RU2432578C2 - Импульсный микросистемный акселерометр - Google Patents

Импульсный микросистемный акселерометр Download PDF

Info

Publication number
RU2432578C2
RU2432578C2 RU2010101197/28A RU2010101197A RU2432578C2 RU 2432578 C2 RU2432578 C2 RU 2432578C2 RU 2010101197/28 A RU2010101197/28 A RU 2010101197/28A RU 2010101197 A RU2010101197 A RU 2010101197A RU 2432578 C2 RU2432578 C2 RU 2432578C2
Authority
RU
Russia
Prior art keywords
input
output
trigger
pendulum
outputs
Prior art date
Application number
RU2010101197/28A
Other languages
English (en)
Other versions
RU2010101197A (ru
Inventor
Владимир Дмитриевич Вавилов (RU)
Владимир Дмитриевич Вавилов
Иван Владимирович Вавилов (RU)
Иван Владимирович Вавилов
Александр Николаевич Долгов (RU)
Александр Николаевич Долгов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ)
Priority to RU2010101197/28A priority Critical patent/RU2432578C2/ru
Publication of RU2010101197A publication Critical patent/RU2010101197A/ru
Application granted granted Critical
Publication of RU2432578C2 publication Critical patent/RU2432578C2/ru

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано в интегральных акселерометрах с импульсной силовой компенсацией. Выполнение несимметричным чувствительного элемента с малой рабочей массой (разбалансом массы маятника относительно оси качания) и с большой площадью силовых электродов позволило устранить пробои газового промежутка между подвижным и неподвижным электродами посредством снижения напряжения в импульсе до допустимого значения. Заземление силовых электродов в нерабочих тактах привело к устранению шумов от влияния остаточных зарядов на электродах, а следовательно, к повышению точности. 2 ил.

