RU2427417C2 - Granular material thermal treatment plant - Google Patents

Granular material thermal treatment plant Download PDF

Info

Publication number
RU2427417C2
RU2427417C2 RU2007116727/05A RU2007116727A RU2427417C2 RU 2427417 C2 RU2427417 C2 RU 2427417C2 RU 2007116727/05 A RU2007116727/05 A RU 2007116727/05A RU 2007116727 A RU2007116727 A RU 2007116727A RU 2427417 C2 RU2427417 C2 RU 2427417C2
Authority
RU
Russia
Prior art keywords
heat
coal
dryer
fluidized bed
drying
Prior art date
Application number
RU2007116727/05A
Other languages
Russian (ru)
Other versions
RU2007116727A (en
Inventor
Чарльз ДаблЮ БУЛЛИНДЖЕР (US)
Чарльз ДаблЮ БУЛЛИНДЖЕР
Марк Эй НЕСС (US)
Марк Эй НЕСС
Ненад САРУНАК (US)
Ненад САРУНАК
Эдвард Кей ЛЕВИ (US)
Эдвард Кей ЛЕВИ
Энтони А. АМО (US)
Энтони А. АМО
Джон Эм ВИИЛДОН (US)
Джон Эм ВИИЛДОН
Мэтью Пи КОУГХЛИН (US)
Мэтью Пи КОУГХЛИН
Original Assignee
Грейт Ривэ Энеджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/107,152 external-priority patent/US8579999B2/en
Priority claimed from US11/199,743 external-priority patent/US7540384B2/en
Application filed by Грейт Ривэ Энеджи filed Critical Грейт Ривэ Энеджи
Publication of RU2007116727A publication Critical patent/RU2007116727A/en
Application granted granted Critical
Publication of RU2427417C2 publication Critical patent/RU2427417C2/en

Links

Images

Abstract

FIELD: process engineering.
SUBSTANCE: invention may be used at thermal electric power stations. Proposed plant comprises material receiver, first heat source, first heat exchanger coupled with material receiver, second heat source to generate heat of another type, and second heat exchanger. Material is kept in receiver subjected to heat of first and second heat sources. Heat source means gas or fluid medium with increased heat content resulted from heat recovery at separate process plant.
EFFECT: ruling out pipeline clogging, efficient processing.
20 cl, 4 ex, 4 tbl, 37 dwg

Description

ПЕРЕКРЕСНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУCROSS REFERENCE TO RELATED APPLICATION

Настоящая заявка является частичным продолжением заявки США № 11/107,152, поданной 15.04.2005 г. с истребованием конвенционного приоритета по временной заявке № 60/618,379, поданной 12.10.2004 г., и является частичным продолжением заявки США № 11/199,838 "Установка и способ отделения и концентрирования органических и неорганических материалов", поданной 8.08.2005 г., которая является частичным продолжением заявки США № 11/107,153, поданной 15.04.2005 г. с истребованием конвенционного приоритета по временной заявке США № 60/618,379, поданной 12.10.2004 г., причем все указанные заявки полностью вводятся ссылкой в настоящую заявку.This application is a partial continuation of US application No. 11 / 107.152, filed April 15, 2005 with the claim of convention priority for provisional application No. 60 / 618,379, filed October 12, 2004, and is a partial continuation of US application No. 11 / 199,838 "Installation and A Method for Separating and Concentrating Organic and Inorganic Materials ", filed August 8, 2005, which is a partial continuation of US application No. 11 / 107,153, filed April 15, 2005, with the claim of convention priority for US provisional application No. 60 / 618,379, filed 12.10. 2004, and all of these applications p Fully entered by reference in this application.

ОБЛАСТЬ ТЕХНИКИFIELD OF TECHNOLOGY

Настоящее изобретение относится к рентабельным установкам для тепловой обработки зернистых материалов. Более конкретно, в изобретении предлагается использовать проходную сушильную установку непрерывного действия, например сушильную установку с псевдоожиженным слоем, обеспечивающую сушку таких материалов при низкой температуре с доступом атмосферного воздуха для повышения их теплосодержания или пригодности для переработки и уменьшения промышленных выбросов, прежде чем зернистый материал будет обрабатываться или сжигаться в процессе промышленного производства. Хотя такая установка может быть с высокой технической и экономической эффективностью использована во многих отраслях промышленности, однако она наилучшим образом подходит для использования на тепловых электростанциях с целью уменьшения содержания влаги в угле перед тем, как он будет сжигаться.The present invention relates to cost-effective installations for heat treatment of granular materials. More specifically, the invention proposes to use a continuous kiln dryer, for example a fluidized bed dryer, to dry such materials at low temperature with atmospheric air to increase their heat content or to be suitable for processing and reducing industrial emissions before the granular material is processed or burned during industrial production. Although such a plant can be used with high technical and economic efficiency in many industries, it is best suited for use in thermal power plants in order to reduce the moisture content in coal before it is burned.

ПРЕДПОСЫЛКИ ДЛЯ СОЗДАНИЯ ИЗОБРЕТЕНИЯBACKGROUND OF THE INVENTION

Как известно, электрическая энергия насущно необходима для жизни людей. Она может все: от привода машин и механизмов на заводах до перекачивания воды на фермах и обеспечения работы компьютеров в офисах, освещения, отопления и охлаждения во многих жилищах.As you know, electrical energy is essential for the life of people. It can do everything: from driving machines and mechanisms in factories to pumping water on farms and ensuring the operation of computers in offices, lighting, heating and cooling in many homes.

