RU2430191C2 - Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств - Google Patents

Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств Download PDF

Info

Publication number
RU2430191C2
RU2430191C2 RU2009145497/02A RU2009145497A RU2430191C2 RU 2430191 C2 RU2430191 C2 RU 2430191C2 RU 2009145497/02 A RU2009145497/02 A RU 2009145497/02A RU 2009145497 A RU2009145497 A RU 2009145497A RU 2430191 C2 RU2430191 C2 RU 2430191C2
Authority
RU
Russia
Prior art keywords
pipe
cavity
strength
metal
technological complex
Prior art date
Application number
RU2009145497/02A
Other languages
English (en)
Other versions
RU2009145497A (ru
Inventor
Жесфина Михайловна Бледнова (RU)
Жесфина Михайловна Бледнова
Михаил Иосифович Чаевский (RU)
Михаил Иосифович Чаевский
Николай Андреевич Махутов (RU)
Николай Андреевич Махутов
Михаил Матвеевич Гаденин (RU)
Михаил Матвеевич Гаденин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУ ВПО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУ ВПО "КубГТУ") filed Critical Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУ ВПО "КубГТУ")
Priority to RU2009145497/02A priority Critical patent/RU2430191C2/ru
Publication of RU2009145497A publication Critical patent/RU2009145497A/ru
Application granted granted Critical
Publication of RU2430191C2 publication Critical patent/RU2430191C2/ru

