RU2428672C2 - Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления - Google Patents

Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления Download PDF

Info

Publication number
RU2428672C2
RU2428672C2 RU2009119973/06A RU2009119973A RU2428672C2 RU 2428672 C2 RU2428672 C2 RU 2428672C2 RU 2009119973/06 A RU2009119973/06 A RU 2009119973/06A RU 2009119973 A RU2009119973 A RU 2009119973A RU 2428672 C2 RU2428672 C2 RU 2428672C2
Authority
RU
Russia
Prior art keywords
crankshaft
input
values
output
function
Prior art date
Application number
RU2009119973/06A
Other languages
English (en)
Other versions
RU2009119973A (ru
Inventor
Иван Петрович Добролюбов (RU)
Иван Петрович Добролюбов
Виктор Валентинович Альт (RU)
Виктор Валентинович Альт
Олег Федорович Савченко (RU)
Олег Федорович Савченко
Сергей Николаевич Ольшевский (RU)
Сергей Николаевич Ольшевский
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет
Priority to RU2009119973/06A priority Critical patent/RU2428672C2/ru
Publication of RU2009119973A publication Critical patent/RU2009119973A/ru
Application granted granted Critical
Publication of RU2428672C2 publication Critical patent/RU2428672C2/ru

Links

Images

Landscapes

  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к определению технического состояния путем измерения параметров, отражающих давление в цилиндрах поршневых двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Способ определения технического состояния ДВС заключается в измерении и усреднении в функциях угла поворота коленчатого вала, а также времени, мгновенных значений исследуемых параметров, определении характеристик измеренных параметров, анализе и сравнении их с эталонными, определении наличия и степени неисправностей и классификации технического состояния ДВС. Измерения мгновенных значений проводятся за цикл, или рабочий такт, или за отдельные участки цикла ДВС. Отдельными участками могут быть участки зон перекладки поршней или зоны за их исключением. Измерения проводятся в стационарном режиме полной нагрузки при заданной частоте вращения, или в режиме разгона без нагрузки, или на регуляторном участке скоростной характеристики. Измеряемыми параметрами являются: крутящий момент, угловые скорости и ускорения коленчатого вала или ротора турбокомпрессора, или перемещение рейки топливного насоса, или давление в трубопроводах к форсункам, а также другие параметры, отражающие цикловую подачу топлива. Характеристиками измеренных параметров являются: градиенты, скорости изменения, выбросы градиентов, скорости изменения в форме импульсов или дифференциальные законы распределения вероятностей полученных процессов и выбросы этих законов в форме импульсов или дисперсии и средние квадратические отклонения полученных процессов, или двумерные дифференциальные законы распределения вероятностей полученных процессов. Эталонными являются предварительно измеренные параметры, а также предварительно полученные зависимости параметров измеряемых величин, соотнесенные с давлениями в цилиндрах исправного ДВС. Экспертная система для определения технического состояния ДВС предназначена для реализации описанного способа. Технический результат заключается в упрощении, снижении трудоемкости и повышении точности определения технического состояния ДВС. 2 н. и 23 з.п. ф-лы, 19 ил.

Description

Текст описания приведен в факсимильном виде.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098
Figure 00000099
Figure 00000100
Figure 00000101
Figure 00000102
Figure 00000103
Figure 00000104
Figure 00000105
Figure 00000106
Figure 00000107
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
Figure 00000112
Figure 00000113
Figure 00000114
Figure 00000115
Figure 00000116
Figure 00000117
Figure 00000118
Figure 00000119
Figure 00000120
Figure 00000121
Figure 00000122
Figure 00000123
Figure 00000124
Figure 00000125
Figure 00000126
Figure 00000127
Figure 00000128
Figure 00000129
Figure 00000130
Figure 00000131
Figure 00000132
Figure 00000133
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
Figure 00000139
Figure 00000140
Figure 00000141
Figure 00000142
Figure 00000143
Figure 00000144
Figure 00000145
Figure 00000146
Figure 00000147
Figure 00000148
Figure 00000149
Figure 00000150
Figure 00000151
Figure 00000152
Figure 00000153
Figure 00000154
Figure 00000155
Figure 00000156
Figure 00000157
Figure 00000158
Figure 00000159
Figure 00000160
Figure 00000161
Figure 00000162
Figure 00000163
Figure 00000164
Figure 00000165

Claims (25)