Эта электрическая энергия вырабатывается большими электростанциями, использующими энергию пара или текущей воды для вращения валов турбин, которые, в свою очередь, вращают валы электрических генераторов. В то время как некоторые электростанции работают на энергии текущей воды или на атомной энергии, около 63% электроэнергии в мире и примерно 70% электроэнергии в США производится в результате сжигания ископаемых топлив, например угля, нефти или природного газа. Такое топливо сжигается в камере сгорания на электростанции для получения тепла, используемого для преобразования воды в пар в парогенераторе. Затем получают перегретый пар и подают его в гигантские паровые турбины, в которых пар толкает лопатки турбины для вращения вала. Вращающийся вал, в свою очередь, вращает ротор электрического генератора для получения электрической энергии.This electrical energy is generated by large power plants that use the energy of steam or flowing water to rotate the shafts of turbines, which in turn rotate the shafts of electric generators. While some power plants run on flowing water or nuclear energy, about 63% of the world's electricity and about 70% of the electricity in the United States comes from the burning of fossil fuels, such as coal, oil or natural gas. Such fuel is burned in a combustion chamber at a power plant to produce heat used to convert water to steam in a steam generator. Then superheated steam is obtained and fed into giant steam turbines, in which steam pushes the turbine blades to rotate the shaft. The rotating shaft, in turn, rotates the rotor of an electric generator to produce electrical energy.

После того как пар пройдет через турбину, он поступает в конденсационную установку, где он нагревает воду, циркулирующую по трубам теплообменника. По мере охлаждения пара он конденсируется в воду, которая может быть затем возвращена в парогенератор для повторения процесса превращения воды в пар. На многих электростанциях вода, циркулирующая по трубам конденсатора и поглощающая тепло пара, подается для охлаждения в охладительный бассейн с разбрызгиванием или в градирню. Затем охлажденная вода снова поступает в контур охлаждения конденсатора или сбрасывается в озера, реки или другие водоемы.After the steam passes through the turbine, it enters the condensing unit, where it heats the water circulating through the pipes of the heat exchanger. As the steam cools, it condenses into water, which can then be returned to the steam generator to repeat the process of converting water to steam. At many power plants, the water circulating through the condenser pipes and absorbing the heat of steam is supplied for cooling to the cooling pool with spray or to the cooling tower. Then the chilled water again enters the condenser cooling circuit or is discharged into lakes, rivers or other bodies of water.

Восемьдесят девять процентов угля, добываемого в США, используется в качестве источника тепла для электростанций. В отличие от нефти и природного газа запасы угля в разведанных месторождениях достаточно велики, и его добыча рентабельна.Eighty-nine percent of US coal is used as a heat source for power plants. Unlike oil and natural gas, coal reserves in explored deposits are quite large, and its production is profitable.

Существует четыре типа природных углей: антрацит, каменный (битуминозный) уголь, полубитуминозный уголь и бурый уголь (лигнит). Хотя в принципе все четыре типа углей содержат углерод, водород, азот, кислород и серу, а также влагу, однако конкретное содержание в них указанных элементов и влаги различается в широких пределах. Например, наиболее качественные антрацитовые угли могут содержать около 98 вес.% углерода, в то время как худшие сорта бурых углей (лигнита) могут содержать всего лишь 30 вес.% углерода. В то же время содержание влаги может быть ниже 1% в антрацитовых и битуминозных углях и порядка 25-30 вес.% в полубитуминозных углях, таких как угли бассейна Паудер Ривер (Powder River), и 35-40 вес.% в лигнитах Северной Америки. Для Австралии и России уровни содержания влаги в лигнитах могут достигать 50% и 60%, соответственно. Такие полубитуминозные и бурые угли с высоким содержанием влаги обладают меньшей теплотворностью по сравнению с битуминозными и антрацитовыми углями, поскольку при их сгорании выделяется меньшее количества тепла. Кроме того, высокое содержание влаги в топливе влияет на все аспекты работы электростанции, включая КПД и выброс загрязняющих продуктов. Высокое содержание влаги приводит к значительному снижению эффективности работы парогенератора и повышению удельного расхода тепла по сравнению с более качественными углями. Высокое содержание влаги также может приводить к проблемам в таких областях, как транспортировка и погрузочно-разгрузочные операции, дробление топлива, производительность вентилятора и высокие скорости истечения топочных газов.There are four types of natural coal: anthracite, coal (bituminous) coal, semi-bituminous coal and brown coal (lignite). Although in principle all four types of coals contain carbon, hydrogen, nitrogen, oxygen and sulfur, as well as moisture, the specific content of these elements and moisture in them varies widely. For example, the highest quality anthracite coals may contain about 98 wt.% Carbon, while the worst grades of brown coals (lignite) may contain only 30 wt.% Carbon. At the same time, the moisture content can be lower than 1% in anthracite and bituminous coals and about 25-30 wt.% In semi-bituminous coals, such as the coals of the Powder River basin, and 35-40 wt.% In lignites of North America . For Australia and Russia, moisture levels in lignites can reach 50% and 60%, respectively. Such semi-bituminous and brown coals with a high moisture content have a lower calorific value compared to bituminous and anthracite coals, since less heat is generated during their combustion. In addition, the high moisture content of the fuel affects all aspects of the power plant, including efficiency and the emission of polluting products. A high moisture content leads to a significant decrease in the efficiency of the steam generator and an increase in the specific heat consumption in comparison with higher-quality coals. A high moisture content can also lead to problems in areas such as transportation and handling, fuel crushing, fan performance, and high flue gas exhaust rates.

Поэтому битуминозные угли являются типом углей, которые наиболее широко используются при производстве электрической энергии в связи с их широкой распространенностью и относительно высокой теплотворной способностью. Однако они также отличаются достаточно высоким содержанием серы. В результате ужесточившегося регулирования в области охраны окружающей среды (например. Закон о чистом воздухе (Clean Air Act), принятый в США) на электростанциях приходится устанавливать в дымовых трубах дорогостоящие газоочистительные устройства для предотвращения загрязнения воздуха сернистьм газом (SO2), окислами азота (NOx), соединениями ртути и зольной пылью, возникающими в результате сжигания этих углей.Therefore, bituminous coals are a type of coal that is most widely used in the production of electric energy due to their wide distribution and relatively high calorific value. However, they also have a fairly high sulfur content. As a result of stricter environmental regulations (e.g., the Clean Air Act of the United States), expensive gas scrubbers have to be installed in chimneys to prevent air pollution with sulfur dioxide (SO 2 ), nitrogen oxides ( NO x ), mercury compounds and fly ash resulting from the burning of these coals.

