RU2429276C2 - Способ очистки дизельной фракции - Google Patents

Способ очистки дизельной фракции Download PDF

Info

Publication number
RU2429276C2
RU2429276C2 RU2009144015/04A RU2009144015A RU2429276C2 RU 2429276 C2 RU2429276 C2 RU 2429276C2 RU 2009144015/04 A RU2009144015/04 A RU 2009144015/04A RU 2009144015 A RU2009144015 A RU 2009144015A RU 2429276 C2 RU2429276 C2 RU 2429276C2
Authority
RU
Russia
Prior art keywords
phenol
hexane
extraction
water
diesel
Prior art date
Application number
RU2009144015/04A
Other languages
English (en)
Other versions
RU2009144015A (ru
Inventor
Александр Александрович Гайле (RU)
Александр Александрович Гайле
Любовь Леонидовна Колдобская (RU)
Любовь Леонидовна Колдобская
Виктор Васильевич Колесов (RU)
Виктор Васильевич Колесов
Рахмон Сулмонович Деконов (RU)
Рахмон Сулмонович Деконов
Original Assignee
Общество с ограниченной ответственностью "КОМПАНИЯ НЕФТИ И ГАЗА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "КОМПАНИЯ НЕФТИ И ГАЗА" filed Critical Общество с ограниченной ответственностью "КОМПАНИЯ НЕФТИ И ГАЗА"
Priority to RU2009144015/04A priority Critical patent/RU2429276C2/ru
Publication of RU2009144015A publication Critical patent/RU2009144015A/ru
Application granted granted Critical
Publication of RU2429276C2 publication Critical patent/RU2429276C2/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для получения дизельного топлива из дизельных фракций высокосернистых нефтей с преобладанием сульфидной серы. Изобретение касается способа очистки дизельной фракции путем жидкостной экстракции сераорганических соединений и ароматических углеводородов двумя растворителями - полярным и неполярным (гексаном или гексановой фракцией). В качестве полярного растворителя используют фенол, содержащий 3-8 мас.% воды, при массовом соотношении к сырью 2-3:1, соотношении гексана к сырью 0,5-1,0:1. Концентрирование сераорганических соединений и ароматических углеводородов в экстракте осуществляют в колонне регенерации фенола из экстрактной фазы в результате образования азеотропной смеси фенол - вода - насыщенные углеводороды экстрактной фазы. Технический результат - очистка дизельных фракций от сераорганических соединений и ароматических углеводородов. 6 ил.