1. Способ определения технического состояния двигателей внутреннего сгорания путем предварительного измерения средних значений за цикл, рабочий такт и за отдельные участки цикла двигателя, непрерывного измерения мгновенных значений за цикл, рабочий такт и за отдельные участки цикла двигателя в стационарном режиме полной нагрузки при заданной заранее частоте вращения коленчатого вала, крутящего момента, угловых скорости и ускорения коленчатого вала, угловых скорости, ускорения ротора турбокомпрессора и давления наддува, давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, непрерывного измерения мгновенных значений за рабочий такт и за отдельные участки цикла двигателя в режиме разгона без нагрузки от минимальной частоты вращения холостого хода до максимальной крутящего момента, углового ускорения коленчатого вала, усреднения их по множеству циклов работы двигателя, сравнения полученных величин с эталонными, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, а также с предварительно полученными зависимостями изменения этих величин при изменении состояния двигателя от нормального до допустимого и предельного, соотнесения изменения измеренных величин с различными неисправностями, измерения угловых меток по параметрам ускорения и параметрам впрыскивания топлива для идентификации номеров цилиндров, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла мгновенных значений за цикл двигателя крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, усредняют эти мгновенные значения по множеству циклов, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют градиенты по углу поворота коленчатого вала, а также скорости изменения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, при появлении существенных выбросов этих градиентов, а также скоростей изменения в форме импульсов судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по ширине этих импульсов при значениях градиентов, равных нулю, - о степени этих неисправностей при данной частоте вращения, сравнивают полученные при различных частотах вращения значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.
2. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов на рабочем такте каждого цилиндра по отдельности в функции угла поворота коленчатого вала, а также в функции времени мгновенные значения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, усредняют эти мгновенные значения по множеству циклов, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют у каждого цилиндра по отдельности градиенты по углу поворота коленчатого вала, а также скорости изменения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, при появлении существенных выбросов этих градиентов, а также скоростей изменения в форме импульсов на рабочем такте каждого цилиндра по отдельности судят о наличии жесткости работы каждого цилиндра двигателя, а по ширине этих импульсов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени жесткости каждого цилиндра при данной частоте вращения, сравнивают полученные при различных частотах вращения значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя.
3. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в зонах перекладки поршней в функции угла поворота коленчатого вала, а также в функции времени, мгновенные значения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, усредняют эти мгновенные значения по множеству циклов, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют градиенты по углу поворота коленчатого вала, а также скорости изменения выделенных значений крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, при появлении существенных выбросов этих градиентов, а также скоростей изменения, в форме импульсов в зонах перекладки поршней судят о наличии износа каждой цилиндропоршневой группы, а по ширине этих импульсов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени этого износа, сравнивают полученные при различных частотах вращения значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя.
4. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов за исключением зон перекладки поршней в функции угла поворота коленчатого вала, а также в функции времени мгновенные значения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, усредняют эти мгновенные значения по множеству циклов, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют градиенты по углу поворота коленчатого вала, а также скорости изменения выделенных значений крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, при появлении существенных выбросов этих градиентов, а также скоростей изменения в форме импульсов судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по ширине этих выбросов при значениях градиентов, близких к нулю, - о степени этих износов, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости классифицируют состояние сопряжении коленчатого вала с коренными и шатунными подшипниками.
5. Способ по п.1, отличающийся тем, что на регуляторном участке скоростной характеристики измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла мгновенные значения перемещения рейки топливного насоса, усредняют эти мгновенные значения по множеству циклов, сглаживают их с целью исключения незначительных случайных выбросов и определяют градиент перемещения рейки топливного насоса по углу поворота коленчатого вала или скорость перемещения, при появлении существенных выбросов этого градиента или скорости перемещения в форме импульсов судят о наличии износов в сопряжениях регулятора, а по ширине этих выбросов при значениях градиента или скорости перемещения, близких к нулю, - о степени этих износов, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно у исправного нормального регулятора, и по степени их близости классифицируют состояние центробежного регулятора скорости.
6. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, усредняют эти мгновенные значения по множеству циклов, сглаживают их с целью исключения незначительных случайных выбросов и определяют градиент по углу поворота коленчатого вала, а также скорость изменения давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, при появлении существенных выбросов этого градиента, а также скорости изменения в форме импульсов судят о наличии износов в сопряжениях топливного насоса, а по ширине этих выбросов при значениях градиента, а также скорости изменения, близких к нулю, - о степени этих износов, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно у исправного нормального топливного насоса, и по степени их близости классифицируют состояние топливного насоса.
7. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения за цикл двигателя крутящего момента, или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дифференциальные законы распределения вероятностей полученных процессов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсов судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциального закона распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.
8. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, на рабочем такте каждого цилиндра по отдельности мгновенные значения крутящего момента, или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дифференциальные законы распределения вероятностей полученных процессов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, на рабочем такте каждого цилиндра по отдельности, при появлении существенных выбросов этих законов в форме импульсов судят о наличии жесткости работы каждого цилиндра двигателя, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя.
9. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, в зонах перекладки поршней мгновенные значения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дифференциальные законы распределения вероятностей полученных процессов в зонах перекладки поршней в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсов судят о наличии износа каждой цилиндропоршневой группы, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя.
10. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, за исключением зон перекладки поршней, мгновенные значения крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дифференциальные законы распределения вероятностей полученных процессов за исключением зон перекладки поршней в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсов судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости классифицируют состояние сопряжений коленчатого вала с коренными и шатунными подшипниками.
11. Способ по п.1, отличающийся тем, что на регуляторном участке скоростной характеристики измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения перемещения рейки топливного насоса, измеряют по множеству циклов дифференциальные законы распределения вероятностей перемещения рейки топливного насоса в функции угла поворота коленчатого вала, а также в функции времени, при появлении существенных выбросов этих законов в форме импульсов судят о наличии износов в сопряжениях регулятора, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих износов, сравнивают полученные значения интервалов с эталонными значениями, измеренными предварительно у исправного нормального регулятора, и по степени их близости классифицируют состояние центробежного регулятора скорости.
12. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, измеряют по множеству циклов дифференциальные законы распределения вероятностей давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсов судят о наличии износов в сопряжениях топливного насоса, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих износов, сравнивают полученные значения интервалов с эталонными значениями, измеренными предварительно у исправного нормального топливного насоса, и по степени их близости классифицируют состояние топливного насоса.
13. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения за цикл двигателя крутящего момента, или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дисперсии или средние квадратические отклонения полученных процессов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сравнивают полученные при различных частотах вращения значения этих дисперсий или средних квадратических отклонений с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками.
14. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, на рабочем такте каждого цилиндра по отдельности мгновенные значения за цикл двигателя крутящего момента, или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, аналогично измеряют эти процессы в зонах перекладки поршней, а также аналогично измеряют эти процессы в цикле двигателя, за исключением зон перекладки поршней, кроме того, вычитают из измеренных крутящего момента или углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента или углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала или в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дисперсии или средние квадратические отклонения полученных процессов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сравнивают полученные при различных частотах вращения значения этих дисперсий или средних квадратических отклонений на рабочем такте каждого цилиндра по отдельности с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, аналогично сравнивают полученные при различных частотах вращения значения дисперсий или средних квадратических отклонений в зонах перекладки поршней с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости судят о наличии износа каждой цилиндропоршневой группы, аналогично сравнивают полученные при различных частотах вращения значения дисперсий или средних квадратических отклонений в цикле двигателя, за исключением зон перекладки поршней, с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками.
15. Способ по п.1, отличающийся тем, что на регуляторном участке скоростной характеристики измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения перемещения рейки топливного насоса, измеряют мгновенные значения давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям, измеряют по множеству циклов дисперсию или среднее квадратическое отклонение перемещения рейки топливного насоса на регуляторном участке, дисперсию или среднее квадратическое отклонение давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сравнивают полученные при различных частотах вращения значения дисперсий или средних квадратических отклонений перемещения рейки топливного насоса на регуляторном участке с эталонными значениями, измеренными предварительно у исправного нормального регулятора, и по степени их близости классифицируют состояние центробежного регулятора скорости, сравнивают полученные при различных частотах вращения значения этих дисперсий или средних квадратических отклонений давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям, с эталонными значениями, измеренными предварительно у исправного нормального топливного насоса, и по степени их близости классифицируют состояние топливного насоса.
16. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала и в функции времени мгновенные значения за цикл крутящего момента или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, кроме того, вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала и в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов двумерные дифференциальные законы распределения вероятностей полученных процессов в функции угла поворота коленчатого вала и в функции времени, при появлении существенных выбросов этих законов в форме импульсной поверхности судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по площади внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя.
17. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству циклов в функции угла поворота коленчатого вала и в функции времени на рабочем такте каждого цилиндра по отдельности мгновенные значения крутящего момента двигателя или углового ускорения коленчатого вала, или у двигателя, форсированного газотурбонаддувом, давления наддува турбокомпрессора или углового ускорения ротора турбокомпрессора, аналогично измеряют эти процессы в зонах перекладки поршней, а также аналогично измеряют эти процессы в цикле двигателя, за исключением зон перекладки поршней, кроме того, вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала и в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов двумерные дифференциальные законы распределения вероятностей полученных процессов в функции угла поворота коленчатого вала и в функции времени, при появлении существенных выбросов этих законов в форме импульсных поверхностей на рабочем такте каждого цилиндра по отдельности судят о наличии жесткости работы каждого цилиндра двигателя, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, аналогично при появлении существенных выбросов этих законов в форме импульсных поверхностей в зонах перекладки поршней судят о наличии износа каждой цилиндропоршневой группы, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерного дифференциального закона распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, аналогично при появлении существенных выбросов этих законов в форме импульсных поверхностей в цикле двигателя, за исключением зон перекладки поршней, судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерного дифференциального закона распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками.