Менее качественные угли, такие как полубитуминозные и бурые угли, начали привлекать повышенное внимание как источники тепла для тепловых электростанций в связи с низким содержанием в них серы. Сжигание их в качестве топлива может облегчить соблюдение на электростанциях стандартов штатов и стандартов федерального уровня, касающихся вопросов контроля загрязнения окружающей среды. Также большое значение имеет то обстоятельство, что полубитуминозные и бурые угли составляют большую часть разведанных запасов угля в западной части США. Однако высокое содержание влаги в этих низкосортных углях снижает их теплотворность при использовании в качестве источника тепловой энергии. Кроме того, такой высокий уровень содержания влаги удорожает их транспортировку (удельные расходы в расчете на единицу теплотворности). Эти угли также создают проблемы при их использовании, поскольку они крошатся и превращаются в пыль при потере влаги, в результате чего возникают трудности с их транспортировкой и проведением погрузочно-разгрузочных работ.Lesser quality coals, such as semi-bituminous and brown coals, began to attract increased attention as heat sources for thermal power plants due to their low sulfur content. Burning them as fuel can make it easier for power plants to comply with state and federal standards regarding pollution control issues. Also of great importance is the fact that semi-bituminous and brown coals make up most of the proven coal reserves in the western part of the USA. However, the high moisture content in these low-grade coals reduces their calorific value when used as a source of thermal energy. In addition, such a high level of moisture increases the cost of their transportation (unit costs per unit of calorific value). These coals also create problems when they are used, since they crumble and turn into dust when moisture is lost, resulting in difficulties with their transportation and loading and unloading operations.

Хотя в связи с проблемами по загрязнению воздуха природный газ и дизельное топливо почти полностью заменили уголь в качестве топлива для бытовых целей, однако растущие цены на нефть и природный газ заставляют некоторые производства и службы по обеспечению зданий возвращаться к углю как к источнику тепла. В связи с более высокой теплотворной способностью каменного угля и антрацита они в общем случае являются более предпочтительными для получения тепла.Although due to problems with air pollution, natural gas and diesel fuel have almost completely replaced coal as a fuel for domestic purposes, however, rising oil and natural gas prices are causing some industries and building services to return to coal as a heat source. Due to the higher calorific value of coal and anthracite, they are generally more preferred for heat production.

Уголь также является основным компонентом для производства кокса, который используется при производстве железа и стали. Каменный уголь нагревается примерно до 2000°F в герметично закрытых печах, в которых недостаток кислорода препятствует самовозгоранию угля. При такой высокой температуре часть твердых веществ превращается в газы, а остающаяся тяжелая пенообразная масса почти чистого углерода является коксом. Многие предприятия по производству кокса входят в состав сталеплавильных заводов, на которых кокс сжигается вместе с железной рудой и известняком для превращения руды в доменный чугун, который затем перерабатывается в сталь.Coal is also the main component for the production of coke, which is used in the production of iron and steel. Coal is heated to approximately 2000 ° F in hermetically sealed furnaces in which a lack of oxygen prevents spontaneous combustion of coal. At such a high temperature, part of the solids turns into gases, and the remaining heavy foamy mass of almost pure carbon is coke. Many coke plants are part of steel mills in which coke is burned together with iron ore and limestone to turn ore into blast iron, which is then processed into steel.

Некоторые из газов, образующиеся в процессе получения кокса, при их охлаждении превращаются в жидкий аммиак и каменноугольную смолу. При дальнейшей переработке эти остаточные газы могут быть превращены в легкие фракции. Полученный аммиак, каменноугольная смола и легкие фракции могут быть использованы для производства лекарств, красок и удобрений. Каменноугольная смола сама по себе может использоваться для изготовления кровли зданий и для покрытий дорог.Some of the gases generated during the production of coke, when cooled, turn into liquid ammonia and coal tar. With further processing, these residual gases can be converted into light fractions. The resulting ammonia, coal tar and light fractions can be used for the production of medicines, paints and fertilizers. Coal tar in itself can be used for the manufacture of roofing of buildings and for paving roads.

Часть газа, полученного в процессе коксования, жидким не становится. Такой каменноугольный газ горит как природный газ и может обеспечивать тепло в процессах получения кокса и стали. Промышленность альтернативных видов топлива также разработала процессы непосредственной газификации угля без коксования. Такие процессы газификации позволяют получить газообразные и жидкие заменители бензина и дизельного топлива, обладающие высокой теплотворностью. Таким образом, существуют различные полезные применения угля кроме использования присущей ему способности давать тепло при сжигании.Part of the gas obtained during the coking process does not become liquid. Such coal gas burns as natural gas and can provide heat in the processes for producing coke and steel. The alternative fuel industry has also developed processes for direct gasification of coal without coking. Such gasification processes make it possible to obtain gaseous and liquid substitutes for gasoline and diesel fuel with high calorific value. Thus, there are various beneficial uses of coal in addition to using its inherent ability to produce heat during combustion.

В промышленности уже давно известно, что нагрев угля уменьшает содержание в нем влаги, и поэтому сушка угля повышает его ценность и теплотворную способность. Сушка угля перед его сжиганием в парогенераторах может повысить эффективность их работы.It has long been known in industry that heating coal reduces its moisture content, and therefore drying coal increases its value and calorific value. Drying coal before burning it in steam generators can increase their efficiency.

