RU2431651C1 - Состав для изоляции зон поглощений - Google Patents

Состав для изоляции зон поглощений Download PDF

Info

Publication number
RU2431651C1
RU2431651C1 RU2010114801/03A RU2010114801A RU2431651C1 RU 2431651 C1 RU2431651 C1 RU 2431651C1 RU 2010114801/03 A RU2010114801/03 A RU 2010114801/03A RU 2010114801 A RU2010114801 A RU 2010114801A RU 2431651 C1 RU2431651 C1 RU 2431651C1
Authority
RU
Russia
Prior art keywords
chalk
bentonite
solution
water
starch
Prior art date
Application number
RU2010114801/03A
Other languages
English (en)
Inventor
Сергей Николаевич Горонович (RU)
Сергей Николаевич Горонович
Петр Федорович Цыцымушкин (RU)
Петр Федорович Цыцымушкин
Владимир Сергеевич Петров (RU)
Владимир Сергеевич Петров
Павел Владимирович Гладков (RU)
Павел Владимирович Гладков
Original Assignee
Общество с ограниченной ответственностью "Волго-Уральский научно-исследовательский и проектный институт нефти и газа" (ООО "ВолгоУралНИПИгаз")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Волго-Уральский научно-исследовательский и проектный институт нефти и газа" (ООО "ВолгоУралНИПИгаз") filed Critical Общество с ограниченной ответственностью "Волго-Уральский научно-исследовательский и проектный институт нефти и газа" (ООО "ВолгоУралНИПИгаз")
Priority to RU2010114801/03A priority Critical patent/RU2431651C1/ru
Application granted granted Critical
Publication of RU2431651C1 publication Critical patent/RU2431651C1/ru

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Изобретение относится к нефтяной и газовой промышленности, а именно к составу для изоляции зон поглощений в трещиновато-кавернозных коллекторах в условиях интенсивных (катастрофических) поглощений в широком диапазоне температур. Технический результат - повышение пластической прочности и эффективности изоляции зон поглощений при повышенных температурах. Состав для изоляции зон поглощений, состоящий из двух реагентов, в качестве одного из которых используют бентонитово-меловой раствор, содержащий бентонитовый глинопорошок, мел технический, хлорид натрия и воду, а в качестве другого используют 54,52-54,56% водный раствор полиоксихлорида алюминия, в котором бентонитово-меловой раствор дополнительно содержит крахмал и феррохромлигносульфонат при следующем соотношении компонентов, мас.%: бентонитовый глинопорошок 8,00-9,00, мел технический 25,00-28,10, хлорид натрия 15,10-15,50, крахмал 0,50-0,58, феррохромлигносульфонат 0,78-0,90, вода - остальное, причем соотношение бентонитово-мелового раствора и водного раствора полиоксихлорида алюминия составляет 4,0-10,0:1 соответственно. 1 табл.