18. Способ по п.1, отличающийся тем, что на регуляторном участке скоростной характеристики измеряют по множеству циклов в функции угла поворота коленчатого вала и в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, мгновенные значения перемещения рейки топливного насоса, измеряют мгновенные значения давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям, измеряют по множеству циклов двумерный дифференциальный закон распределения вероятностей перемещения рейки топливного насоса в функции угла поворота коленчатого вала и в функции времени, аналогично измеряют по множеству циклов двумерные дифференциальные законы распределения вероятностей давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям, в функции угла поворота коленчатого вала и в функции времени, при появлении существенных выбросов этого закона на регуляторном участке в форме импульсной поверхности судят о наличии износов в сопряжениях регулятора, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями дифференциального закона распределения вероятностей - о степени этих износов, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно у исправного нормального регулятора, и по степени их близости классифицируют состояние центробежного регулятора скорости, аналогично при появлении существенных выбросов двумерных дифференциальных законов распределения вероятностей давления в трубопроводах к форсункам или любого другого косвенного параметра, отражающего цикловую подачу топлива, в том числе по секциям, в форме импульсных поверхностей судят о наличии износов в сопряжениях топливного насоса, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих износов, сравнивают полученные при различных частотах вращения значения площадей внутри импульсных поверхностей с эталонными значениями, измеренными предварительно у исправного нормального топливного насоса и по степени их близости классифицируют состояние топливного насоса.
19. Способ по п.1, отличающийся тем, что в стационарном режиме полной нагрузки измеряют по множеству оборотов ротора турбокомпрессора в функции времени с привязкой к определенной угловой метке мгновенные значения давления наддува турбокомпрессора, а также углового ускорения ротора турбокомпрессора, измеряют по множеству оборотов ротора турбокомпрессора дифференциальные законы распределения вероятностей давления наддува, а также углового ускорения ротора турбокомпрессора, кроме того, измеряют дисперсии или средние квадратические отклонения давления наддува или углового ускорения ротора турбокомпрессора, кроме того, усредняют измеренные мгновенные значения давления наддува, а также углового ускорения ротора турбокомпрессора по множеству циклов, сглаживают их с целью исключения незначительных случайных выбросов и определяют скорости изменения давления наддува турбокомпрессора, а также углового ускорения ротора турбокомпрессора, при появлении существенных выбросов этих скоростей в форме импульсов судят о наличии износов в сопряжениях вал - подшипники ротора, а по ширине этих выбросов при значениях скоростей, близких к нулю, - о степени этих износов, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно у исправного нормального турбокомпрессора, и по степени их близости классифицируют состояние турбокомпрессора, при появлении существенных выбросов дифференциальных законов распределения вероятностей давления наддува или углового ускорения ротора турбокомпрессора в форме импульсов судят о наличии износов в сопряжениях вал - подшипники ротора, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих износов, сравнивают полученные значения интервалов с эталонными значениями, измеренными предварительно у исправного нормального турбокомпрессора, и по степени их близости классифицируют состояние турбокомпрессора, сравнивают полученные значения дисперсий или средних квадратических отклонений давления наддува или углового ускорения ротора турбокомпрессора с эталонными значениями, измеренными предварительно у исправного нормального турбокомпрессора, и по степени их близости судят о наличии износов в сопряжениях вал - подшипники ротора турбокомпрессора.
20. Способ по п.1, отличающийся тем, что в режиме разгона без нагрузки от минимальной частоты вращения холостого хода до максимальной непрерывно измеряют с привязкой к началу цикла мгновенные значения за цикл двигателя крутящего момента или углового ускорения коленчатого вала в функции угла поворота коленчатого вала, а также в функции времени, в том числе на рабочем такте каждого цилиндра по отдельности, в зонах перекладки поршней, в цикле двигателя за исключением зон перекладки поршней, при достижении заданной частоты вращения усредняют эти мгновенные значения по множеству циклов, вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют градиенты, а также скорости изменения крутящего момента или углового ускорения коленчатого вала, при появлении существенных выбросов этих градиентов, а также скоростей изменения, в форме импульсов судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по ширине этих импульсов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени этих неисправностей при данной частоте вращения, сравнивают полученные при различных частотах вращения значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя, при появлении существенных выбросов градиентов, а также скоростей изменения, на рабочем такте каждого цилиндра по отдельности в форме импульсов судят о наличии жесткости работы каждого цилиндра двигателя, а по ширине этих импульсов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени жесткости каждого цилиндра при данной частоте вращения, сравнивают полученные при различных частотах вращения значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, при появлении существенных выбросов градиентов, а также скоростей изменения, в зонах перекладки поршней в форме импульсов судят о наличии износа каждой цилиндропоршневой группы, а по ширине этих импульсов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени этого износа, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, при появлении существенных выбросов градиентов, а также скоростей изменения, в цикле двигателя, за исключением зон перекладки поршней, в форме импульсов судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по ширине этих выбросов при значениях градиентов, а также скоростей изменения, равных нулю, - о степени этих износов, сравнивают полученные значения ширин с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости классифицируют состояние сопряжений коленчатого вала с коренными и шатунными подшипниками.
21. Способ по п.1, отличающийся тем, что в режиме разгона без нагрузки от минимальной частоты вращения холостого хода до максимальной непрерывно измеряют по множеству циклов с привязкой к началу цикла мгновенные значения за цикл двигателя крутящего момента или углового ускорения коленчатого вала в функции угла поворота коленчатого вала, а также в функции времени, в том числе на рабочем такте каждого цилиндра по отдельности, в зонах перекладки поршней, в цикле двигателя, за исключением зон перекладки поршней, при достижении заданной частоты вращения вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов дифференциальные законы распределения вероятностей, в том числе дисперсии или средние квадратические отклонения, полученных процессов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсов судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя, сравнивают полученные при различных частотах вращения значения дисперсий или средних квадратических отклонений с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, при появлении существенных выбросов дифференциальных законов распределения вероятностей на рабочем такте каждого цилиндра по отдельности в форме импульсов судят о наличии жесткости работы каждого цилиндра двигателя, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, сравнивают полученные при различных частотах вращения на рабочем такте каждого цилиндра по отдельности значения дисперсий или средних квадратических отклонений с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, при появлении существенных выбросов дифференциальных законов распределения вероятностей в зонах перекладки поршней в форме импульсов судят о наличии износа каждой цилиндропоршневой группы, а по интервалу между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, сравнивают полученные при различных частотах вращения в зонах перекладки поршней значения дисперсий или средних квадратических отклонений с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости судят о наличии износа каждой цилиндропоршневой группы, при появлении существенных выбросов дифференциальных законов распределения вероятностей в цикле двигателя, за исключением зон перекладки поршней, в форме импульсов судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по интервалам между этими импульсами при нулевом уровне или между максимальными значениями дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения интервалов с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости классифицируют состояние сопряжений коленчатого вала с коренными и шатунными подшипниками, сравнивают полученные при различных частотах вращения в цикле двигателя, за исключением зон перекладки поршней, значения дисперсий или средних квадратических отклонений с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками.