Для сушки угля могут использоваться многочисленные разработанные сушильные устройства. Например, в патенте США № 5,103,743, выданном Berg, раскрывается ротационная сушильная печь, в которой влажный уголь высушивается в пространстве, образованном оболочкой ротационной печи и кожухом, окружающем эту оболочку. Топочные газы, получаемые в ротационной печи, пропускаются вместе с влажным углем через пространство высушивания, так что тепло, излучаемое поверхностью оболочки, и тепло горячих топочных газов, используемые совместно, высушивают уголь. С другой стороны, в патенте США № 4,470,878, выданном Petrovic и др., раскрывается каскадное сушильное устройство с псевдоожиженным слоем для предварительного нагрева угля, загружаемого в установку коксования, причем уголь прогревается в результате опосредованной теплопередачи при вихревом движении смеси угля и пара. Охлаждающие газы, используемые для охлаждения горячего кокса, получаемого в коксовой печи, поступают в последовательные каскады каскадного сушильного устройства с псевдоожиженным слоем для предварительного нагрева угля.For drying coal, numerous developed drying devices can be used. For example, US Pat. No. 5,103,743 to Berg discloses a rotary kiln in which wet coal is dried in a space formed by a shell of a rotary kiln and a casing surrounding the shell. The flue gases produced in a rotary kiln are passed together with wet coal through the drying space, so that the heat emitted by the shell surface and the heat of the hot flue gases used together dry the coal. On the other hand, U.S. Patent No. 4,470,878 to Petrovic et al. Discloses a cascade fluidized bed dryer for preheating coal loaded into a coking unit, the coal being heated by indirect heat transfer during the swirling movement of a mixture of coal and steam. The cooling gases used to cool the hot coke produced in a coke oven are fed to successive stages of a cascade fluidized bed dryer for preheating coal.

Удлиненное щелевое сушильное устройство, раскрытое в патенте США № 4,617,744, выданном Siddoway и др., используется для сушки влажного распыленного материала, например угля. Уголь загружается через верх щелевидной части щелевого сушильного устройства и выводится через нижнее отверстие, взаимодействуя в противопотоке с высушивающей текучей средой, которая пропускается вниз в щелевом канале, и затем направляется вверх для взаимодействия в противопотоке с опускающимися влажными частицами. Конвейер, размещенный вдоль нижней части щелевого сушильного устройства, транспортирует высушенные частицы угля.The elongated slot drying device disclosed in US Pat. No. 4,617,744 to Siddoway et al. Is used to dry a wet atomized material, such as coal. Coal is charged through the top of the slit-like part of the slit dryer and is discharged through the bottom hole, interacting in countercurrent with a drying fluid, which is passed downward in the crevice channel, and then directed upward to interact in countercurrent with descending wet particles. A conveyor located along the bottom of the slit dryer conveys dried coal particles.

Бункерное сушильное устройство описывается в патенте США № 5,033,208, выданном Ohno и др. Это устройство содержит два цилиндра с кольцевым пространством между ними. Угольные частицы вводятся в это кольцевое пространство, и сквозь отверстия во внутреннем цилиндре пропускается горячий газ, который воздействует на частицы угля и выпускается через отверстия во внешнем цилиндре.A bunker dryer is described in US Pat. No. 5,033,208 to Ohno et al. This device contains two cylinders with an annular space between them. Coal particles are introduced into this annular space, and hot gas is passed through the holes in the inner cylinder, which acts on the coal particles and is discharged through the holes in the outer cylinder.

В патенте США № 4,606,793, выданном Petrorvic и др., раскрывается сушильное устройство с подвижным слоем для предварительного нагрева угля, подаваемого в коксовальную печь. Горячий газ или отходящие пары процесса сухого охлаждения кокса подаются в трубчатый теплообменник, размещенный внутри сушильного устройства с подвижным слоем.US Patent No. 4,606,793 issued to Petrorvic et al. Discloses a moving bed dryer for preheating coal fed to a coking oven. Hot gas or off-steam from the coke dry cooling process is fed to a tubular heat exchanger located inside a moving bed dryer.

В патенте США №4,444,129, выданном Ladt, раскрывается сушильное устройство с вибрирующим псевдоожиженным слоем, используемое для сушки угольных частиц, проходящих через сито размера 28. В сушильное устройство поступают горячие газы из горелки, работающей на угле. Рекуперативный сепаратор, размещенный между горелкой и сушильным устройством с вибрирующим псевдоожиженным слоем, удаляет золу из потока угольных частиц. Выходящие горячие газы также очищаются от мелких частиц угля, которые затем подаются для сгорания в горелке.US Pat. No. 4,444,129 to Ladt discloses a vibrating fluidized bed dryer used to dry coal particles passing through a size 28 sieve. Hot gases from a coal-fired burner enter the dryer. A recuperative separator located between the burner and the vibrating fluidized bed dryer removes ash from the stream of coal particles. Exiting hot gases are also cleaned of small particles of coal, which are then fed for combustion in the burner.