Description

Изобретение относится к нефтяной и газовой промышленности, а именно к составам для изоляции зон поглощений в трещиновато-кавернозных коллекторах в условиях интенсивных (катастрофических) поглощений в широком диапазоне температур.
Известен состав для изоляции зон поглощений, состоящий из двух реагентов, в качестве первого из которых используют бентонитово-меловой раствор, содержащий бентонитовый глинопорошок, мел технический, хлорид натрия и воду, а в качестве второго используют раствор сульфата алюминия, причем указанная смесь имеет следующее соотношение компонентов, масс.%:
Бентонитовый глинопорошок 13,3-14,6
Мел технический 11,0-12,2
Хлорид натрия 12,6-13,8
Сульфат алюминия 3,9-5,7
Вода остальное,
при соотношении первого и второго реагентов 3-5:1 соответственно [Патент РФ №2277574, 8МПК С09К 8/467, з. №2004131406, приоритет 27.10.2004 г., опубл. 10.06.2006 в бюл. №16].
Недостатком данного состава является то, что образующийся тампон обладает относительно не высокой пластической прочностью, находящейся в пределах 2,15-2,68 кПа.
Наиболее близким по технической сущности и совокупности существенных признаков является состав для изоляции зон поглощений, состоящий из двух реагентов, в качестве одного из которых используют бентонитово-меловой раствор, содержащий бентонитовый глинопорошок, мел технический, хлорид натрия и воду, а в качестве другого используют водный раствор соли алюминия, отличающийся тем, что бентонитово-меловой раствор дополнительно содержит силикат натрия при следующем соотношении компонентов, масс.%:
Бентонитовый глинопорошок 8,88-9,08
Мел технический 29,66-30,27
Хлорид натрия 10,81-10,90
Силикат натрия 0,18-0,54
Вода остальное,
а другой реагент в качестве соли алюминия содержит полиоксихлорид алюминия при следующем соотношении компонентов, масс.%:
Полиоксихлорид алюминия 54,52-54,56
Вода остальное,
причем соотношение бентонитово-мелового раствора и раствора соли алюминия составляет 4,0-6,6:1 соответственно [Патент РФ №2373251, 8МПК С09К 8/467, з. №2008100744, приоритет от 09.01.2008 г., опубл. 20.11.2009 в бюл. №32].
Данный состав с успехом может использоваться при изоляции зон поглощений в вертикальных неглубоких (до 2000 м) скважинах в условиях нормальных температур.
Недостатком известного состава является то, что присутствие силиката натрия в бентонитово-меловом растворе, применяемом при повышенных температурах, способствует структурообразованию, что в свою очередь приводит к повышению вязкости бентонитово-мелового раствора, который становится непрокачиваемым. Бентонитово-меловой раствор, содержащий силикат натрия, с трудом поддается регулированию водоотдачи из-за высоких значений рН (около 12).
Применение известного состава для изоляции зон поглощений в наклонно-направленных, условно-горизонтальных и глубоких (3000 м и более) скважинах может вызывать дополнительные осложнения в виде дифференциальных прихватов и прилипания бурильного инструмента из-за сужения ствола вследствие отложений на стенке скважины фильтрационной корки.
Кроме того, образующийся тампон обладает недостаточно высокой пластической прочностью, находящейся в пределах 17,5-45,0 кПа, что отражается на эффективности изоляции зон интенсивных поглощений.
Задачей заявляемого технического решения является расширение ассортимента изолирующих составов, применяемых для ликвидации зон интенсивных (катастрофических) поглощений и повышение эффективности изоляции скважин при повышенных температурах.
Поставленная задача решается заявляемым составом для изоляции зон поглощений, состоящим из двух реагентов, в качестве одного из которых используют бентонитово-меловой раствор, содержащий бентонитовый глинопорошок, мел технический, хлорид натрия и воду, а в качестве другого используют водный раствор полиоксихлорида алюминия, в котором бентонитово-меловой раствор дополнительно содержит крахмал и феррохромлигносульфонат при следующем соотношении компонентов, масс.%:
Бентонитовый глинопорошок 8,00-9,00
Мел технический 25,00-28,10
Хлорид натрия 15,10-15,50
Крахмал 0,50-0,58
Феррохромлигносульфонат 0,78-0,90
Вода остальное,