Description

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при производстве дизельных топлив из дизельных фракций высокосернистых нефтей с преобладанием сульфидной серы (тиацикланов, диалкилсульфидов) экстракционной очисткой от сераорганических соединений и ароматических углеводородов,
В соответствии с экологическими требованиями «Всемирной Топливной Хартии» к дизельным топливам даже низшей, первой категории качества содержание в них серы ограничено не более 0,3 мас.%, а для высшей категории 4 (рынков с высочайшими требованиями к контролю характеристик выхлопных газов, соответствующих требованиям Евро-4, Евро-5) содержание серы должно быть снижено до уровня 5-10 мг/кг, ароматических углеводородов - не более 15 мас.%, в том числе полициклоаренов - 2 мас.% (см. Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологический и экологический аспекты. - М.: Изд-во «Техника», ООО «ТУМА ГРУПП», 2001. - 384 с.).
Для решения проблем обессеривания и деароматизации дизельных фракций наиболее широко применяются гидрогенизационные технологии (см. патент US №7470358, МПК C10G 45/04, опубликован 30.12.2008).
Однако процесс гидроочистки имеет следующие недостатки (см. Гайле А.А., Сайфидинов Б.М. Альтернативные негидрогенизационные методы повышения качества дизельного топлива. - СПб.: СПбГТИ (ТУ), 2009. - 112 с.):
- использование дорогих катализаторов и водорода, который становится все более дефицитным на нефтеперерабатывающих заводах;
- необходимость блоков очистки углеводородных и водородсодержащих газов от сероводорода и установок для переработки H2S до серы или серной кислоты;
- удаление практически всех гетероатомных соединений, способных образовывать на металлических поверхностях защитные пленки, что приводит к ухудшению противоизносных свойств топлив;
- очень жесткие условия процесса - высокое парциальное давление и расход водорода, низкая объемная скорость подачи сырья, повышенная температура, что приводит к большим капиталовложениям и удельным энергозатратам;
- желательность снижения конца кипения дизельной фракции и, как следствие, сокращение ресурсов дизельного топлива;
- недостаточно эффективное удаление азотистых соединений, снижающих активность катализаторов;
- сокращение срока службы катализаторов при ужесточении условий процесса гидроочистки;
- часто недостаточное снижение содержания аренов;
- незначительное повышение или даже сохранение на прежнем уровне цетанового числа; незначительное повышение цетанового индекса гидроочищенной дизельной фракции обусловлено частичной изомеризацией н-алканов, а также тем, что при гидрировании аренов цетановое число повышается незначительно (например, цетановые числа н-октилнафталина и н-октилдекалина 20 и 35).
Отмеченные недостатки гидрогенизационных процессов приводят к необходимости разработки альтернативных методов повышения качества дизельных топлив.
Повышение качества дизельных топлив может быть достигнуто и с использованием экстракционных методов (см. Красногорская Н.Н. и др. Экстракция средних нефтяных фракций. М.: Химия, 1989. - 72 с.). При экстракционной очистке дизельных фракций с высоким содержанием серы (2 мас.% и более) наиболее сложная задача - удаление сераорганических соединений, а снижение содержания ароматических углеводородов, в том числе полициклоаренов до требуемых пределов достигается сравнительно легко.
Известен способ выделения сернистых соединений из среднедистиллятных керосино-газойлевых фракций двухстадийной многоступенчатой противоточной экстракцией сначала фурфуролом, а затем фенолом, причем на обеих стадиях экстракция проводится в присутствии парафинового растворителя - бензина «калоша» (см. авторское свидетельство SU №392725, МПК C10G 21/12, 1976).
К недостаткам известного способа следует отнести: сложность технологической схемы процесса, предусматривающей раздельную регенерацию экстрагентов на каждой из стадий; необходимость в высокоэффективных экстракторах, соответствующих на каждой из стадий 16 теоретическим ступеням экстракции; высокое суммарное массовое соотношение экстрагентов и промывного парафинового растворителя к сырью 5,5:1 и 1,0:1 соответственно; сложность способа регенерации экстрагентов из рафинатной и экстрактной фаз, предусматривающего отмывку фурфурола водой, а фенола 2%-ным раствором NaOH, что связано с большими расходами воды, учитывая плохую растворимость в ней фурфурола и фенола, с нейтрализацией фенольно-щелочных растворов, большими затратами тепла на испарение воды, с очисткой сточных вод.