Хотя все эти сушильные устройства могут использоваться для удаления влаги из зернистого материала, например угля, однако они имеют сравнительно сложную конструкцию, им присуща невысокая эффективность теплопередачи, и как правило они лучше подходят для циклической обработки порций материала, чем для работы в непрерывном режиме. Поэтому широкое распространение в промышленности для сушки угля получили сушильные аппараты или реакторы с псевдоожиженным слоем. В таких сушильных аппаратах сжижающая среда вводится через отверстия в нижней части псевдоожиженного слоя для разделения и подъема угольных частиц для улучшения характеристик процесса сушки, Ожижающая среда может быть одновременно средой непосредственного нагрева, или же отдельный вторичный источник тепла может быть размещен внутри реактора с псевдоожиженными слоем. Угольные частицы вводятся на одной стороне реактора и перемещаются по длине слоя в псевдоожиженном состоянии. Таким образом, реакторы с псевдоожиженным слоем являются хорошим техническим решением для реализации непрерывного процесса сушки, и в них обеспечивается увеличенная поверхность контакта между каждой взвешенной частицей и высушивающей средой. См., например, патенты США: № 5,537,941, выданный Goldich; № 5,546,875, выданный Selle и др.; № 5,832,848, выданный Reynoldson и др.; № 5,830,246, 5,830,247 и № 5,858,035, выданные Dunlop; № 5,637,336, выданный KLannenberg и др.; № 5,471,955, выданный Dietz; № 4,300,291, выданный Heard и др.; и № 3,687,431, выданный Parks.Although all of these drying devices can be used to remove moisture from a granular material, such as coal, they have a relatively complex structure, they have a low heat transfer efficiency, and are generally better suited for the cyclic processing of portions of material than for continuous operation. Therefore, drying machines or fluidized bed reactors are widely used in industry for drying coal. In such dryers, a fluidizing medium is introduced through openings in the lower part of the fluidized bed to separate and lift the coal particles to improve the characteristics of the drying process. The fluidizing medium can be simultaneously a direct heating medium, or a separate secondary heat source can be placed inside the fluidized bed reactor. Coal particles are introduced on one side of the reactor and moved along the length of the bed in a fluidized state. Thus, fluidized bed reactors are a good technical solution for implementing a continuous drying process, and they provide an increased contact surface between each suspended particle and the drying medium. See, for example, US patents: No. 5,537,941, issued by Goldich; No. 5,546,875 issued by Selle et al .; No. 5,832,848 issued by Reynoldson et al .; 5,830,246, 5,830,247 and 5,858,035 issued by Dunlop; No. 5,637,336 issued by KLannenberg et al .; No. 5,471,955 issued by Dietz; No. 4,300,291 issued by Heard et al .; and No. 3,687,431 issued to Parks.

Однако во многих из этих традиционных процессов сушки используются очень высокие температуры и давления. Например, процесс Горного бюро США выполняется при давлении 1500 psig, в то время как процесс сушки, описанный в патенте США № 4,052,168, выданном Koppelman, требует давления 1000-3000 psi. Аналогично, в патенте США № 2,671,968, выданном Criner, описывается применение продувочного воздуха, имеющего температуру 538°С. Аналогично, в патенте США № 5,145,489, выданном Dunlop, раскрывается процесс для одновременного улучшения характеристик угля и нефти, причем в используемом реакторе поддерживается температура на уровне 454-566°С. См. также патенты США: № 3,434,932, выданный Mansfield (760°С - 872°С) и № 4,571,174, выданный Shelton (≤538°С).However, many of these traditional drying processes use very high temperatures and pressures. For example, the U.S. Bureau of Mining process is performed at a pressure of 1,500 psig, while the drying process described in US Pat. No. 4,052,168 to Koppelman requires a pressure of 1000-3000 psi. Similarly, US Pat. No. 2,671,968 to Criner describes the use of purge air having a temperature of 538 ° C. Similarly, US Pat. No. 5,145,489 to Dunlop discloses a process for simultaneously improving the performance of coal and oil, with the temperature being maintained at 454-566 ° C. in the reactor used. See also US patents: No. 3,434,932, issued by Mansfield (760 ° C - 872 ° C) and No. 4,571,174, issued by Shelton (≤538 ° C).

Использование таких высоких температур для высушивания или иной обработки угля требует больших расходов энергии, больших капитальных вложений и высоких затрат на эксплуатацию, что может сделать экономически невыгодным использование низкосортных углей. Кроме того, проведение процесса высушивания при повышенной температуре создает дополнительный поток загрязняющих веществ, который надо обрабатывать. Следующим обстоятельством, усложняющим экономическую ситуацию в этом вопросе, является то, что известные процессы сушки угля часто основывались на сжигании ископаемых топлив, таких как уголь, нефть или природный газ для обеспечения источника тепла, используемого для улучшения теплотворной способности угля, который должен высушиваться. См., например, патенты США: № 4,533,438, выданный Michael и др.; № 4,145,489, выданный Dunlop; № 4,324,544, выданный Blake; № 4,192,650, выданный Seitzer; № 4,444,129, выданный Ladt; и № 5,103,743, выданный Berg. В некоторых случаях этот сжигаемый источник тепла может представлять угольную мелочь, отделенную и утилизированную в процессе сушки угля. См., например, патенты США: № 5,322,530, выданный Merriam и др.; № 4,280,418, выданный Erhard; и № 4,240,877, выданный Stahlherm и др.The use of such high temperatures for drying or other processing of coal requires large energy expenditures, large capital investments and high operating costs, which can make it economically disadvantageous to use low-grade coal. In addition, the drying process at elevated temperatures creates an additional stream of pollutants that must be processed. Another circumstance complicating the economic situation in this matter is that known coal drying processes were often based on the burning of fossil fuels such as coal, oil or natural gas to provide a heat source used to improve the calorific value of the coal to be dried. See, for example, US Patents: No. 4,533,438 issued by Michael et al .; No. 4,145,489 issued by Dunlop; No. 4,324,544 issued by Blake; No. 4,192,650 issued by Seitzer; No. 4,444,129 issued by Ladt; and No. 5,103,743 issued by Berg. In some cases, this combustible heat source may be coal fines separated and disposed of during the drying of coal. See, for example, US Patents: No. 5,322,530 issued to Merriam et al .; No. 4,280,418 issued by Erhard; and No. 4,240,877 issued by Stahlherm et al.