причем соотношение бентонитово-мелового раствора и водного раствора полиоксихлорида алюминия составляет 4,0-10,0:1 соответственно.
Отличием предлагаемого состава является то, что бентонитово-меловой раствор дополнительно содержит крахмал и феррохромлигносульфонат (ФХЛС), количественное соотношение ингредиентов одного из реагентов, а также соотношение реагентов.
Крахмал выпускается промышленностью по ТУ 10 РФ 1039-92 в виде порошка белого или желтоватого цвета и представляет собой смесь полисахаридов растительного происхождения, имеющих общую формулу (С6Н10О5)x. Крахмал предназначен для снижения фильтрации (водоотдачи) сильноминерализованных буровых растворов, применяемых при высоких температурах. Наиболее эффективен он в щелочной среде и хорошо сочетается с другими реагентами.
Известно, что крахмал применяется для обработки буровых растворов. Добавка крахмала вызывает рост условной вязкости соленасыщенных глинистых и меловых растворов, и поэтому для их разжижения могут дополнительно использоваться лигносульфонаты (А.И.Булатов, А.И.Пеньков, Ю.М.Проселков. Справочник по промывке скважин. - М.: Недра, 1984, с.106-108).
Применение крахмала в бентонитово-меловых растворах, используемых в составах для изоляции зон поглощений, в доступных источниках информации не обнаружено.
Феррохромлигносульфонат (ФХЛС) - продукт взаимодействия лигносульфоната (сульфит-спиртовой или сульфит-дрожжевой барды) с сернокислым железом и бихроматом натрия. В химическом отношении ФХЛС представляет собой полимер нерегулярного строения, в котором хром и железо находятся в трехвалентном состоянии и связаны макромолекулами в виде сложных комплексов.
ФХЛС выпускается промышленностью по ТУ 2454-322-05133190-2000 в виде неслеживающегося сыпучего порошка коричневого цвета, полностью растворимого в воде, устойчивого к действию поливалентных катионов и цемента, обладающего высокой термостойкостью (до 170-190°С).
Известно, что ФХЛС используется для разжижения буровых растворов, загустевших от действия глины, различных солей и температуры, а также для снижения фильтрации пресных и среднеминерализованных растворов. Хорошо сочетается с другими реагентами. (А.И.Булатов, А.И.Пеньков, Ю.М.Проселков. Справочник по промывке скважин. - М.: Недра, 1984, с.124-125).
Применение ФХЛС в бентонитово-меловых растворах, используемых в составах для изоляции зон поглощений, в доступных источниках информации не обнаружено.
Совместное применение крахмала и ФХЛС известно из патентов №№2166614, 2224875, 2224878, 2278890.
Известно, что крахмал используется для понижения водоотдачи цементного раствора, применяемого для изоляции трещин в призабойной зоне пласта, а ФХЛС используют в качестве пластификатора этих растворов (Патент РФ №2224875, 7МПК Е21В 33/138, з. №2002109461, приоритет 11.04.2002, опубл. 27.02.2004 в бюл. №6; а также патент РФ №2224878, 7МПК Е21В 43/20, з. №2002109462, приоритет 11.04.2002, опубл. 27.02.2004 в бюл. №6).
Известно также использование крахмала и ФХЛС в безглинистых буровых растворах, применяемых для вскрытия нефтяных скважин с низким пластовым давлением (Патент РФ №2278890, МПК С09К 8/08, з. №2005106571, приоритет 09.03.2005, опубл. 27.06.2006 в бюл. №18).
В составе для ликвидации межколонных газопроявлений в скважине крахмал используется в качестве регулятора структурно-реологических показателей, а ФХЛС используется для защиты от бактериологического разложения состава (Патент РФ №2166614, 7МПК Е21В 33/138, з. №99119768, приоритет 14.09.1999, опубл. 10.05.2001 в бюл. №13).
Таким образом, из известных источников научно-технической и патентной информации применение крахмала и ФХЛС в бентонитово-меловом растворе, взаимодействующем с раствором полиоксихлорида алюминия и используемом для изоляции зон интенсивных поглощений, не выявлено, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна».
В заявляемом составе для изоляции зон поглощений ФХЛС более прочно связывает гидроксид алюминия Al(ОН)3 и гидроаргиллит Al2O3·3H2O, вновь образованные в процессе реакции ПОХА с бентонитово-меловым раствором, и тем самым способствует повышению пластической прочности тампона, кроме того, крахмал и ФХЛС снижают водоотдачу бентонитово-мелового раствора и придают ему свойства (например, прокачиваемость), позволяющие закачивать состав в глубокие и сверхглубокие скважины с высокими забойными температурами.