Известен способ очистки дизельной фракции (см. патент RU №2148070, МПК С10021/14, C10G 21/20, опубликован 27.04.2000) путем жидкостной многоступенчатой противоточной экстракции ароматических углеводородов и сераорганических соединений из гидроочищенной дизельной фракции. В качестве экстрагента в известном способе используют гетерогенную смесь растворителей, содержащую ацетонитрил или ацетонитрил с 2-5 мас.% воды, и пентан при соотношении ацетонитрила к сырью 3-5:1 мас.%, соотношении пентана к сырью 0,5-1,5:1 мас.% и температуре процесса 30-50°С.
Известный способ очистки дизельной фракции обеспечивает повышение селективности процесса экстракции и облегчает регенерацию экстрагента для выделения ароматических углеводородов из гидроочищенной дизельной фракции. Известный способ применяют для очистки дизельной фракции при содержании серы 0,03 мас.%.
Известен также способ очистки дизельной фракции (см. патент RU №2185416, МПК C10G 21/20, C10G 21/2, опубликован 20.07.2002). Способ-прототип включает жидкостную экстракцию гидроочищенной дизельной фракции двумя растворителями - полярным и неполярным (пентаном). В качестве полярного растворителя используют диметилформамид или диметилацетамид, содержащий 3-5 мас.% воды, при массовом соотношении к сырью 3-5:1, соотношении пентана к сырью 1-1,5:1. Концентрирование аренов в экстракте достигается в колонне регенерации растворителей путем азеотропной ректификации экстрактной фазы с полярным растворителем, присутствующим в экстрактной фазе.
Известный способ позволяет одновременно получать экологически чистое дизельное топливо и ароматический растворитель. Однако известный способ предназначен для очистки от ароматических углеводородов дизельных фракций, содержащих незначительное количество серы (0,05-0,2 мас.%).
Задачей заявляемого технического решения являлась разработка такого способа очистки дизельной фракции, который бы обеспечивал экстракционную очистку высокосернистых дизельных фракций, в которых сераорганические соединения представлены преимущественно сульфидами, от сераорганических соединений и ароматических углеводородов.
Поставленная задача решается тем, что способ очистки дизельной фракции включает жидкостную экстракцию сераорганических соединений и ароматических углеводородов полярным и неполярным растворителями, при этом в качестве неполярного растворителя используют гексан или гексановую фракцию, в качестве полярного растворителя используют фенол, содержащий 3-8 мас.% воды, при массовом соотношении к сырью 2-3:1, соотношении гексана или гексановой фракции к сырью 0,5-1,0:1, а концентрирование сераорганических соединений и ароматических углеводородов в экстракте осуществляют в колонне регенерации фенола путем азеотропной ректификации экстрактной фазы с полярным растворителем, присутствующим в экстрактной фазе.
Заявляемый способ представляет собой одностадийный процесс противоточной экстракции с фенолом в присутствии парафинового растворителя (гексана или гексановой фракции) и использует способность фенола образовывать азеотропные смеси с насыщенными углеводородами экстракта для повышения выхода рафината и концентрирования сераорганических соединений и аренов в экстракте при регенерации фенола из экстрактной фазы. Таким образом, по заявляемому способу предусматривается комбинированный процесс экстракции и автоазеотропной ректификации при регенерации экстрагента из экстрактной фазы.
Заявляемый способ очистки дизельной фракции поясняется чертежами, где:
на фиг.1 в таблице 1 приведены показатели исходной дизельной фракции;
на фиг.2 в таблице 2 даны параметры экстракционной очистки дизельной фракции фенолом при 40°С;
на фиг.3 в таблице 3 приведена характеристика рафинатов и экстрактов, полученных при одноступенчатой экстракционной очистке дизельной фракции фенолом и экстракционной системой фенол - вода - гексан;
на фиг.4 в таблице 4 даны параметры процесса семиступенчатой противоточной экстракции сераорганических соединений и ароматических углеводородов из дизельной фракции;
на фиг.5 в таблице 5 приведены результаты семиступенчатой противоточной экстракционной очистки дизельной фракции;
на фиг.6 представлена принципиальная технологическая схема заявляемого способа очистки дизельной фракции.