Description

Изобретение относится к измерительной технике и может применяться в интегральных акселерометрах с силовой электростатической компенсацией.
Известен баллистический акселерометр [1] и датчик момента. Недостатком его является сложность изготовления, поскольку датчик момента требует применения сердечника из магнитомягкой стали. Кроме того, устройство имеет большие массогабаритные размеры, в основном на порядок превышающие размеры интегральных акселерометров
Известен также интегральный чувствительный элемент импульсного акселерометра [2], содержащий чувствительный к ускорениям маятник, выполненный в кремниевой пластине и соединенный с ней упругими подвесами, и электростатическую систему силовой отработки. Устройство является неточным, поскольку в нем имеет место дрейф выходного сигнала, возникающий от массопереноса между электродами при питании постоянным током от источников опорных напряжений.
Наиболее близким к заявляемому устройству является импульсный микроакселерометр [3], содержащий подвижный узел, выполненный в виде электрода-маятника в пластине из кристаллического кремния и соединен с пластиной упругими подвесами, с обеих сторон кремниевой пластины жестко приварены обкладки, на которых нанесены неподвижные проводящие электроды двух типов: электроды датчика перемещений и силовые электроды электростатического датчика момента, триггер защелку, регистр сдвига, реверсивный счетчик, генератор стабильной частоты и первое ключевое устройство, электроды датчика перемещений включены на вход знакового устройства, три выхода которого соединены с электрической схемой акселерометра, первый выход соединен со входом синхронизации счетного триггера, а также со входом установки нуля регистра сдвига и несет информацию о нахождении маятника в нейтральном положении, второй выход знакового устройства несет информацию о положении маятника слева относительно нейтрального положения и соединен со входом установки в нуль триггера защелки, со входом установки в единицу триггера защелки соединен третий выход знакового устройства, несущий информацию о положении маятника справа относительно нейтрального положения, ко входу приема информации регистра сдвига подключен выход делителя частоты, выходы триггера защелки соединены со входами управления режимами реверсивного счетчика и одновременно со входами управления первым ключевым устройством, выходы ключевого устройства подключены к источнику опорного напряжения.
Известный акселерометр имеет следующие недостатки: 1 - имеет место электрический пробой газового промежутка между подвижным и неподвижными силовыми электродами, поскольку для отработки ускорений более 1 g при зазоре 15·10-6 м требуется напряжение порядка 30 В. Для среды азота критическая пробойная напряженность равна Екр=5000 В/м. Это значительно меньше необходимой величины для силовой отработки. В реальных конструкциях подвижный маятник, изолированный окислом кремния, пробивается электрическим полем и приваривается к неподвижному электроду. Соответственно акселерометр становится неработоспособным;
2 - в известной схеме акселерометра на такте свободного движения маятника на неподвижных силовых электродах нет обнуления остаточных потенциалов, что приводит к шумам в информационном сигнале.
Задачей предлагаемого изобретения является устранение отмеченных недостатков.
Поставленная задача решается тем, что в импульсный микросистемный акселерометр, содержащий подвижный узел, выполненный в виде электрода-маятника в пластине из кристаллического кремния и соединенный с пластиной упругими подвесами, с обеих сторон кремниевой пластины жестко приварены обкладки, на которых нанесены неподвижные проводящие электроды двух типов: электроды датчика перемещений и силовые электроды электростатического датчика момента, триггер-защелку, регистр памяти, реверсивный счетчик, генератор стабильной частоты и первое ключевое устройство, электроды датчика перемещений включены на вход знакового устройства, три выхода которого соединены с электрической схемой акселерометра, первый выход соединен со входом синхронизации счетного триггера, а также со входом установки нуля регистра сдвига и несет информацию о нахождении маятника в нейтральном положении, второй выход знакового устройства несет информацию о положении маятника слева относительно нейтрального положения и соединен со входом установки в нуль триггера защелки, а со входом установки в единицу триггера защелки соединен третий выход знакового устройства, несущий информацию о положении маятника справа относительно нейтрального положения, выходы триггера защелки соединены со входами управления режимами реверсивного счетчика, вход ключевого устройства подключен к источнику опорного напряжения, в котором в соответствии с изобретением электрод-маятник выполнен несимметричным относительно оси качания, кроме того, в