В результате химических реакций полиоксихлорида алюминия с компонентами бентонитово-мелового раствора образуются нерастворимые гелеобразующие осадки гидроксида алюминия Al(ОН)3 и хлористого кальция CaCl2 с выделением углекислого газа CO2, который обеспечивает более интенсивное перемешивание состава и способствует ускорению реакции.
{[Al(ОН)aClb·nH2O]m}x+СаСО3+H2O→Al(ОН)3↓+CaCl2↓+CO2
Реакция происходит с поглощением воды, что в свою очередь способствует получению более прочного тампона.
Хлористый кальций CaCl2 взаимодействует с глинистой фазой как загуститель.
Добавки крахмала и ФХЛС в бентонитово-меловом растворе малы по сравнению с ПОХА. При контакте часть ПОХА реагирует (коагулирует) с крахмалом и ФХЛС, тем самым обеспечивает оставшейся части ПОХА беспрепятственно прореагировать с карбонатной составляющей бентонитового глинопорошка и мела. Коагулированные крахмал и ФХЛС, в свою очередь, укрепляют связи с вновь образованными твердыми составляющими тампона и в итоге увеличивают его пластическую прочность.
Кроме того, при повышении температуры бентонитово-мелового раствора, реакция компонентов состава ускоряется и повышается пластическая прочность тампона.
В результате химических реакций происходит быстрое образование практически безводного тампона с более высокой пластической прочностью по сравнению с составом-прототипом, способного надежно закупорить околоскважинное пространство в зоне поглощения.
Авторами экспериментально установлено, что использование в заявляемом составе для изоляции зон поглощений бентонитово-мелового раствора, дополнительно содержащего крахмал и ФХЛС, и водного раствора полиоксихлорида алюминия при их соотношении 4,0-10,0:1 соответственно обеспечивает получение нового технического результата, заключающегося в повышении пластической прочности тампона, что повышает эффективность изоляции зон поглощений.
Таким образом, введение в один реагент состава для изоляции двух дополнительных компонентов, новое количественное соотношение ингредиентов одного реагента, а также новое соотношение реагентов позволили получить новый технический результат, заключающийся в повышении пластической прочности образовавшегося тампона, обеспечивающий повышение эффективности изоляции зон поглощений, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».
Для оценки эффективности заявляемого технического решения были проведены лабораторные исследования, результаты которых представлены в таблице.
В качестве компонентов одного (I) реагента использовали:
- бентонитовый глинопорошок по ТУ 2-043-953-87;
- мел технический по ГОСТ 12085-88;
- хлорид натрия по ГОСТ 13830-91Е;
- сухой концентрат силиката натрия по ТУ 5743-001-31178039-2001;
- крахмал по ТУ 10 РФ 1039-92;
- ФХЛС по ТУ 2454-322-05133190-2000;
- техническую воду.
Для приготовления другого (II) реагента использовали:
- полиоксихлорид алюминия по ТУ 6-09-05-1456-96;
- техническую воду.
Реагенты готовили следующим образом.
Предварительно приготовили раствор хлорида натрия плотностью 1180 кг/м3, для чего в 1000 мл воды растворили 283 г хлорида натрия.
Для приготовления бентонитово-мелового раствора (I реагента) взяли 1 литр приготовленного раствора хлорида натрия, ввели в него 150 г бентонитового глинопорошка и перемешивали в течение 1 часа. Затем при постоянном перемешивании добавили 500 г порошкообразного мела, 10 г крахмала и 15 г ФХЛС, перемешивали в течение 4 часов. После чего замерили параметры исходного бентонитово-мелового раствора, которые составили: плотность - 1420 кг/м3, растекаемость по конусу - 18 см, водоотдача 14 см3 за 30 мин. При этом компонентный состав исходного бентонитово-мелового раствора составил: бентонитовый глинопорошок 8,09 масс.%, мел - 26,96 масс.%, хлорид натрия - 15,26 масс.%, крахмал - 0,54 масс.%, ФХЛС - 0,81 масс.% и вода - 48,34 масс.%, что отражено в таблице (опыт 1).