Установка для очистки дизельной фракции заявляемым способом включает экстрактор 1 с насыпной насадкой типа колец Рашига, экстрактор 2, колонна 3 отгонки гексана из экстрактной фазы; трубчатая печь 4, колонна 5 отгонки азеотропа вода - фенол - насыщенные углеводороды из экстрактной фазы, колонна 6 отгонки фенола из экстрактной фазы, сепаратор 7, колонна 8 отгонки остатков фенола от экстракта с инертным газом, газовый сепаратор 9, колонна 10 отгонки гексана из рафинатной фазы, трубчатая печь 11, колонна 12 отгонки азеотропа фенол - насыщенные углеводороды из рафинатной фазы, экстракционная колонна 13 с кольцами Рашига для отмывки примесей фенола от «дополнительного рафината» водой, теплообменники 14. Римскими цифрами I-XXIII обозначены потоки, циркулирующие в установке.
Сырье - дизельная фракция I, нагретая до 40-45°С, - подается в нижнюю часть экстрактора 1 с насыпной насадкой типа колец Рашига, где экстрагирует фенол из водного раствора (потока XXII), подаваемого в верхнюю часть экстрактора 1. Сырье с проэкстрагированными примесями фенола (поток XXIII) поступает в нижнюю часть экстрактора 2 с регулярной насадкой эффективностью не менее 7 теоретических ступеней. В верхнюю часть экстрактора 2 подается регенерированный обводненный фенол (поток II) с содержанием воды 7-9% мас. при температуре 45-55°С, а в нижнюю часть (на одну теоретическую ступень ниже точки ввода сырья) - регенерированная гексановая фракция (или н-гексан) с примесями воды (поток III) при температуре 40-45°С. Из экстрактной фазы (поток IX), отводимой с низа экстрактора 2, нагретой в теплообменнике 14 для обеспечения массовой доли отгона сырья 7-8%, отгоняется азеотропная смесь гексана с водой (поток X) в ректификационной колонне 3, а кубовый остаток дополнительно нагревается в трубчатой печи 4 и поступает (поток XI) в ректификационную колонну 5, в которой отгоняются азеотропные смеси фенол - вода - насыщенные углеводороды экстрактной фазы (поток XII), которые после конденсации и охлаждения разделяются в сепараторе 7. Колонна 5 отделяется глухой тарелкой от нижерасположенной колонны 6, в которой отгоняется основная часть фенола (поток XIII), возвращаемая после охлаждения вместе с нижним водно-фенольным слоем из сепаратора 7 (поток XVIII) в экстрактор 2. Остающееся в потоке XIV небольшое количество фенола (2-3% от циркулирующего в системе) отдувается от экстракта (поток XVI) инертным газом (поток XV). Из рафинатной фазы (поток IV), отбираемой с верха экстрактора 2, после нагревания в теплообменнике 14 в колонне 10 отгоняется гексан с примесями воды (поток V), отгоняемой в виде азеотропа, и возвращается в нижнюю часть экстрактора 2. Кубовый остаток колонны 10 нагревается в трубчатой печи 11 до температуры, обеспечивающей массовую долю отгона потока VI 18-20 мас.%, и в ректификационной колонне 12 отгоняются азеотропные смеси фенола с частью насыщенных углеводородов рафинатной фазы, которые поступают (поток VII) в сепаратор 7. Верхний слой сепаратора 7, состоящий в основном из насыщенных углеводородов с примесями растворенного фенола (поток XVII), промывается водой (поток XIX) в экстракционной колонне 13 с кольцами Рашига. Промытые углеводороды (поток XX) объединяются с основной частью охлажденного рафината (поток VIII) и объединенный рафинат (поток XXI) отводится в емкость очищенного дизельного топлива. Фенольная вода (поток XXII) подается с низа экстрактора 13 в верхнюю часть экстрактора 1. Для обогрева кипятильника колонны 10 и нагревания потока IV рекомендуется утилизировать тепло горячего рафинатного потока VIII. Для обогрева кипятильника колонны 3 и нагревания сырья этой колонны возможно утилизировать теплоту конденсации паров фенола (потока XIII),
Характеристика сырья приведена на фиг. 1 в таблице 1.
Исходная дизельная фракция имеет следующие неудовлетворительные показатели, которые не соответствуют требованиям «Всемирной Топливной Хартии» к дизельным топливам даже низшей категории 1 - для рынков, на которых отсутствуют или минимальны требования к контролю характеристик выхлопных газов:
- очень высокое содержание серы, преимущественно сульфидной;
- высокое содержание сульфирующихся соединений, основная часть которых приходится на ароматические углеводороды, в том числе полициклоарены (суммарное содержание ароматических углеводородов в экологически чистых дизельных топливах ограничивается 20 мас.%, а в Швеции - для городских условий не более 5 мас.%, в том числе полициклоаренов для дизельных топлив категорий 2 и 3-5 мас.% и 2 мас.% соответственно);
- низкое начало кипения дизельной фракции;
- невысокий цетановый индекс.
Условия одноступенчатой экстракционной очистки дизельной фракции фенолом без использования неполярного растворителя и в присутствии гексана представлены на фиг.2 в таблице 2.
