетический комплекс
RU2740625C1 (ru) * 2020-04-16 2021-01-18 Федеральное государственное бюджетное учреждение науки Научно-исследовательский геотехнологический центр Российской академии наук Геотермально-углекислотный энергокомплекс
US11149356B2 (en) 2017-12-19 2021-10-19 Battelle Energy Alliance, Llc Methods of forming metals using ionic liquids

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119327A1 (en) * 2012-02-09 2013-08-15 Leonid Goldstein Thermodynamic energy storage
RU2578385C1 (ru) * 2012-11-01 2016-03-27 Сканска Свериге Аб Способ работы системы для аккумулирования тепловой энергии
RU2578380C1 (ru) * 2012-11-01 2016-03-27 Сканска Свериге Аб Аккумулятор энергии
RU2660716C2 (ru) * 2013-02-05 2018-07-09 Хит Сорс Энерджи Корп. Усовершенствованный декомпрессионный тепловой двигатель на органическом цикле ренкина
WO2014124061A1 (en) * 2013-02-05 2014-08-14 Johnson Keith Sterling Improved organic rankine cycle decompression heat engine
EP2954177A4 (en) * 2013-02-05 2016-11-16 Heat Source Energy Corp ENHANCED THERMAL MOTOR WITH ENHANCED ORGANIC RANKINE CYCLE DECOMPRESSION
US10400635B2 (en) 2013-02-05 2019-09-03 Heat Source Energy Corp. Organic rankine cycle decompression heat engine
RU2654266C1 (ru) * 2014-06-16 2018-05-17 Сименс Акциенгезелльшафт Система и способ для снабжения энергосистемы энергией от источника возобновляемой энергии периодического действия
RU2654551C1 (ru) * 2014-06-16 2018-05-21 Сименс Акциенгезелльшафт Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии
US10323544B2 (en) 2014-06-16 2019-06-18 Siemens Aktiengesellschaft System and method for supplying an energy grid with energy from an intermittent renewable energy source
RU2704591C2 (ru) * 2014-12-11 2019-10-29 Апт Гмбх-Ангевандте Физик & Текноложи Устройство и способ для временного аккумулирования газа и тепла
USRE49730E1 (en) 2015-06-02 2023-11-21 Heat Source Energy Corp. Heat engines, systems for providing pressurized refrigerant, and related methods
US10323545B2 (en) 2015-06-02 2019-06-18 Heat Source Energy Corp. Heat engines, systems for providing pressurized refrigerant, and related methods
RU178533U1 (ru) * 2017-05-11 2018-04-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный гуманитарно-педагогический университет" Комбинированная силовая установка
US11149356B2 (en) 2017-12-19 2021-10-19 Battelle Energy Alliance, Llc Methods of forming metals using ionic liquids
RU2681725C1 (ru) * 2018-05-07 2019-03-12 Алексей Юрьевич Кочубей Термальный генератор
RU2679582C1 (ru) * 2018-05-11 2019-02-11 Алексей Васильевич Корнеенко Энергетический комплекс
RU2696721C1 (ru) * 2018-08-16 2019-08-05 Алексей Васильевич Корнеенко Энергетический комплекс
RU2716933C1 (ru) * 2019-08-06 2020-03-17 Алексей Васильевич Корнеенко Энергетический комплекс
RU2720368C1 (ru) * 2019-09-19 2020-04-29 Алексей Васильевич Корнеенко Энергетический комплекс
RU2726443C1 (ru) * 2020-02-18 2020-07-14 Алексей Васильевич Корнеенко Энергетический комплекс
RU2740625C1 (ru) * 2020-04-16 2021-01-18 Федеральное государственное бюджетное учреждение науки Научно-исследовательский геотехнологический центр Российской академии наук Геотермально-углекислотный энергокомплекс

Also Published As

Publication number Publication date
RU2009109123A (ru) 2010-09-20

Similar Documents

Publication Publication Date Title
RU2435050C2 (ru) Энергоаккумулирующая установка
CN102758748B (zh) 高压液态空气储能/释能系统
CN102758690B (zh) 高效高压液态空气储能/释能系统
US9217423B2 (en) Energy storage system using supercritical air
CN102758689B (zh) 超超临界空气储能/释能系统
US8250847B2 (en) Combined Brayton-Rankine cycle
CN102795693B (zh) 基于lng冷能利用的太阳能和风能联合驱动的海水淡化系统
CN108533476A (zh) 一种热泵超临界空气储能系统
RU2273742C1 (ru) Энергоаккумулирующая установка
CN102563987A (zh) 有机朗肯循环驱动的蒸气压缩制冷装置及方法
AU2012206484A1 (en) Electricity generation device and method
CN111121390A (zh) 一种耦合燃煤发电机组汽水系统的液化空气储能发电系统
CN103267394A (zh) 一种高效利用液化天然气冷能的方法和装置
CN202811238U (zh) 高压液态空气储能/释能系统
Dzido et al. Transcritical carbon dioxide cycle as a way to improve the efficiency of a liquid air energy storage system
CN203585806U (zh) 一种基于双热源热泵的lng气化系统
CN103954091A (zh) 一种充分利用液化天然气冷能的冷库制冷系统
Nabil et al. Review of energy storage technologies for compressed-air energy storage
CN202811079U (zh) 高效高压液态空气储能/释能系统
CN109028269B (zh) 一种吸收式热泵机组及回收低温水源余热的供热系统
CN202501677U (zh) 有机朗肯循环驱动的蒸气压缩制冷装置
CN108800651B (zh) 一种基于昼夜电力调峰的火电空冷凝汽器安全度夏装置
Saad et al. Study of an optimized wind-diesel hybrid system for canadian remote sites
US9896975B1 (en) Systems and methods of converting heat to electrical power
CN219711735U (zh) 一种基于中深层地热能的储能系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130314