Для приготовления 1 литра водного раствора полиоксихлорида алюминия (II реагента) взяли 614 мл воды, в которой растворили 736 г ПОХА, затем замерили плотность, которая составила 1350 кг/м3.
Пример 1. Для исследования характеристик образовавшегося тампона взяли 200 см3 исходного бентонитово-мелового раствора и при помешивании добавили в него 50 см3 раствора ПОХА (соотношение 4,0:1). При этом содержание компонентов в I реагенте составило: бентонитовый глинопорошок 8,00 масс.%, мел 28,10 масс.%, хлорид натрия 15,10 масс.%, крахмал 0,50 масс.%, ФХЛС 0,78 масс.% и вода 47,52 масс.%; содержание компонентов во II реагенте составило: ПОХА 54,56 масс.% и вода 45,44 масс.%. В результате химической реакции через 8 с (при температуре 22°С) произошло выпадение нерастворимых гелеобразующих осадков, и образовался прочный тампон. Затем на пластометре по методу академика П.А.Ребиндера произвели замер пластической прочности образовавшегося тампона, которая составила 48,3 кПа (опыт 9).
Для определения термостойкости I реагента и пластической прочности тампона также были проведены исследования состава при температуре 90°С. В результате химической реакции через 6 с произошло выпадение нерастворимых гелеобразующих осадков и образовался прочный тампон, пластическая прочность которого составила 52,7 кПа (опыт 9).
Аналогичным образом были проведены исследования составов при различных сочетаниях компонентов, а результаты отражены в таблице.
Были проведены также исследования состава по прототипу.
Для этого в 1 литр раствора хлорида натрия ввели 100 г бентонитового глинопорошка и перемешивали 1 час, затем при перемешивании ввели 500 г порошкообразного мела и 20 г сухого концентрата силиката натрия, перемешивали еще в течение 4 часов. Раствор ПОХА был приготовлен ранее.
Пример 2. Взяли 200 см3 бентонитово-мелового раствора и при помешивании в него добавили 50 см3 раствора ПОХА. При этом содержание компонентов в I реагенте составило бентонитового глинопорошка 9,06 масс.%, мела 29,66 масс.%, хлорида натрия 10,83 масс.%, силиката натрия 0,54 масс.% и воды 49,91 масс.%, содержание компонентов во II реагенте составило ПОХА 54,56 масс.% и воды 45,44 масс.%, а соотношение I и II реагентов составило 4:1. В результате химической реакции (при температуре 22°С) через 5 секунд произошло выпадение нерастворимых осадков, и образовался прочный тампон. Затем на пластометре замерили пластическую прочность, которая составила 45,0 кПа, а при нагреве I реагента до температуры 90°С пластическая прочность составила 46,3 кПа (опыт 15).
У данного состава по прототипу пластическая прочность высокая, но при этом она все-таки ниже, чем у заявляемого состава, отраженного в таблице (опыт 9).
Анализ данных таблицы показал, что наиболее высокая пластическая прочность тампона при оптимальном содержании реагентов и при температуре 22°С составляет 18,2-48,3 кПа, а при температуре 90°С составляет 20,2-52,7 кПа. Пластическая прочность полученного тампона может быть и выше при другом компонентном составе I реагента (опыты 10-12), но при этом он становится труднопрокачиваемым.
Авторами экспериментально установлено, что оптимальным содержанием компонентов в бентонитово-меловом растворе является их соотношение, масс.%:
Бентонитовый глинопорошок 8,00-9,00
Мел технический 25,00-28,10
Хлорид натрия 15,10-15,50
Крахмал 0,50-0,58
ФХЛС 0,78-0,90
Вода остальное.
Установлено, что оптимальное содержание в заявляемом составе бснтонитового глинопорошка находится в пределах 8,00-9,00 масс.%. При содержании глинопорошка более 9,00 масс.% повышается вязкость бентонитово-мелового раствора, что усложняет его прокачиваемость, и снижается пластическая прочность тампона (опыт 5). При содержании глинопорошка менее 8,00 масс.% тампон от избытка ПОХА становится хрупким (опыт 10).
Оптимальное содержание технического мела составляет 25,00-28,10 масс.%. При содержании мела более 28,10 масс.% в I реагенте ухудшается его подвижность и реагент становится труднопрокачиваемым в скважину (опыт 11). При содержании мела менее 25,00 масс.% снижается пластическая прочность тампона (опыт 4).