Результаты одноступенчатой экстракции приведены на фиг.3 в таблице 3.
На основе результатов одноступенчатой экстракции можно сделать следующие выводы:
- экстракция фенолом с 3 мас.% воды позволяет добиться достаточно высокой степени извлечения как сераорганических, так и сульфирующихся соединений, однако выход рафината слишком низкий - менее 50 мас.%;
- повышение содержания воды в водном феноле до 8 мас.% приводит к значительному увеличению выхода рафината при некотором снижении его качества и степени извлечения нежелательных в дизельном топливе компонентов;
- применение ректификации при регенерации фенола из экстрактной фазы с добавлением выделенных из азеотропных смесей компонентов дизельной фракции приводит к повышению выхода объединенного рафината по сравнению с выходом рафината, полученного отмывкой фенола 2%-ным раствором NaOH, на 4-5 мас.% от расхода сырья, при этом выход экстракта снижается на 9-12% относительных, что существенно для увеличения отбора очищенного дизельного топлива;
- проведение экстракции фенолом с 3 мас.% воды в присутствии гексана значительно повышает выход рафината при меньшем снижении степени извлечения нежелательных компонентов по сравнению с использованием фенола с 9 мас.% воды, однако для сохранения высокого качества рафината необходимо повышенное соотношение фенола к сырью.
Параметры процесса семиступенчатой противоточной экстракционной очистки дизельной фракции приведены на фиг.4 в таблице 4.
Результаты семиступенчатой противоточной очистки дизельной фракции приведены на фиг.5 в таблице 5. Как следует из таблицы 5, при регенерации фенола из экстрактной фазы автоазеотропной ректификацией значительно возрастает выход рафината по сравнению с противопоставляемым известным способом, когда фенол отмывается 2%-ным раствором NaOH: в опыте N 8 на 19 мас.% по сравнению с опытом №7, в опыте №10 на 13,8 мас.% по сравнению с опытом №9. Потери сырья с экстрактом в противопоставляемом способе значительно выше - в опыте №7 по сравнению с опытом №8 на 54% относительных, в опыте №9 - на 50% относительных выше, чем в опыте №10. Качество рафината при регенерации фенола ректификацией также выше - ниже содержание серы и сульфирующихся соединений, что обусловлено тем, что они, в отличие от насыщенных углеводородов, практически не образуют азеотропные смеси с фенолом.
Пример 1 (опыт №9, проведенный в соответствии с методикой, предложенной в патенте RU N 392725, который применяют в промышленности). В нижнюю часть экстракционной колонны эффективностью 7 теоретических ступеней подают при 50°С дизельную фракцию (расход 100 г/ч) и н-гексан (расход 50 г/ч), а в верхнюю часть - фенол с 8 мас.% воды (расход 300 г/ч). В результате противоточной экстракции после выхода на стабильный режим отбираются одновременно рафинатная (91,0 г) и экстрактная фазы (359,0 г). Из рафинатной фазы промывкой 2%-ным раствором NaOH, а затем дистиллированной водой удаляют 6,1 г фенола, а из экстрактной фазы аналогичным образом 269,9 г фенола до его полного удаления из экстракта. Затем ректификацией на колонке эффективностью 15 теоретических тарелок из обесфеноленной рафинатной фазы отгоняют 25,6 г гексана, получая в кубовом остатке 58,8 г рафината. Из обесфеноленной экстрактной фазы отгоняют 24,4 г гексана, получая в кубовом остатке 41,2 г экстракта. Характеристика рафината и экстракта представлена на фиг.5 в таблице 5.
Пример 2 (опыт №10). Расходы подаваемых в экстрактор потоков и полученных рафинатной и экстрактной фаз, а также параметры процесса экстракции соответствуют описанным в примере 1. Из рафинатной фазы ректификацией отгоняют 25,6 г гексана с 0,5 г воды, затем 6,1 г фенола с примесями насыщенных углеводородов. Из экстрактной фазы ректификацией отгоняют 24,4 г гексана и 1,5 г воды, затем в виде азеотропной смеси 22 г воды, 29 г фенола и 13,8 г насыщенных углеводородов. Азеотропная смесь объединяется с фенолом, отогнанным из рафинатной фазы и содержащим примеси насыщенных углеводородов, и затем разделяется в сепараторе. Из углеводородного слоя примеси фенола отмываются водой и углеводороды объединяются с кубовым остатком, полученным после отгонки фенола из рафинатной фазы. Выход объединенного рафината - 72,6 г, выход экстракта (концентрата сераорганических соединений и ароматических углеводородов) - 27,4 г. Характеристика объединенного рафината и экстракта представлена на фиг.5 в таблице 5.