22. Способ по п.1, отличающийся тем, что в режиме разгона без нагрузки от минимальной частоты вращения холостого хода до максимальной непрерывно измеряют по множеству циклов в функции угла поворота коленчатого вала и в функции времени с привязкой к началу цикла, в том числе на рабочем такте каждого цилиндра по отдельности, в зонах перекладки поршней, в цикле двигателя за исключением зон перекладки поршней, мгновенные значения за цикл двигателя крутящего момента или углового ускорения коленчатого вала, при достижении заданной частоты вращения вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, измеряют по множеству циклов двумерные дифференциальные законы распределения вероятностей полученных процессов в функции угла поворота коленчатого вала и в функции времени с привязкой к началу цикла на частоте вращения, соответствующей этому режиму, при появлении существенных выбросов этих законов в форме импульсных поверхностей судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние двигателя, при появлении существенных выбросов этих законов в форме импульсных поверхностей на рабочем такте каждого цилиндра по отдельности судят о наличии жесткости работы каждого цилиндра двигателя, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, при появлении существенных выбросов этих законов в форме импульсных поверхностей в зонах перекладки поршней судят о наличии износа каждой цилиндропоршневой группы, а по площадям внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей с эталонными значениями, измеренными предварительно и соотнесенными с давлениями в цилиндрах исправного нормального двигателя, и по степени их близости классифицируют состояние отдельных цилиндров двигателя, при появлении существенных выбросов этих законов в форме импульсных поверхностей в цикле двигателя, за исключением зон перекладки поршней, судят о наличии износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками, а по площади внутри импульсных поверхностей при нулевом уровне или между максимальными значениями двумерных дифференциальных законов распределения вероятностей - о степени этих неисправностей, сравнивают полученные при различных частотах вращения значения площадей с эталонными значениями, измеренными предварительно у исправного нормального двигателя, и по степени их близости классифицируют состояние сопряжений коленчатого вала с коренными и шатунными подшипниками.
23. Способ по п.1, отличающийся тем, что в режиме разгона без нагрузки от минимальной частоты вращения холостого хода до максимальной малоцилиндровых двигателей непрерывно измеряют по множеству циклов в функции угла поворота коленчатого вала, а также в функции времени, с привязкой к началу цикла, мгновенные значения крутящего момента или углового ускорения коленчатого вала за цикл двигателя, при достижении заданной частоты вращения вычитают из измеренных крутящего момента и углового ускорения коленчатого вала предварительно измеренные инерционную составляющую крутящего момента и углового ускорения коленчатого вала соответственно в функции угла поворота коленчатого вала, а также в функции времени с привязкой к началу цикла, сглаживают полученные процессы с целью исключения незначительных случайных выбросов и по ним определяют момент перехода полученных процессов в тактах расширения с плюса на минус, сравнивают при различных частотах вращения значения смещений этих моментов перехода относительно эталонных моментов перехода аналогичных процессов в тактах расширения с плюса на минус, измеренных предварительно и соотнесенных с давлениями в цилиндрах исправного нормального двигателя, и по степени смещений судят о наличии какой-либо из неисправностей по отдельности или вместе: жесткости работы двигателя, износов цилиндропоршневых групп, а также износов в сопряжениях коленчатого вала с коренными и шатунными подшипниками.
24. Экспертная система для определения технического состояния двигателей внутреннего сгорания, содержащая датчики давления в цилиндрах с усилителями и аналого-цифровыми преобразователями, датчик угловых меток с отметчиком оборота, блок управления, первый и второй пороговые триггеры, блок ручного управления, приемник, электронно-вычислительную машину, цифровой индикатор, блок вывода, генератор тактовых импульсов, распределитель тактов, задатчик алгоритмов обработки, формирователь команд обработки, коммутатор, вычислительный блок, схему формирования импульсов коррекции, датчик угловых меток-зубьев, формирователь импульсов-зубьев, элемент ИЛИ цикла, датчик впрыска топлива, усилитель впрыска, двойной цифровой дифференциатор, цифровой дискриминатор знака, блок идентификации, задатчик моделей процессов, блок классификации состояний, задатчик функций изменения параметров, датчик угловых меток ротора турбокомпрессора, формирователь импульсов ротора, датчики крутящего момента, перемещения рейки топливного насоса, давления наддува, давлений в трубопроводах к форсункам, функциональные преобразователи крутящего момента, перемещения рейки топливного насоса, давления наддува, давлений в трубопроводах к форсункам, первый и второй цифровые мультиплексоры, причем выходы датчика угловых меток подключены соответственно к первому и второму входам блока управления, четвертый вход блока управления соединен с блоком ручного управления, пятый вход подключен через приемник к электронно-вычислительной машине, первый выход блока управления подключен к первому входу цифрового индикатора и первому входу блока вывода, выход которого связан с электронно-вычислительной машиной, а второй выход блока управления соединен с управляющими входами аналого-цифровых преобразователей, причем выходы датчиков давлений в цилиндрах через усилители связаны с соответствующими информационными входами аналого-цифровых преобразователей, третий выход блока управления соединен с первым входом вычислительного блока, четвертый выход подключен к корректирующим входам усилителей через схему формирования импульсов коррекции и к первому входу формирователя команд обработки, второй вход которого соединен через задатчик алгоритмов обработки с выходом приемника, а третий вход - с первым выходом вычислительного блока, второй выход блока управления соединен с первым входом распределителя тактов, второй вход которого подключен к выходу генератора тактовых импульсов, а выход распределителя тактов соединен с четвертым входом формирователя команд обработки и первым управляющим входом коммутатора, остальные входы которого подключены к выходам аналого-цифровых преобразователей, причем выход коммутатора соединен с седьмым входом первого цифрового мультиплексора, с вторыми входами блока вывода и вычислительного блока, третий вход которого подключен к выходу формирователя команд обработки, а четвертый вход - к первому выходу блока управления, второй выход вычислительного блока соединен с вторым входом блока цифрового индикатора и третьим входом блока вывода, вход первого порогового триггера соединен с выходом одного из усилителей, а выход - с первым входом элемента ИЛИ цикла, выход которого соединен с третьим входом блока управления, датчик впрыска через последовательно соединенные усилитель впрыска, и второй пороговый триггер подключен к второму входу элемента ИЛИ цикла, а датчик угловых меток-зубьев через формирователь импульсов зубьев соединен с шестым входом блока управления, пятый выход