Оптимальное содержание хлорида натрия составляет 15,10-15,50 масс.%. Содержание хлорида натрия более 15,50 масс.% приводит к снижению пластической прочности тампона (опыт 3). Содержание хлорида натрия менее 15,10 масс.% приводит к повышению вязкости раствора до непрокачиваемого (опыт 12).
Оптимальное содержание крахмала составляет 0,50-0,58 масс.%. Содержание крахмала менее 0,50 масс.% приводит к повышению водоотдачи бентонитово-мелового раствора (опыт 13), а увеличение содержания крахмала более 0,58 масс.% приводит к загустеванию бентонитово-мелового раствора (опыт 5).
Оптимальное содержание ФХЛС составляет 0,78-0,90 масс.%. Снижение содержания ФХЛС менее 0,78 масс.% также приводит к повышению водоотдачи и ухудшению реологических характеристик бентонитово-мелового раствора (опыт 13), а увеличение содержания ФХЛС более 0,90 масс.% нецелесообразно, т.к. не приводит к повышению прочности тампона (опыт 5).
Оптимальное содержание полиоксихлорида алюминия (ПОХА) составляет 54,52-54,56 масс.%. Снижение содержания ПОХА менее 54,52 масс.% приводит к снижению пластической прочности тампона (опыт 2). Увеличение содержания ПОХА более 54,56 масс.% приводит к получению хрупкого тампона (опыт 14).
При этом оптимальное соотношение I и II реагентов составляет 4,0-10,0:1 соответственно. При повышении соотношения более 10,0:1 происходит снижение пластической прочности, которая является недостаточной для создания изоляционного экрана в зоне катастрофических поглощений (опыт 5). При снижении соотношения менее 4,0:1 происходит образование тампона с высокой пластической прочностью до образования хрупкого материала (опыт 10).
Для реализации заявляемого состава в промысловых условиях предварительно проводятся исследования. На основании результатов исследований производятся необходимые расчеты.
Необходимый объем образующегося тампона с учетом его пластической прочности рассчитывается индивидуально в каждом конкретном случае в зависимости от характеристики поглощающих пластов (пластового давления, приемистости пласта, открытой пористости пород и т.д.)
Заблаговременно приготавливают расчетный объем бентонитово-мелового раствора. Для этого в отдельную емкость заливают техническую воду, добавляют хлорид натрия и перемешивают 1 час. Затем вводят бентонитовый глинопорошок и перемешивают 4 часа, после чего добавляют мел технический, крахмал, ФХЛС и перемешивают еще 1 час, в результате получается исходный бентонитово-меловой раствор с заданными параметрами.
Также заблаговременно приготавливают водный раствор полиоксихлорида алюминия. Для этого в отдельную емкость загружают необходимое количество технической воды, в которой растворяют полиоксихлорид алюминия.
Использование состава осуществляют следующим способом.
В трубное пространство закачивают расчетный объем бентонитово-мелового раствора, который размещают в стволе скважины выше зоны поглощения. Затем в зону поглощения по трубному пространству закачивают буферную жидкость, раствор ПОХА, буферную жидкость, цементный раствор, продавочную жидкость. При достижении раствора ПОХА кровли зоны поглощения одновременно по трубному и затрубному пространствам закачивается продавочная жидкость. Одновременное закачивание продавочной жидкости производится до момента выхода из открытого конца бурильных труб раствора ПОХА. Далее при интенсивном перемешивании и в процессе химического взаимодействия образуются продукты реакции в виде прочного тампона, который закупоривает зону поглощения. После чего в стволе скважины в интервале зоны поглощения размещают цементный раствор, который взаимодействует с оставшимся непрореагировавшим раствором ПОХА, образуя цементный камень. После чего скважина оставляется на ожидание затвердевания цемента.
Преимущества заявляемого состава для изоляции зон поглощений:
- надежность блокирования призабойной зоны за счет образования тампона с более высокой пластической прочностью;
- возможность использования состава для изоляции зон поглощения в скважинах в широком диапазоне температур (от нормальных до высоких).
Использование заявляемого состава позволяет расширить ассортимент реагентов, применяемых для изоляции зон катастрофических поглощений, и повысить эффективность изоляции.
Figure 00000001