Поэтому предпринимались попытки разработать процессы сушки угля, которые осуществлялись бы при пониженных температурах. Например, в патенте США № 3,985,516, выданном Johnson, раскрывается процесс сушки низкосортного угля, в котором в качестве средства высушивания используется нагретый инертный газ в псевдоожиженном слое с температурой в диапазоне 204-260°С. В патенте США № 4,810,258, выданном Greene, раскрывается использование перегретой газообразной высушивающей среды для нагрева угля до температуры 300-450°F, хотя предпочтительная температура равна 455°С, и давление равно 0,541 psi. См. также патенты США: № 4,436,589 и 4,431,585, выданные Petrovic и др. (200°С); № 4,338,160, выданный Dellessard и др. (250-650°С); № 4,495,710, выданный Ottoson (204-483°С); №5.527,365, выданный Coleman и др. (150-300°С); № 5,547,549, вьщанный Fracas (259-316°С); № 5,858,035, выданный Dunlop; и № 5,904,741 и № 6,162,265, выданный Dunlop и др. (248-316°С).Therefore, attempts were made to develop coal drying processes that would be carried out at low temperatures. For example, US Patent No. 3,985,516, issued to Johnson, discloses a process for drying low-grade coal, in which a heated inert gas in a fluidized bed with a temperature in the range of 204-260 ° C. is used as a drying means. US Patent No. 4,810,258 issued to Greene discloses the use of an overheated gaseous drying medium for heating coal to a temperature of 300-450 ° F., although a preferred temperature is 455 ° C. and a pressure of 0.541 psi. See also US patents: Nos. 4,436,589 and 4,431,585 issued by Petrovic et al. (200 ° C); No. 4,338,160 issued by Dellessard et al. (250-650 ° C); No. 4,495,710 issued by Ottoson (204-483 ° C); No. 5,527,365 issued by Coleman et al. (150-300 ° C); No. 5,547,549, framed by Fracas (259-316 ° C); No. 5,858,035 issued by Dunlop; and No. 5,904,741 and No. 6,162,265 issued by Dunlop et al. (248-316 ° C.).

В нескольких известных процессах сушки угля используются еще более низкие температуры, хотя степень высушивания в них угля обеспечивается в ограниченных пределах. Например, в патенте США № 5,830,247, выданном Dunlop, раскрывается процесс для подготовки необратимо высушенного угля, в котором используется первый реактор с псевдоожиженным слоем с плотностью псевдоожиженного слоя, равной 20-40 фунт/фут3, причем уголь с содержанием влаги 15-30 вес.%, кислорода 10-20% и с размером частиц 0-2 дюйма подвергается действию температуры 66-149°С в течение 1-5 минут для одновременного измельчения и сушки угля. Затем уголь подается во второй реактор с псевдоожиженным слоем, в котором он покрывается минеральным маслом и подвергается действию температуры 248-316°С в течение 1-5 минут для дальнейшего измельчения и высушивания продукта. Таким образом, ясно, что этот процесс не только применяется к углям, имеющим относительно невысокое содержание влаги (а именно 15-30%), но также частицы угля только частично обезвоживаются в первом реакторе с псевдоожиженным слоем, работающим при температуре 66-149°С, и действительное высушивание происходит во втором реакторе с псевдоожиженным слоем, который работает при повышенных температурах 248-316°С слоя.Several well-known coal drying processes use even lower temperatures, although the degree of drying of coal in them is provided to a limited extent. For example, US Pat. No. 5,830,247 to Dunlop discloses a process for preparing irreversibly dried coal using a first fluidized bed reactor with a fluidized bed density of 20-40 lb / ft 3 , with coal having a moisture content of 15-30 weight %, oxygen 10-20% and with a particle size of 0-2 inches is exposed to a temperature of 66-149 ° C for 1-5 minutes for simultaneous grinding and drying of coal. Then the coal is fed into a second fluidized bed reactor, in which it is coated with mineral oil and exposed to a temperature of 248-316 ° C for 1-5 minutes for further grinding and drying of the product. Thus, it is clear that this process is not only applied to coals having a relatively low moisture content (namely 15-30%), but also coal particles are only partially dehydrated in the first fluidized bed reactor operating at a temperature of 66-149 ° C. and actual drying takes place in a second fluidized bed reactor that operates at elevated temperatures of 248-316 ° C. of the bed.

Аналогично, в патенте США № 6,447,559, выданном Hunt, раскрывается процесс обработки угля в атмосфере инертного газа для повышения качества угля путем его нагревания сначала до температуры 93-122°С для удаления поверхностной влаги, и последующего нагревания с постепенным повышением температуры шагами 204-399°С, 482-594°С, 704-844°С и 1093-1316°С для удаления влаги, содержащейся в порах частиц угля, для получения угля с содержанием влаги и летучих компонентов не более 2 вес.% и 15 вес.%, соответственно. Так же, как и в предыдущем случае, ясно, что на первоначальной стадии нагрева до температуры 93-122°С обеспечивается лишь ограниченное высушивание частиц угля.Similarly, US Patent No. 6,447,559 issued to Hunt discloses a process for treating coal in an inert gas atmosphere to improve the quality of coal by first heating it to a temperature of 93-122 ° C to remove surface moisture, and then heating it with a gradual increase in temperature in steps of 204-399 ° C, 482-594 ° C, 704-844 ° C and 1093-1316 ° C to remove moisture contained in the pores of coal particles, to obtain coal with a moisture content and volatile components of not more than 2 wt.% And 15 wt.% , respectively. As in the previous case, it is clear that at the initial stage of heating to a temperature of 93-122 ° C, only limited drying of the coal particles is provided.