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к устройствам для формирования нанопокрытий на полых деталях с последующим исследованием их механических свойств и может быть использовано в машиностроении для создания защитных, упрочняющих и износостойких покрытий. Заявленный технологический комплекс содержит устройство для нанесения нанопокрытия, а также устройства для исследования прочности детали при линейном напряженном состоянии и при плоском напряженном состоянии. Устройство для нанесения покрытия содержит вакуумную камеру, имеющую составную охлаждаемую крышку, полость которой соединена с корпусом. Внутри корпуса установлена металлическая колба с ванной, заполненной расплавом. Над ванной установлена металлическая труба, закрепленная в верхней части крышки и выполненная с возможностью прикрепления к ее нижнему концу обрабатываемой полой детали с образованием замкнутой полости и вертикального перемещения трубы с погружением детали в ванну. Устройство для исследования прочности детали с покрытием при линейном напряженном состоянии содержит рычаг, соединенный со стержнем, размещенным в полости трубы с деталью, а также индикатор деформации детали. Устройство для исследования детали с покрытием при плоском напряженном состоянии содержит оборудование для создания давления и манометр. Технический результат - повышение точности исследований и сокращение времени их проведения. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к устройствам для формирования поверхностных наноструктур на полых металлических деталях с последующим исследованием их механических свойств и может быть использовано в машиностроении для создания защитных, упрочняющих и износостойких покрытий, работающих в условиях повышенной температуры.
Известно устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов (патент RU №2293791). Устройство содержит камеру, состоящую из верхней и нижней частей, ампулу с жидкометаллическим раствором, расположенную в нижней камере, нагревательные устройства, теплозащитные экраны, вакуумную систему и систему наполнения камеры инертным газом. Обе части камеры по внутренним полостям стенок охлаждаются жидкостью. Технологический процесс нанесения покрытия в данном устройстве происходит следующим образом: после герметизации камеры, достижения в ней заданного вакуума камера заполняется инертным газом. Нагрев камеры производится при помощи нагревателей. После достижения заданной температуры деталь погружается в металлический раствор, в результате чего происходит нанесение на изделие покрытия.
Недостатком данной установки является то, что она не обеспечивает возможность совмещения процессов нанесения покрытия на деталь и испытания их на прочность.
Известен стенд для испытания вращающейся детали на разрыв (патент RU №2029276). Стенд содержит вакуумную разгонную камеру, привод вращения испытуемого образца, датчики, регистрирующее устройство, индукционный нагреватель для разогрева всего образца и нагреватель для локального разогрева части образца. Испытания проводят в условиях, близких к условиям эксплуатации.
Известно устройство для испытания образцов материалов на растяжение (патент RU №2251676). Устройство состоит из элемента повышенной жесткости системы нагружения зоны локализации деформации, внутри которого расположены захваты с резьбой для крепления образцов и системы сбора и обработки информации.
Данные устройства предназначены только для испытания образцов, а обработку с целью упрочнения поверхности образцов приходится проводить в других устройствах. Кроме того, в этих устройствах невозможно производить испытания полых образцов.
Известна установка для пневматических испытаний котлов вагонов-цистерн при проведении капитального и деповского ремонта (полезная модель RU №87015). Установка включает устройство для создания давления, выполненное в виде передвижной установки, содержащей манометры, фильтры, усилитель потока воздуха, регулятор давления, блок управления. При помощи разъемных соединений установка подключается к напорной пневмомагистрали депо и объекту испытаний и создана для испытаний больших емкостей. Таким образом, она непригодна для испытаний малогабаритных деталей, кроме того, она очень сложна в исполнении.
Задачей изобретения является сокращение времени между нанесением упрочняющего покрытия и исследованием прочности образца с нанесенным покрытием за счет проведения этих операций в одной установке, и повышение точности испытаний за счет проведения их в условиях, близких к эксплуатационным.
Задача решается предложенным технологическим комплексом для формирования на поверхности полых деталей нанопокрытий с последующим исследованием их механических свойств, содержащим устройство для нанесения на поверхность полой детали нанопокрытия, устройство для исследования прочности детали с покрытием при линейном напряженном состоянии и устройство для исследования прочности детали с покрытием при плоском напряженном состоянии. Устройство для нанесения покрытия содержит вакуумную камеру с узлом подачи охлаждающей жидкости. Вакуумная камера состоит из полого охлаждаемого корпуса с патрубком для откачки воздуха и патрубком для подачи аргона и составной охлаждаемой крышки, полость которой соединена с корпусом. На корпусе закреплена панель для термопар и датчиков давления, а внутри установлена металлическая колба с ванной для заполнения жидкометаллическим расплавом. Верхний конец металлической колбы закреплен в верхней части крышки, а вокруг нее расположены нагревательные элементы. Над ванной установлена металлическая труба, закрепленная в верхней части крышкой и выполненная с возможностью прикрепления к ее нижнему концу обрабатываемой полой детали с образованием замкнутой полости, при этом труба установлена с возможностью вертикального перемещения с погружением детали в ванну. Верхний конец трубы, выступающий из камеры, соединен с рычагом для вертикального перемещения и содержит патрубок для отвода жидкости. Узел для подачи охлаждающей жидкости состоит из трубки, выполненной с возможностью размещения в полости трубы с деталью, и патрубка для подачи охлаждаемой жидкости. Устройство для исследования прочности детали с покрытием при линейном напряженном состоянии состоит из рычага, соединенного со стержнем, размещенным в полости трубы с деталью, на одном плече рычага установлен индикатор для определения деформации детали, другой конец соединен с тарелкой с грузом. Устройство для исследования детали с покрытием при плоском напряженном состоянии содержит оборудование для создания давления, включающее баллон со сжиженным газом, соединенный через редуктор давления с компрессором и манометром, и быстроразъемное соединение для подключения к трубе с деталью. Нагревательные элементы содержат устройство для ввода электроэнергии и вольфрамовых проволок. Труба соединена с обрабатываемой деталью сварным соединением. Внутри вакуумной камеры установлены теплозащитные экраны, расположенные между корпусом и вольфрамовыми проволоками.
На фиг.1 изображено устройство для формирования на поверхности полой детали нанопокрытия.
На фиг.2 изображено устройство для исследования прочности полой детали с покрытием при линейном напряженном состоянии.
На фиг.3 изображено устройство для исследования прочности полой детали с покрытие при плоском напряженном состоянии.
Технологический комплекс состоит из полого охлаждаемого корпуса 1 вакуумной камеры, составной крышки 2, полость крышки 2 соединена с корпусом 1 через отверстия 3. Патрубок 4 служит для откачки воздуха из корпуса 1 и соединен с диффузионным насосом (не показан). Патрубок 5 служит для подачи аргона. На стенке корпуса 1 установлена панель 6 для крепления датчиков давления и термопар. Внутри корпуса 1 установлена металлическая колба 7 с ванной 8, заполненной жидкометаллическим расплавом. Вокруг колбы 7 расположены нагревательные элементы 9. Для предохранения металла корпуса от перегрева внутри камеры размещаются теплозащитные экраны 10. Над ванной установлена металлическая труба 11, закрепленная через зажимной узел 12 в верхней части крышки 2 с возможностью вертикального перемещения. Нижний конец трубы 11 соединен (например, приварен) с обрабатываемой полой деталью 13 (например, втулкой) с образованием замкнутой полости. В верхней части труба 11 содержит патрубок 14 для вывода охлаждающей жидкости и соединена с рычагом 15, закрепленным на крышке 2, с помощью которого возможно осуществлять вертикальное перемещение трубы 11. Узел для подачи охлаждающей жидкости в трубу 11 состоит из металлической трубки 16, размещаемой в полости трубы 11, с патрубком 17 для подачи охлаждающей жидкости. Устройство для исследования прочности детали при линейном напряженном состоянии из рычага 18, соединенного со стержнем 19, размещенным в полости трубки 11 так, чтобы он упирался в дно детали 13. На одном плече рычага установлен индикатор 20 для контроля деформации детали, а другой соединен с тарелкой 21 с грузом 22. Устройство для исследования прочности полой детали при плоском напряженном состоянии состоит из баллона 23 со сжатым газом, соединенного с компрессором 24 для создания дополнительного давления. Регулятор давления 25 соединен с манометром 26. Трубопровод 27 для сжатого газа соединяется с трубой 11 быстроразьемным соединением 28.
Технологический комплекс работает следующим образом.
В корпус 1 вакуумной камеры вставляют металлическую трубу 11 с приваренной к ней полой обрабатываемой деталью 13 типа втулки, при этом труба 11 с деталью 13 образуют замкнутую полость. Труба 11 закрепляется в крышке 2 с помощью зажимного узла 12. В трубу 11 вставляют трубку 16 для подвода охлаждающей жидкости. Из корпуса 1 вакуумной камеры откачивают воздух диффузионным насосом (не показан) через патрубок 4 до давления 0,07 ГПа, и камера заполняется аргоном через патрубок 5. Затем включают нагревательные элементы 9, содержащие вольфрамовые проволоки, и доводят температуру жидкометаллического расплава в ванне 9 до 1000-1100°С. С помощью рычага 15 трубу 11 опускают вниз, и деталь 13 погружается в ванну 8. Температуру охлаждающей жидкости, подаваемой в замкнутую полость через трубку 16, подбирают таким образом, чтобы температура детали 13, на поверхности которой формируют нанопокрытие, составляла 500-600°С. Благодаря высокому градиенту температур избыток металла, растворенного в жидкометаллическом расплаве, выделяется и осаждается на поверхности детали, формируя нанопокрытие. После нанесения нанопокрытия трубу 11 с помощью рычага 15 поднимают, тем самым вынимая деталь 13 из ванны 8 с расплавом. Затем приступают к исследованию прочности детали с нанопокрытием при линейном напряженном состоянии. Нагревательные элементы 9 при этом не выключают, поддерживая условия испытания близкими к эксплуатационным. Из трубы 11 удаляют жидкость через патрубок 14 и вынимают трубку 16. Вместо нее внутрь трубы 11 вставляют металлический стержень 19, соединенный с рычагом 18, до упора с дном детали 13. С помощью груза 22 регулируют нагрузку на стержень до разрушения детали 13. Момент разрушения фиксируют индикатором 20.
Для проведения исследования прочности детали 13 с нанопокрытием при плоском напряженном состоянии после нанесения нанопокрытия деталь 13 вынимают из ванны 8 с жидкометаллическим расплавом. Из трубы 11 удаляют жидкость и вынимают трубку 16. Затем к трубе при помощи быстроразъемного соединения 28 подсоединяют трубопровод 27. Затем открывают баллон 23, сжатый газ поступает в трубу 11 и давит на стенки полой детали 13. Давление увеличивается до момента разрушения стенок детали 13. Момент разрушения фиксируют с помощью манометра 26.
Таким образом, при использовании технологического комплекса, возможно нанесение на поверхность полой детали нанопокрытия и испытание такой детали на прочность при линейном или плоском напряженном состоянии в условиях высоких температур.