которого соединен с входом двойного цифрового дифференциатора, выход которого связан с первым входом цифрового дискриминатора знака, выход цифрового дискриминатора знака подключен к седьмому входу блока управления, вторые входы цифрового дискриминатора знака и первого цифрового мультиплексора, первые входы блоков идентификации и классификации состояний соединены с первым выходом блока управления, вторые входы блоков идентификации и классификации состояний, первые входы задатчика моделей процессов и задатчика функций изменения параметров и восьмой вход первого цифрового мультиплексора соединены с выходом формирователя команд обработки, причем четвертый вход блока идентификации соединен с выходом задатчика моделей процессов, а выход - с третьим входом блока классификаций состояний, четвертый вход которого соединен с выходом задатчика функций изменения параметров, а выход - с четвертым входом блока вывода, причем шестой выход блока управления соединен с вторым управляющим входом коммутатора, а вторые входы задатчика моделей процессов и задатчика функций изменения параметров - с третьими входами блока идентификации и цифрового индикатора, с пятым входом блока вывода, причем восьмой вход блока управления соединен через формирователь импульсов с датчиком частоты вращения ротора турбокомпрессора, кроме того, вычислительный блок содержит схему выбора экстремума, измеритель периода, цифровой дифференциатор, блок вычисления среднего индикаторного давления, блок регистров параметров и селектор частоты вращения, при этом третий вход вычислительного блока является первым управляющим входом блока регистров и первым входом схемы выбора экстремума, цифрового дифференциатора, измерителя периода и блока вычисления среднего индикаторного давления, выходы которых, а также первый и второй входы вычислительного блока подсоединены к информационным входам блока регистров, при этом второй вход вычислительного блока является вторым входом схемы выбора экстремума, цифрового дифференциатора и блока вычисления среднего индикаторного давления, третьим входом которых является выход блока регистров, причем четвертый вход блока вычисления среднего индикаторного давления является первым входом вычислительного блока, а выход цифрового дифференциатора соединен с четвертым входом схемы выбора экстремума, второй выход которого является первым выходом вычислительного блока, второй выход и четвертый вход которого являются соответственно выходом и вторым управляющим входом блока регистров, причем выход измерителя периода связан с первым входом селектора частоты вращения, второй вход которого соединен со вторым входом блока регистров, а выход является третьим выходом вычислительного блока, блок управления содержит формирователи сигналов угловых меток, оборота, начала цикла и команд управления, счетчик текущего угла, избирательный блок, делитель периода, три элемента И и четыре элемента ИЛИ, причем первый вход блока управления является входом формирователя сигналов угловых меток, выход которого соединен с первым входом первого элемента ИЛИ, второй вход которого является шестым входом блока управления, а выход соединен с входом делителя периода, второй вход блока управления является входом формирователя сигналов оборота, выход которого соединен с первым входом второго элемента ИЛИ, второй вход которого является седьмым входом блока управления, а выход соединен с первым входом формирователя сигналов начала цикла, второй вход которого является третьим входом блока управления, а выход формирователя сигналов начала цикла подключен через счетчик текущего угла к входу избирательного блока и первому входу формирователя команд управления, причем выход счетчика текущего угла является третьим выходом блока управления, выход делителя периода соединен с третьим входом формирователя сигналов начала цикла, вторым входом счетчика текущего угла и вторым входом формирователя команд управления, третий и четвертый входы которого являются соответственно четвертым и пятым входами блока управления, а первый выход формирователя команд управления подключен к первому входу первого элемента И, второй вход которого подсоединен к выходу делителя периода, выход первого элемента И является вторым выходом блока управления, первым и четвертым выходами которого являются соответственно второй выход формирователя команд управления и выход избирательного блока, первый вход второго элемента И соединен с выходом первого элемента ИЛИ, выход второго элемента И соединен с первым входом третьего элемента ИЛИ, выход которого является пятым выходом блока управления, а второй вход связан с выходом третьего элемента И, первый вход которого соединен с первым входом четвертого элемента ИЛИ и с четвертым выходом формирователя команд управления, а второй вход является восьмым входом блока управления, причем вторые входы второго элемента И и четвертого элемента ИЛИ связаны с третьим выходом формирователя команд управления, выход четвертого элемента ИЛИ является шестым выходом блока управления, причем первый вход первого цифрового мультиплексора связан с первым выходом двойного цифрового дифференциатора, датчики крутящего момента, перемещения рейки топливного насоса, давления наддува, давлений в трубопроводах к форсункам соединены через соответствующие функциональные преобразователи крутящего момента, перемещения рейки топливного насоса, давления наддува, давлений в трубопроводах к форсункам с третьим, четвертым, пятым и шестым по числу цилиндров входами первого цифрового мультиплексора соответственно, второй вход первого цифрового мультиплексора соединен с первым выходом блока управления, отличающаяся тем, что в нее дополнительно введены устройство хранения и вычитания, измерители скорости, градиента по углу поворота, дифференциального закона распределения вероятностей по углу поворота коленчатого вала, дифференциального закона распределения вероятностей по времени, двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени, дисперсии или среднеквадратического отклонения, скользящего среднего значения, смещения по углу поворота коленчатого вала и смещения по времени, причем девятый вход первого цифрового мультиплексора соединен с вторым выходом двойного цифрового дифференциатора, а выход первого цифрового мультиплексора связан с первым входом устройства хранения и вычитания, второй вход которого соединен с первым выходом блока управления, третий вход - с выходом формирователя команд обработки, четвертый вход - с третьим выходом вычислительного блока, а пятый вход - с вторым выходом блока управления, выход устройства хранения и вычитания соединен с вторыми входами измерителей скорости, градиента по углу поворота, дифференциального закона распределения вероятностей по углу поворота коленчатого вала, дифференциального закона распределения вероятностей по времени, двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени, дисперсии или среднеквадратического отклонения, скользящего среднего значения, смещения по углу поворота коленчатого вала и смещения по времени, первые входы которых связаны с выходом формирователя команд обработки, а третьи входы - с первым выходом блока управления, причем первый выход измерителя скорости, выходы измерителей градиента по углу поворота, дифференциального закона распределения вероятностей по углу поворота коленчатого вала, дифференциального закона распределения вероятностей по времени, двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени, дисперсии или среднеквадратического отклонения, скользящего среднего значения, смещения по углу поворота коленчатого вала и смещения по времени соединены с первого по восьмой входами второго цифрового мультиплексора, девятый вход которого связан с первым выходом блока управления, а выход - с пятым входом блока вывода, причем второй выход измерителя скорости соединен с четвертым входом измерителя градиента по углу поворота, пятый вход которого и четвертый вход измерителя смещения по углу поворота коленчатого вала и смещения по времени связаны с вторым выходом блока управления, а четвертый вход измерителя дисперсии или среднеквадратического отклонения связан с выходом измерителя скользящего среднего значения.