Одной из проблем, связанных с использованием для сушки угля реакторов с псевдоожиженным слоем, является возникновение больших количеств мелких частиц, захваченных ожижающей средой. В частности, при высоких рабочих температурах может происходить самовозгорание этих частиц, в результате чего может произойти взрыв. Поэтому во многих известных процессах сушки угля для предотвращения загорания прибегают к использованию инертных псевдоожижающих газов, замещающих воздух. В качестве такого инертного газа может использоваться азот, двуокись углерода и пар. См., например, патенты США: № 3,090,131, выданный Waterman, мл.; № 4,431,485, выданный Petrovic и др.; № 4,300,291 и № 4,236,318, выданный Heard и др.; № 4,292,742, выданный Ekberg; № 4,176,011, выданный Knappstein; № 5,087,269, выданный Cha и др.; № 4,468,288, выданный Galow и др.; № 5,327,717, выданный Hauk; № 6,447,559, выданный Hunt; и № 5,904,741, выданный Dunlop и др. В патенте США № 5,527,365, выданном Coleman и др., предлагается способ высушивания низкосортных углеродсодержащих топлив, например угля, в "мягкой восстановительной среде", что достигается использованием таких инертных газообразных низших алканов, как пропан или метан. В некоторых других известных процессах используется несколько нагретых потоков ожижающей среды, температуры которых последовательно понижаются, по мере того как уголь проходит по длине псевдоожиженного слоя реактора, для обеспечения необходимого охлаждения угля для предотвращения взрыва. См., например, патенты США: № 4,571,174, выданный Shelton; и № 4,493,157, выданный Wicker.One of the problems associated with the use of fluidized bed reactors for drying coal is the occurrence of large quantities of small particles entrained in a fluidizing medium. In particular, at high operating temperatures, spontaneous combustion of these particles can occur, resulting in an explosion. Therefore, in many known coal drying processes, inert fluidizing gases that replace air are used to prevent tanning. Nitrogen, carbon dioxide and steam may be used as such an inert gas. See, for example, US patents: No. 3,090,131, issued by Waterman, ml .; No. 4,431,485 issued by Petrovic et al .; No. 4,300,291 and No. 4,236,318 issued by Heard et al .; No. 4,292,742 issued by Ekberg; No. 4,176,011 issued by Knappstein; No. 5,087,269 issued by Cha et al .; No. 4,468,288 issued by Galow et al .; No. 5,327,717 issued by Hauk; No. 6,447,559 issued by Hunt; and No. 5,904,741 issued by Dunlop et al. US Pat. No. 5,527,365 issued to Coleman et al. proposes a method for drying low-grade carbon-containing fuels, such as coal, in a “mild reducing medium,” which is achieved by using inert gaseous lower alkanes such as propane or methane. In some other known processes, several heated fluidizing fluid streams are used, the temperatures of which gradually decrease as the coal passes along the length of the fluidized bed of the reactor to provide the necessary cooling of the coal to prevent explosion. See, for example, US Pat. Nos. 4,571,174 to Shelton; and No. 4,493,157 issued by Wicker.

Еще одной проблемой, с которой столкнулась промышленность при осуществлении процессов сушки угля, является природная склонность угля к повторной абсорбции влаги при обычных условиях хранения после выполнения процесса сушки. Поэтому предпринимались попытки покрывать поверхность частиц высушенного угля минеральным маслом или каким-либо другим углеводородным продуктом для формирования барьера, защищающего от проникновения влаги в поры частиц угля. См., например, патенты США: № 5,830,246 и № 5,858,035, выданные Dunlop; № 3,985,516, выданный Johnson.; и № 4,705,533 и № 4,800,015, выданные Simmons.Another problem that the industry encountered in carrying out coal drying processes is the natural tendency of coal to reabsorb moisture under normal storage conditions after the drying process. Therefore, attempts have been made to coat the surface of the dried coal particles with mineral oil or some other hydrocarbon product to form a barrier that protects against the penetration of moisture into the pores of the coal particles. See, for example, US patents: No. 5,830,246 and No. 5,858,035 issued by Dunlop; No. 3,985,516 issued by Johnson .; and No. 4,705,533 and No. 4,800,015 issued by Simmons.

Для того чтобы повысить экономичность процессов сушки низкосортных углей, в качестве дополнения к первичному источнику тепла, сжигаемому топливу, используются потоки отработанного тепла. См, патент США № 5,322,530, выданный Merriam и др. Это в особенности справедливо для производства коксующегося угля, где охлаждающий газ, нагретый горячим коксом, может быть использован повторно для нагрева осушающего газа в теплообменнике. См., например, патенты США: № 4,053,364, выданный Poersch; № 4,308,102, выданный Wagener и др.; № 4,338,160, выданный Dellessard и др.; № 4,354,903, выданный Weber и др.; № 3,800,427, выданный Kemmetmueller; № 4,533,438, выданный Michael и др.; и № 4,606,793 и № 4,431,485, выданный Petrovic и др. Аналогично, в качестве дополнительного источника тепла для теплообменника, размещенного внутри реактора с псевдоожиженным слоем для сушки угля, использовались топочные газы печей с псевдоожиженным слоем. См., например, патенты США: № 5,537,941, выданный Goldich; и № 5,327,717, выданный Hauk. В патенте США № 5,103,743, выданном Berg, раскрывается способ сушки твердых материалов, таких как влажный уголь, в ротационной сушильной печи, в которой высушиваемый материал газифицируется для получения горячих газов, которые затем используются в качестве источника тепла для радиационных нагревателей, используемых для высушивания материала внутри печи. В патенте США № 4,284,476, выданном Wagener и др., дымовые газы из установки по получению металла пропускаются через горячий кокс в процессе производства кокса для его охлаждения, в результате чего дымовые газы нагреваются и затем используются для предварительного нагрева подаваемого влажного угля перед его преобразованием в кокс.In order to increase the efficiency of low-grade coal drying processes, waste heat flows are used as an addition to the primary heat source, combusted fuel. See, U.S. Patent No. 5,322,530 to Merriam et al. This is especially true for coking coal production, where hot coke-cooled cooling gas can be reused to heat the drying gas in a heat exchanger. See, for example, US Patents: No. 4,053,364, issued by Poersch; No. 4,308,102 issued by Wagener et al .; No. 4,338,160 issued by Dellessard et al .; No. 4,354,903 issued by Weber et al .; No. 3,800,427 issued by Kemmetmueller; No. 4,533,438 issued by Michael et al .; and No. 4,606,793 and No. 4,431,485 issued by Petrovic et al. Similarly, the flue gases of fluidized bed furnaces were used as an additional heat source for a heat exchanger placed inside a fluidized bed reactor for coal drying. See, for example, US patents: No. 5,537,941, issued by Goldich; and No. 5,327,717 issued by Hauk. US Pat. No. 5,103,743 to Berg discloses a method for drying solid materials, such as wet coal, in a rotary kiln in which the material to be dried is gasified to produce hot gases, which are then used as a heat source for radiation heaters used to dry the material inside the oven. In U.S. Patent No. 4,284,476 to Wagener et al., Flue gases from a metal production plant are passed through hot coke during coke production to cool it, whereby the flue gases are heated and then used to preheat the wet coal feed before converting it to coke.