заявляемый акселерометр введено второе ключевое устройство, первый и второй инверторы, двухразрядный регистр сдвига, счетный триггер, первый и второй входы управления второго ключевого устройства соединены с единичным и нулевым выходами триггера защелки, вход принудительной установки в нуль счетного триггера соединен с выходом переполнения реверсивного счетчика, вход синхронизации счетного триггера соединен с первым выходом знакового устройства, а выход счетного триггера соединен со входом принудительной установки в режим хранения триггера защелки, выходы второго ключевого устройства соединены вместе и подключены к «земле», в свою очередь, первый и второй выходы второго ключевого устройства соединены с первым и вторым силовыми электродами датчика момента, выход генератора стабильной частоты соединен со счетным входом реверсивного счетчика и одновременно со входом синхронизации регистра сдвига, первый выход регистра сдвига соединен со входом разрешения записи регистра памяти, а второй выход - со входом установки в нуль реверсивного счетчика, ко входу приема информации регистра сдвига подключен выход делителя частоты, выходы реверсивного счетчика соединены соответственно со входами приема информации регистра памяти.
На фигуре 1 приведена схема заявляемого акселерометра. В его состав входят следующие узлы: 1 - проводящий несимметричный электрод-маятник; 2 - силовые электроды датчика момента; 3 - электроды датчика перемещений; 4 - знаковое устройство; 5 - второе ключевое устройство; 6 - первое ключевое устройство; 7 и 8 - первый и второй инверторы; 9 - счетный триггер; 10 - триггер-защелка; 11 - регистр сдвига; 12 - источник опорного напряжения; 13 - генератор стабильной частоты; 14 - реверсивный двоичный счетчик; 15 - регистр памяти.
На фигуре 2 приведен чувствительный элемент акселерометра. В его состав входят следующие элементы: 1 - корпусная пластина; 2 - сквозное травление; 3 - груз разбаланса чувствительной массы; 4 - упругий подвес; 5 - маятник.
Электрод-маятник 1 выполнен в проводящей кремниевой пластине за одно целое с упругими подвесами и соединен с «землей», а неподвижные силовые электроды 2 выполнены на стеклянных обкладках посредством металлизации и сварены с кремниевой пластиной на молекулярном уровне. Электрод-маятник 1 на одном из плеч имеет груз разбаланса (см. фиг.2 поз.3). На тех же стеклянных обкладках выполнены электроды датчика перемещений 3 (см. фиг.1 поз.3) и соединены со входами знакового устройства 4 (см. фиг.1 поз.4), которое отслеживает положение электрода-маятника 1 относительно нейтрального положения.
Знаковое устройство 4 имеет три выхода: один из выходов (на фигуре 1 помечен знаком 0) несет информацию о том, что электрод-маятник находится в нейтральном положении между электродами датчика перемещений 3 и соединен со входом обнуления регистра сдвига 11 и одновременно соединен со входом синхронизации счетного триггера 9. Второй выход знакового устройства 4 (на фигуре 1 помечен знаком ◁) соединен со входом установки в нуль триггера защелки 10 и несет информацию о том, что электрод-маятник 1 находится слева от нейтральной линии. Третий выход знакового устройства 4 (на фигуре 1 помечен знаком ▷) соединен со входом установки в единицу триггера защелки 10 и несет информацию о том, что электрод-маятник 1 находится справа от нейтральной линии. Единичный выход триггера защелки 10 соединен со входом суммирования (вход +) реверсивного счетчика 14 и одновременно через инвертор 8 со входом управления ключом Кл1 первого ключевого устройства 6. Нулевой выход триггера защелки 10 соединен со входом вычитания (вход -) реверсивного счетчика 14 и одновременно через инвертор 7 со входом управления ключом Кл2 первого ключевого устройства 6. Входы приема информации первого ключевого устройства 6 соединены вместе и к ним подключен источник опорного напряжения (Uоп) 12, а выходы первого ключевого устройства соответственно подключены к выходам второго ключевого устройства 5, так выход ключа Кл1 - к выходу ключа Кл3, а выход ключа Кл2 - к выходу ключа Кл4, и одновременно подключены к первому и второму силовым электродам 2. Входы приема информации второго ключевого устройства 5 соединены вместе и подключены к «земле». Выход переполнения реверсивного счетчика 14 соединен со входом принудительной установки в нуль счетного триггера 9. Ко входу синхронизации реверсивного счетчика 14 и одновременно ко входам синхронизации регистра сдвига 11 подключен генератор стабильной частоты 13, а ко входу приема информации регистра сдвига 11 (вход d) подключен выход делителя частоты Fкч/N. Делитель частоты предназначен для формирования измерительного интервала времени, кратного, например, секунде. Первый выход регистра сдвига 11 соединен со входом разрешения записи регистра памяти 15, а второй его выход соединен со входом обнуления реверсивного счетчика 14.