Claims (1)

  1. Состав для изоляции зон поглощений, состоящий из двух реагентов, в качестве одного из которых используют бентонитово-меловой раствор, содержащий бентонитовый глинопорошок, мел технический, хлорид натрия и воду, а в качестве другого используют 54,52-54,56%-ный водный раствор полиоксихлорида алюминия, отличающийся тем, что бентонитово-меловой раствор дополнительно содержит крахмал и феррохромлигносульфонат при следующем соотношении компонентов, мас.%:
    бентонитовый глинопорошок 8,00-9,00 мел технический 25,00-28,10 хлорид натрия 15,10-15,50 крахмал 0,50-0,58 феррохромлигносульфонат 0,78-0,90 вода остальное

    причем соотношение бентонитово-мелового раствора и водного раствора полиоксихлорида алюминия составляет 4,0-10,0:1 соответственно.
RU2010114801/03A 2010-04-13 2010-04-13 Состав для изоляции зон поглощений RU2431651C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010114801/03A RU2431651C1 (ru) 2010-04-13 2010-04-13 Состав для изоляции зон поглощений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010114801/03A RU2431651C1 (ru) 2010-04-13 2010-04-13 Состав для изоляции зон поглощений

Publications (1)

Publication Number Publication Date
RU2431651C1 true RU2431651C1 (ru) 2011-10-20

Family

ID=44999185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010114801/03A RU2431651C1 (ru) 2010-04-13 2010-04-13 Состав для изоляции зон поглощений

Country Status (1)

Country Link
RU (1) RU2431651C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487909C1 (ru) * 2012-04-12 2013-07-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Блокирующий состав для изоляции зон поглощений при бурении и капитальном ремонте скважин
RU2772069C1 (ru) * 2021-06-28 2022-05-16 Юрий Анатольевич Дергунов Способ изоляции воды в призабойной зоне добывающей скважины

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487909C1 (ru) * 2012-04-12 2013-07-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Блокирующий состав для изоляции зон поглощений при бурении и капитальном ремонте скважин
RU2772069C1 (ru) * 2021-06-28 2022-05-16 Юрий Анатольевич Дергунов Способ изоляции воды в призабойной зоне добывающей скважины

Similar Documents

Publication Publication Date Title
US10287481B1 (en) Settable, form-filling loss circulation control compositions comprising in situ foamed non-hydraulic sorel cement systems and method of use
US7654326B1 (en) Sorel cements and methods of making and using same
EP0582367A1 (en) Retarded acid soluble well cement compositions
EA005102B1 (ru) Способ обработки подземного пласта
RU2431651C1 (ru) Состав для изоляции зон поглощений
IT9048312A1 (it) Fluido per perforazione con reazione di imbrunimento di carboidrato anionico e metodo relativo
RU2601635C1 (ru) Буровой раствор на полимерной основе для строительства скважин
RU2561630C2 (ru) Биополимерный буровой раствор сбк-uni-drill-pro (hard)
RU2368769C2 (ru) Способ обработки призабойной зоны пласта
RU2516400C1 (ru) Алюмогипсокалиевый буровой раствор и способ его получения
CN108005610A (zh) 深孔钻探护壁堵漏工艺
CN104387531B (zh) 钻井液用增粘抑制型聚合物及其制备方法和应用
CN105567188B (zh) 用于提高氰凝类堵漏剂堵漏性能的助剂及其制备方法,氰凝类堵漏剂
RU2541666C1 (ru) Буровой раствор для стабилизации глинистых пород
RU2373251C2 (ru) Состав для изоляции зон поглощений
CN101638575B (zh) 钻井液用抗高温稀释剂及其生产方法和使用方法
US4301867A (en) Process for selectively reducing the permeability of a subterranean sandstone formation
US11535786B2 (en) Methods for wellbore strengthening
RU2215016C1 (ru) Технологическая жидкость для бурения, заканчивания и капитального ремонта нефтяных и газовых скважин в условиях аномально высоких пластовых давлений и повышенных температур
RU2277574C1 (ru) Способ изоляции зон поглощений
AU2018342586B2 (en) Methods for wellbore strengthening
RU2015155C1 (ru) Раствор для упрочнения неустойчивых горных пород при бурении скважин
RU2322472C1 (ru) Технологическая жидкость для глушения нефтегазовых скважин и способ ее приготовления
US11959013B2 (en) Viscoelastic surfactant-based treatment fluids for use with metal oxide-based cements
RU2733766C1 (ru) БУРОВОЙ РАСТВОР С ТАМПОНИРУЮЩЕЙ ТВЕРДОЙ ФАЗОЙ Petro Plug

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140414