Claims (4)

1. Технологический комплекс для формирования на поверхности полых деталей нанопокрытий с последующим исследованием их механических свойств, содержащий устройство для нанесения на поверхность полой детали нанопокрытия, устройство для исследования прочности детали с покрытием при линейном напряженном состоянии и устройство для исследования прочности детали с покрытием при плоском напряженном состоянии, причем устройство для нанесения покрытия содержит вакуумную камеру с узлом подачи охлаждающей жидкости, вакуумная камера состоит из полого охлаждаемого корпуса с патрубком для откачки воздуха и патрубком для подачи аргона и составной охлаждаемой крышки, полость которой соединена с корпусом, на корпусе закреплена панель для термопар и датчиков давления, а внутри установлена металлическая колба с ванной, заполненной жидкометаллическим расплавом, верхний конец металлической колбы закреплен в верхней части крышки, а вокруг нее расположены нагревательные элементы, над ванной установлена металлическая труба, закрепленная в верхней части крышки и выполненная с возможностью прикрепления к ее нижнему концу обрабатываемой полой детали с образованием замкнутой полости, при этом труба установлена с возможностью вертикального перемещения с погружением детали в ванну, верхний конец трубы, выступающий из камеры, соединен с рычагом для вертикального перемещения и содержит патрубок для отвода жидкости, а узел для подачи охлаждающей жидкости состоит из трубки, выполненной с возможностью размещения в полости трубы с деталью и патрубка для подачи охлаждающей жидкости, устройство для исследования прочности детали с покрытием при линейном напряженном состоянии состоит из рычага, соединенного со стержнем, размещенным в полости трубы с деталью, на одном плече рычага установлен индикатор для определения деформации детали, другой конец соединен с тарелкой с грузом, устройство для исследования детали с покрытием при плоском напряженном состоянии содержит оборудование для создания давления, включающее баллон со сжиженным газом, соединенный через редуктор давления с компрессором и манометром, и быстроразъемное соединение для подключения к трубе с деталью.
2. Технологический комплекс по п.1, отличающийся тем, что нагревательные элементы состоят из устройства для ввода электроэнергии и вольфрамовых проволок.
3. Технологический комплекс по п.1, отличающийся тем, что труба соединена с обрабатываемой деталью сварным соединением.
4. Технологический комплекс по п.1, отличающийся тем, что внутри вакуумной камеры установлены теплозащитные экраны, расположенные между корпусом и нагревательными элементами.
RU2009145497/02A 2009-12-08 2009-12-08 Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств RU2430191C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009145497/02A RU2430191C2 (ru) 2009-12-08 2009-12-08 Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009145497/02A RU2430191C2 (ru) 2009-12-08 2009-12-08 Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств

Publications (2)

Publication Number Publication Date
RU2009145497A RU2009145497A (ru) 2011-06-20
RU2430191C2 true RU2430191C2 (ru) 2011-09-27

Family

ID=44737412

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145497/02A RU2430191C2 (ru) 2009-12-08 2009-12-08 Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств

Country Status (1)

Country Link
RU (1) RU2430191C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569871C1 (ru) * 2014-07-01 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Устройство для формирования на поверхности полых деталей наноструктурированных покрытий с эффектом памяти формы
RU2767108C1 (ru) * 2021-05-20 2022-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569871C1 (ru) * 2014-07-01 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Устройство для формирования на поверхности полых деталей наноструктурированных покрытий с эффектом памяти формы
RU2767108C1 (ru) * 2021-05-20 2022-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов

Also Published As

Publication number Publication date
RU2009145497A (ru) 2011-06-20

Similar Documents

Publication Publication Date Title
CN108519321B (zh) 利用焊接接头力—腐蚀耦合测试装置进行测试的方法
JP4817253B2 (ja) 材料試験装置と材料試験片
CN104931349B (zh) 用于氢气环境材料性能测试装置的密封摩擦力补偿方法
CN107687975A (zh) 评价测井钢丝抗应力腐蚀开裂性能的模拟试验装置及方法
CN104897476A (zh) 一种高温氢气环境材料性能试验装置
CN102426150B (zh) 一种用于高温高压水蒸汽氧化腐蚀试验的高压釜系统
CN109470603A (zh) 一种高温高压环境下测量表征接触角的可视化实验系统及其方法
CN103364296A (zh) 一种高温摩擦磨损试验机
RU2430191C2 (ru) Технологический комплекс для формирования на поверхности полых деталей нанопокрытий и исследования их механических свойств
CN210123389U (zh) 一种可在线称量的铁矿石荷重还原软熔滴落性能测定装置
CN107807202B (zh) 具有密闭空间的熔融物试验装置
CN111272574A (zh) 一种原位测试耐火材料在应力作用下反应行为的装置及方法
CN112595575B (zh) 高温熔盐腐蚀环境中多种力学性能测试的试验装置及方法
RU2666161C1 (ru) Способ испытания трубных сталей на коррозионное растрескивание под напряжением и устройство для его осуществления
CN220084482U (zh) 金相试验浸润腐蚀试验机
CN113865984A (zh) 适用于放射性管状样品的真空/惰性气体保护试验装置
RU92726U1 (ru) Установка для формирования на поверхности детали нанопокрытий и исследования прочности полой детали при плоском напряженном состоянии
CN106542600B (zh) 一种实验室简便精确除氧的装置及方法
CN113203633A (zh) 高温液态铅铋环境中的慢拉伸及蠕变试验装置及使用方法
CN113514342A (zh) 一种高温液态金属环境下金属材料的蠕变-疲劳测试装置
CN107741452B (zh) 一种奥氏体不锈钢中马氏体体积分数的测试方法
RU93150U1 (ru) Установка для формирования на поверхности детали нанопокрытий и исследования прочности детали при линейном напряженном состоянии
CN116642753A (zh) 一种氢脆敏感性测试装置及方法
JP2007240214A (ja) 耐圧室付き試験機とこれを使用した試験方法
CN202204757U (zh) 一种用于高温高压水蒸汽氧化腐蚀试验的高压釜系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131209