Отличительной особенностью чувствительного элемента является малая рабочая масса электрода-маятника 1 при большой площади электродов 2 электростатического датчика момента. При этом устранен пробой зазора между электродами, что в конечном итоге позволило на два порядка расширить диапазон измерений, а также устранены шумы в выходном сигнале, появляющиеся от остаточных потенциалов на электродах.
Принцип работы заявляемого акселерометра следующий. Полное время преобразования состоит из двух тактов. На первом такте подвижному узлу (электроду-маятнику 1) задается вынужденное движение от нейтрального положения до некоторого смещения Δα под действием противоположно направленных моментов двух сил: силы электростатического датчика момента и силы инерции. Время движения маятника на первом такте является строго отмеренным, оно задается формирователем длительности импульса τ с выхода переполнения реверсивного счетчика 14. На время τ к одному из силовых электродов подключается напряжение Uоп, а противоположный электрод заземлен. Эти функции выполняют первое и второе ключевые устройства 6 и 5. Дифференциальное уравнение движения подвижного узла записывается при этом в следующем виде:
Figure 00000001
где J - момент инерции маятника; Кд - абсолютный коэффициент газодинамического демпфирования; Gy - угловая жесткость подвеса маятника; Мэ - момент, создаваемый электростатическим датчиком момента; Mj=mjlцт - момент, создаваемый силой инерции, m - значение чувствительной массы разбаланса (см. фиг.2 поз.3) несимметричного электрода-маятника, j - действующее ускорение, lцт- плечо электрода-маятника (расстояние от оси качания до центра тяжести). Соответственно импульс моментов сил с учетом жесткости подвеса равен
Figure 00000002
где MG - момент силы сопротивления упругого подвеса; I1 - импульс моментов на первом такте.
В конце первого такта на выходе переполнения реверсивного счетчика 14 вырабатывается единичный сигнал, и счетный триггер 9 принудительно устанавливается в нуль и переводит оба выхода триггера защелки 11 в режим хранения с единичными состояниями на обоих выходах. Это приводит к тому, что ключи Кл1 и Кл2 первого ключевого устройства 6 запираются и напряжение опорного источника 12 от первого и второго силовых электродов 2 отключается. В свою очередь, Кл3 и Кл4 второго ключевого устройства 5 отпираются и силовые электроды 2 соединяются с «землей» и начинается второй такт.
На втором такте воздействие электростатического момента прекращается, поскольку оба его силовые электроды соединены с «землей». Электрод-маятник 1 под действием силы инерции и жесткости подвеса возвращается в исходное состояние. Момент прохождения электрода-маятника относительно нейтрального положения выявляется знаковым устройством 4. Сигнал с первого выхода знакового устройства 4 опрокидывает счетный триггер 9 в единичное состояние и далее процесс повторяется. На втором такте работает тот же реверсивный счетчик. Длительность второго такта всегда меньше длительности первого такта. Знак измеряемого ускорения изображается в реверсивном счетчике типом кода: при суммировании - прямой двоичный код, а при вычитании - дополнительный, что соответствует отрицательному ускорению.
Дифференциальное уравнение движения маятника на втором такте имеет вид
Figure 00000003
И соответственно импульс моментов сил равен
Figure 00000004
где Т - полный период движения в течение двух тактов; I2 - импульс моментов сил на втором такте.
Движение маятника в обоих направлениях является демпфированным, поэтому в данном случае маятник выступает в роли механического интегратора с постоянной времени tnд/Gy. Из закона сохранения импульса моментов сил в консервативной системе следует I1=I2 или
Figure 00000005
Из (5) определим частоту повторения импульсов отработки:
Figure 00000006
Из (6) видно, что характеристика заявляемого акселерометра является линейной с величиной подставки по частоте, равной: Fподст=MG/(Mэτ).
Поскольку подставка является методической составляющей, ее легко можно вычесть из соотношения (6) при алгоритмической обработке.
Оценим величину ускорения, которую может отработать электростатический силовой преобразователь. Приравняв момент инерции к электростатическому моменту, получим:
Figure 00000007
где ρ - плотность материала электрода-маятника; uоп - опорное напряжение; h - зазор между подвижным электродом-маятником 1 и неподвижными электродами 2.
Варьируя переменными в формуле (7) видно, при допустимом опорном напряжении (5-9 В вместо 30 В прототипа) и допустимых других параметрах заявляемый импульсный акселерометр может быть построен с электростатической отработкой на пределы до 100 g. Этим задача изобретения достигнута.
Источники информации
1. Патент США №3877313, Кл. 73/517, 1975.
2. Патент США №4483194, Кл. 73/517, 1982.
3. Вавилов В.Д. Интегральные датчики. Изд-во НГТУ, 2003, С.500.