Claims (1)

  1. Способ очистки дизельной фракции путем жидкостной экстракции сераорганических соединений и ароматических углеводородов полярным и неполярным растворителями, при этом в качестве неполярного растворителя используют гексан или гексановую фракцию, в качестве полярного растворителя используют фенол, содержащий 3-8 мас.% воды, при массовом соотношении к сырью 2-3:1, соотношении гексана к сырью 0,5-1,0:1, а концентрирование сераорганических соединений и ароматических углеводородов в экстракте осуществляют в колонне регенерации фенола путем азеотропной ректификации экстрактной фазы с полярным растворителем, присутствующим в экстрактной фазе.
RU2009144015/04A 2009-11-23 2009-11-23 Способ очистки дизельной фракции RU2429276C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009144015/04A RU2429276C2 (ru) 2009-11-23 2009-11-23 Способ очистки дизельной фракции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009144015/04A RU2429276C2 (ru) 2009-11-23 2009-11-23 Способ очистки дизельной фракции

Publications (2)

Publication Number Publication Date
RU2009144015A RU2009144015A (ru) 2011-06-10
RU2429276C2 true RU2429276C2 (ru) 2011-09-20

Family

ID=44736210

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009144015/04A RU2429276C2 (ru) 2009-11-23 2009-11-23 Способ очистки дизельной фракции

Country Status (1)

Country Link
RU (1) RU2429276C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073289A (zh) * 2013-03-26 2014-10-01 中国石油化工股份有限公司 一种液液抽提分离柴油中芳烃的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073289A (zh) * 2013-03-26 2014-10-01 中国石油化工股份有限公司 一种液液抽提分离柴油中芳烃的方法
CN104073289B (zh) * 2013-03-26 2016-01-13 中国石油化工股份有限公司 一种液液抽提分离柴油中芳烃的方法

Also Published As

Publication number Publication date
RU2009144015A (ru) 2011-06-10

Similar Documents

Publication Publication Date Title
US20170283734A1 (en) Method for Producing Base Lubricating Oil from Waste Oil
US5310480A (en) Processes for the separation of aromatic hydrocarbons from a hydrocarbon mixture
RU2288946C2 (ru) Способ очистки отработанных масел экстракцией растворителями
CN110484345B (zh) 一种废润滑油再生方法
CN111954654B (zh) 萃取精馏分离芳烃的方法
CN103520945A (zh) 粗苯加氢产物的精制装置及方法
CN105793220A (zh) 从粗制甲醇去除硫的工艺
RU2429276C2 (ru) Способ очистки дизельной фракции
EA008121B1 (ru) Способ переработки катализата
CN116240044B (zh) 一种芳烃抽提溶剂再生方法及脱芳烃工艺
CN109679679A (zh) 一种重芳烃工业生产方法
CN112725024B (zh) 一种煤直接转化液体生产环烷基油品和酚类化合物系统及生产方法
CN116286084B (zh) 一种直馏柴油馏分脱芳烃的方法
CN114057535B (zh) 从烃类混合物中萃取精馏分离芳烃的复合溶剂及应用方法
CN108424786A (zh) 一种汽油馏分的分离方法和汽油脱硫方法
CN108329946A (zh) 一种对汽油馏分进行分离的方法和汽油脱硫方法
CN112574776B (zh) 一种再生毛油精制工艺
CN116925811A (zh) 一种汽油脱苯的复合溶剂、汽油脱苯和生产汽油的方法
RU2275413C1 (ru) Способ очистки вакуумных газойлей и мазутов
RU2256691C1 (ru) Способ выделения ароматических углеводородов c6-c9 и реформированного компонента бензина из риформата бензиновой фракции
CN207016733U (zh) 一种汽油加工系统
CN117946729A (zh) 一种用于芳烃抽提的复合溶剂和抽提芳烃的方法
CN116286086A (zh) 一种轻质原油制烯烃的方法
CN117343759A (zh) 一种从宽馏分汽油中收回芳烃的方法
CN1243860A (zh) 劣质蜡油溶剂精制和加氢裂化组合工艺

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121124