25. Система по п.24, отличающаяся тем, что измеритель скорости содержит цифровой дифференциатор с усреднением, измерители экстремумов и временного интервала, генератор тактовых импульсов, причем выход цифрового дифференциатора с усреднением является вторым выходом измерителя скорости и соединен через измеритель экстремумов с первым входом измерителя интервала, второй вход которого связан с генератором тактовых импульсов, а выход является первым выходом измерителя скорости, первый, второй и третий входы цифрового дифференциатора с усреднением являются с первого по третий входами измерителя скорости, измеритель градиента по углу поворота содержит делительное устройство с усреднением, измерители экстремумов и углового интервала, причем выход делительного устройства с усреднением соединен через измеритель экстремумов с первым входом измерителя углового интервала, второй вход которого является пятым входом измерителя градиента по углу поворота, а выход - выходом измерителя градиента, с первого по четвертый входы делительного устройства с усреднением являются соответственно с первого по четвертый входами измерителя градиента по углу поворота, измеритель дифференциального закона распределения вероятностей по углу поворота коленчатого вала содержит измерители закона по числу импульсов и по угловым интервалам, первый и второй цифровые мультиплексоры, измерители экстремумов и ширины между экстремумами, с первого по третий усреднители по углу в заданном интервале, причем выходы измерителей закона по числу импульсов и по угловым интервалам соединены с первым и вторым входами первого цифрового мультиплексора, первый выход которого связан с входом измерителя экстремумов и первым входом измерителя ширины между экстремумами, вторые выходы первого цифрового мультиплексора, измерителя экстремумов и выход измерителя ширины между экстремумами соединены с соответствующими входами с первого по третий усреднителей по углу в заданном интервале и с вторым, четвертым и шестым входами второго цифрового мультиплексора, первый, третий и пятый входы которого соединены с соответствующими выходами с первого по третий усреднителей по углу в заданном интервале, а выход является выходом измерителя дифференциального закона распределения вероятностей по углу поворота коленчатого вала, причем выход измерителя экстремумов соединен с вторым входом измерителя ширины между экстремумами, первые входы измерителей закона по числу импульсов и по угловым интервалам являются вторым входом измерителя дифференциального закона распределения вероятностей по углу поворота коленчатого вала, третьим входом которого являются вторые входы измерителей закона по числу импульсов и по угловым интервалам и третий вход первого цифрового мультиплексора, а первым входом - третьи входы измерителей закона по числу импульсов и по угловым интервалам и седьмым входом второго цифрового мультиплексора, измеритель дифференциального закона распределения вероятностей по времени содержит измерители закона по числу импульсов и по временным интервалам, первый и второй цифровые мультиплексоры, измерители экстремумов и ширины между экстремумами, с первого по третий усреднители по времени в заданном интервале, причем выходы измерителей закона по числу импульсов и по временным интервалам соединены с первым и вторым входами первого цифрового мультиплексора, первый выход которого связан с входом измерителя экстремумов и первым входом измерителя ширины между экстремумами, вторые выходы первого цифрового мультиплексора, измерителя экстремумов и выход измерителя ширины между экстремумами соединены с соответствующими входами с первого по третий усреднителей по времени в заданном интервале и с вторым, четвертым и шестым входами второго цифрового мультиплексора, первый, третий и пятый входы которого соединены с соответствующими выходами с первого по третий усреднителей по времени в заданном интервале, а выход является выходом измерителя дифференциального закона распределения вероятностей по времени, причем выход измерителя экстремумов соединен с вторым входом измерителя ширины между экстремумами, первые входы измерителей закона по числу импульсов и по временным интервалам являются вторым входом измерителя дифференциального закона распределения вероятностей по времени, третьим входом которого являются вторые входы измерителей закона по числу импульсов и по временным интервалам и третий вход первого цифрового мультиплексора, а первым входом - третьи входы измерителей закона по числу импульсов и по временным интервалам и седьмым входом второго цифрового мультиплексора, измеритель двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени содержит измерители двумерного закона по числу импульсов и по интервалам, первый и второй цифровые мультиплексоры, измерители экстремальной поверхности и площади между экстремальной поверхностью, с первого по третий усреднители в заданном интервале, причем выходы измерителей двумерного закона по числу импульсов и по интервалам соединены с первым и вторым входами первого цифрового мультиплексора, первый выход которого связан с входом измерителя экстремальной поверхности и первым входом измерителя площади между экстремальной поверхностью, вторые выходы первого цифрового мультиплексора, измерителя экстремальной поверхности и выход измерителя площади между экстремальной поверхностью соединены с соответствующими входами с первого по третий усреднителей в заданном интервале и с вторым, четвертым и шестым входами второго цифрового мультиплексора, первый, третий и пятый входы которого соединены с соответствующими выходами с первого по третий усреднителей в заданном интервале, а выход является выходом измерителя двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени, причем выход измерителя экстремальной поверхности соединен с вторым входом измерителя площади между экстремумами, первые входы измерителей двумерного закона по числу импульсов и по интервалам являются вторым входом измерителя двумерного дифференциального закона распределения вероятностей по углу поворота коленчатого вала и времени, третьим входом которого являются вторые входы измерителей двумерного закона по числу импульсов и по интервалам и третий вход первого цифрового мультиплексора, а первым входом - третьи входы измерителей двумерного закона по числу импульсов и по интервалам и седьмым входом второго цифрового мультиплексора, измеритель смещения по углу поворота коленчатого вала и смещения по времени содержит усреднитель по множеству, цифровой сглаживающий фильтр, схему сравнения кодов, измеритель интервала, схемы ИЛИ и И, генератор тактовых импульсов, причем выход усреднителя по множеству соединен через цифровой сглаживающий фильтр и схему сравнения кодов с первым входом измерителя интервала, второй вход которого связан с выходом схемы ИЛИ, а выход является выходом измерителя смещения по углу поворота коленчатого вала и смещения по времени, первый и второй входы схемы ИЛИ соединены соответственно с выходом схемы И и выходом генератора тактовых импульсов, вход которого связан с первым входом схемы И и третьим входом усреднителя по множеству и является третьим входом измерителя смещения по углу поворота коленчатого вала и смещения по времени, второй вход схемы И является четвертым входом, а первый и второй входы усреднителя по множеству - первым и вторым входами измерителя смещения по углу поворота коленчатого вала и смещения по времени.
RU2009119973/06A 2009-05-26 2009-05-26 Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления RU2428672C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009119973/06A RU2428672C2 (ru) 2009-05-26 2009-05-26 Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009119973/06A RU2428672C2 (ru) 2009-05-26 2009-05-26 Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления

Publications (2)

Publication Number Publication Date
RU2009119973A RU2009119973A (ru) 2010-12-10
RU2428672C2 true RU2428672C2 (ru) 2011-09-10

Family

ID=44757791

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119973/06A RU2428672C2 (ru) 2009-05-26 2009-05-26 Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления

Country Status (1)

Country Link
RU (1) RU2428672C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554383C1 (ru) * 2013-11-26 2015-06-27 Федеральное государственное казенное учреждение "3 Центральный научно-исследовательский институт" Минобороны России Способ диагностирования цилиндро-поршневой группы двигателя внутреннего сгорания
RU2571693C1 (ru) * 2014-07-01 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления
CN109655184A (zh) * 2018-12-25 2019-04-19 清华大学 一种发动机阻力力矩的测试方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554383C1 (ru) * 2013-11-26 2015-06-27 Федеральное государственное казенное учреждение "3 Центральный научно-исследовательский институт" Минобороны России Способ диагностирования цилиндро-поршневой группы двигателя внутреннего сгорания
RU2571693C1 (ru) * 2014-07-01 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления
CN109655184A (zh) * 2018-12-25 2019-04-19 清华大学 一种发动机阻力力矩的测试方法

Also Published As

Publication number Publication date
RU2009119973A (ru) 2010-12-10

Similar Documents

Publication Publication Date Title
CA1141470A (en) Diagnosis of engine power and compression balance
US4277830A (en) Diagnosis of engine turbocharger performance
US20160003180A1 (en) System for estimating exhaust manifold temperature
Varbanets et al. Improvement of diagnosing methods of the diesel engine functioning under operating conditions
EP1402165B1 (en) Method to determine tdc in an internal combustion engine
US8751097B2 (en) State estimation, diagnosis and control using equivalent time sampling
US4358828A (en) Engine speed measuring system
JP2006523277A (ja) 内燃機関の角度位置信号を求める方法および装置
US10697386B2 (en) Method and device for determining the air flow rate entering the intake manifold of a two-stroke engine
CN106988944A (zh) 检测内燃发动机中燃料喷射器堵塞的方法
RU2428672C2 (ru) Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления
Hamedović et al. IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure
CN101952579B (zh) 用于生成内燃发动机运行循环同步信号的方法
EP2530287A1 (en) Apparatus and method for estimating a combustion torque of an internal combustion engine
CN105910828B (zh) 一种多缸柴油机燃烧故障的循环极坐标图诊断方法
RU2293962C1 (ru) Способ определения технического состояния двигателя внутреннего сгорания и экспертная система для его осуществления
Watzenig et al. Engine state monitoring and fault diagnosis of large marine diesel engines.
US7257983B2 (en) Method for correcting the position of the angular marks of an incremental wheel of a rotational speed sensor and/or an angle of rotation sensor, and system therefor
US6640621B2 (en) Diagnostic method for a shaft sensor in a reciprocating internal combustion engine
KR830001928B1 (ko) 엔진의 순간 속도를 계속해서 감지하기 위한 장치
RU2662017C2 (ru) Способ диагностики технического состояния двигателя
Ali et al. Cycle-by-cycle estimation of IMEP and peak pressure using crankshaft speed measurements
CN114878173B (zh) 一种基于转速峰值分析的各缸燃烧均匀性判断方法
RU99108635A (ru) Способ определения технического состояния двигателей внутреннего сгорания и экспертная система для его осуществления
EP2078841B1 (en) Monitoring unit and method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120527