Claims (1)

  1. Импульсный микросистемный акселерометр, содержащий подвижный узел, выполненный в виде электрода-маятника в пластине из кристаллического кремния и соединенный с пластиной упругими подвесами, с обеих сторон кремниевой пластины жестко приварены обкладки, на которых нанесены неподвижные проводящие электроды двух типов: электроды датчика перемещений и силовые электроды электростатического датчика момента, триггер защелку, регистр памяти, реверсивный счетчик, генератор стабильной частоты и первое ключевое устройство, электроды датчика перемещений включены на вход знакового устройства, три выхода которого соединены с электрической схемой акселерометра, первый выход соединен со входом синхронизации счетного триггера, а также со входом установки нуля регистра сдвига и несет информацию о нахождении маятника в нейтральном положении, второй выход знакового устройства несет информацию о положении маятника слева относительно нейтрального положения и соединен со входом установки в нуль триггера защелки, а со входом установки в единицу триггера защелки соединен третий выход знакового устройства, несущий информацию о положении маятника справа относительно нейтрального положения, выходы триггера защелки соединены со входами управления режимами реверсивного счетчика, вход ключевого устройства подключен к источнику опорного напряжения, ко входу приема информации регистра сдвига подключен выход делителя частоты, отличающийся тем, что электрод-маятник выполнен несимметричным относительно оси качания, введено второе ключевое устройство, первый и второй инверторы, двухразрядный регистр сдвига, счетный триггер, первый и второй входы управления второго ключевого устройства соединены с единичным и нулевым выходами триггера защелки, вход принудительной установки в нуль счетного триггера соединен с выходом переполнения реверсивного счетчика, вход синхронизации счетного триггера соединен с первым выходом знакового устройства, а выход счетного триггера соединен со входом принудительной установки в режим хранения триггера защелки, выходы второго ключевого устройства соединены вместе и подключены к «земле», в свою очередь, первый и второй выходы второго ключевого устройства соединены с первым и вторым силовыми электродами датчика момента, выход генератора стабильной частоты соединен со счетным входом реверсивного счетчика и одновременно со входом синхронизации регистра сдвига, первый выход регистра сдвига соединен со входом разрешения записи регистра памяти, а второй выход - со входом установки в нуль реверсивного счетчика, выходы реверсивного счетчика соединены соответственно со входами приема информации регистра памяти.
RU2010101197/28A 2010-01-15 2010-01-15 Импульсный микросистемный акселерометр RU2432578C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010101197/28A RU2432578C2 (ru) 2010-01-15 2010-01-15 Импульсный микросистемный акселерометр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010101197/28A RU2432578C2 (ru) 2010-01-15 2010-01-15 Импульсный микросистемный акселерометр

Publications (2)

Publication Number Publication Date
RU2010101197A RU2010101197A (ru) 2011-07-20
RU2432578C2 true RU2432578C2 (ru) 2011-10-27

Family

ID=44752232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010101197/28A RU2432578C2 (ru) 2010-01-15 2010-01-15 Импульсный микросистемный акселерометр

Country Status (1)

Country Link
RU (1) RU2432578C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490592C1 (ru) * 2012-02-27 2013-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ) Микрогироскоп профессора вавилова

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВАВИЛОВ В.Д. Интегральные датчики. - Нижний Новгород.: изд-во НГТУ, 2003, с.260-262. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490592C1 (ru) * 2012-02-27 2013-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ) Микрогироскоп профессора вавилова

Also Published As

Publication number Publication date
RU2010101197A (ru) 2011-07-20

Similar Documents

Publication Publication Date Title
KR102133873B1 (ko) 셀프 테스트 가능한 속력 및 방향 검출 회로
US9705450B2 (en) Apparatus and methods for time domain measurement of oscillation perturbations
US8683862B2 (en) Oscillation apparatus with atomic-layer proximity switch
US9128496B2 (en) Auto-ranging for time domain extraction of perturbations to sinusoidal oscillation
US8490462B2 (en) Auto-ranging for time domain inertial sensor
SE409243B (sv) Klave for metning av tredstammars diameter
CN108398142A (zh) 用于电阻传感器结构的偏置和读出的方法和电路
RU2242032C1 (ru) Гравиметр
RU2432578C2 (ru) Импульсный микросистемный акселерометр
RU2397498C1 (ru) Компенсационный акселерометр
RU2526589C1 (ru) Акселерометр
US3508254A (en) Accelerometer system
CN103092061A (zh) 基于电磁感应的磁致伸缩高精度时间测量系统
RU2360258C1 (ru) Компенсационный акселерометр
RU2308039C1 (ru) Устройство для измерения ускорений
SU1137397A1 (ru) Трехкомпонентный акселерометр
Ágoston Studying and Modeling Vibration Transducers and Accelerometers
RU2329513C1 (ru) Устройство для измерения ускорений
RU158846U1 (ru) Микросистемный акселерометр с дельта-сигма модуляцией
SU596763A1 (ru) Амортизатор с автоматическим управлением
RU2255341C1 (ru) Устройство для измерения ускорений
SU807072A1 (ru) Способ измерени скорости распрост-РАНЕНи упРугиХ ВОлН
SU1328672A1 (ru) Датчик угла наклона объекта в двух взаимно перпендикул рных плоскост х
SU1049432A1 (ru) Трехкомпонентный акселерометр
SU748300A1 (ru) Акселерометр

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130116

NF4A Reinstatement of patent

Effective date: 20140310

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160116