Однако, похоже, ни в одном из известных процессов поток отработанного тепла не используется в качестве единственного источника тепла для сушки угля. Такой поток используется лишь в качестве дополнения к первичному источнику тепла, которым остается сжигание ископаемого топлива, например угля, нефти или природного газа. Отчасти это обусловливается относительно высокими температурами, используемыми для высушивания материалов в этих известных сушильных установках и в соответствующих способах. Таким образом, экономическая эффективность процессов сушки продуктов из угля продолжает ограничиваться необходимостью сжигать ископаемые топлива для высушивания ископаемого топлива (а именно угля) для повышения его теплотворной способности с целью использования в парогенераторе промышленной установки (например, тепловой электростанции).However, it seems that in none of the known processes the waste heat stream is used as the only heat source for drying coal. Such a stream is used only as an addition to the primary heat source, which remains the burning of fossil fuels, such as coal, oil or natural gas. This is partly due to the relatively high temperatures used to dry the materials in these known drying plants and in the corresponding processes. Thus, the economic efficiency of the drying of coal products continues to be limited by the need to burn fossil fuels to dry fossil fuels (namely coal) in order to increase its calorific value in order to use an industrial installation (for example, a thermal power plant) in a steam generator.

Кроме того, во многих известных сушильных установках с псевдоожиженным слоем может происходить забивание (засорение), поскольку более крупные и более плотные частицы угля оседают на дне установки и затрудняют создание псевдоожиженного слоя из остальных частиц. Конденсация в верхней части сушильной установки также может вызывать агломерацию частиц и их падение в нижнюю часть, что усугубляет проблему засорения. По этой причине многие из известных сушильных установок с псевдоожиженным слоем имеют вертикальную конструкцию или же выполняются в форме нескольких каскадов с входными потоками среды псевдоожижения, направленными на создание улучшенных схем псевдоожижения для частиц угля, введенных в сушильную установку.In addition, clogging (clogging) can occur in many known fluidized bed dryers, since larger and denser coal particles settle at the bottom of the unit and make it difficult to create a fluidized bed of the remaining particles. Condensation at the top of the dryer can also cause particles to agglomerate and fall to the bottom, which aggravates the clogging problem. For this reason, many of the known fluidized bed dryers have a vertical design or are in the form of several stages with fluidization fluid inlet streams aimed at creating improved fluidization schemes for coal particles introduced into the drying plant.

Было бы желательно осуществлять процесс в сушильной установке, такой как сушилка с псевдоожиженным слоем, при пониженных температурах, ниже 300°F, что могло бы исключить необходимость в подавлении самовозгорания частиц угля внутри установки. Кроме того, введение внутрь сушильной установки с псевдоожиженным слоем механических средств для физического отделения и удаления более крупных и более плотных частиц угля из зоны псевдоожиженного слоя и устранения конденсации вокруг частиц могло бы исключить проблемы, связанные с засорением, которые могут снижать эффективность работы сушильной установки. Сушка угля перед его введением в печь парогенератора должна повысить экономическую эффективность использования низкосортных углей, таких как полубитуминозные и бурые угли. Такие низкосортные угли могли бы стать конкурентоспособными видами топлива для тепловых электростанций по сравнению с традиционно используемыми антрацитовыми и битуминозными углями. Экономичное использование полубитуминозных и бурых углей, имеющих пониженное содержание серы, а также удаление из угля вредных компонентов, вызывающих загрязнение внешней среды, было бы в высшей степени выгодным с точки зрения охраны окружающей среды.It would be desirable to carry out the process in an oven, such as a fluidized bed dryer, at lower temperatures below 300 ° F, which would eliminate the need to suppress spontaneous combustion of coal particles inside the plant. In addition, introducing mechanical means into the fluidized bed dryer to physically separate and remove larger and denser particles of coal from the fluidized bed zone and to eliminate condensation around the particles would eliminate clogging problems that could reduce the efficiency of the dryer. Drying the coal before introducing it into the steam generator furnace should increase the economic efficiency of using low-grade coal, such as semi-bituminous and brown coal. Such low-grade coals could become competitive fuels for thermal power plants in comparison with the traditionally used anthracite and bituminous coals. The economical use of semi-bituminous and brown coals having a low sulfur content, as well as the removal of harmful components from coal that cause environmental pollution, would be highly beneficial from the point of view of environmental protection.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯSUMMARY OF THE INVENTION

В изобретении предлагается установка для тепловой обработки или иного улучшения характеристик зернистых материалов, которая используется в качестве одного из основных компонентов производственного процесса промышленного предприятия и в которой обеспечивается предотвращение засорения. Такие зернистые материалы могут включать топлива, сжигаемые в производственных процессах промышленных предприятий, или сырьевые материалы, используемые для получения готовых продуктов при осуществлении производственного процесса. Хотя это не так существенно, такая установка тепловой обработки предпочтительно нагревается одним или несколькими источниками отработанного тепла, имеющимися внутри работающего промышленного предприятия. Такие источники отработанного тепла могут включать, в частности, горячую воду охлаждения конденсатора, горячие топочные или дымовые газы, отработанный производственный пар из контура турбины и другие производственные потоки с повышенным теплосодержанием. Таким образом, предлагаемая в изобретении установка обеспечивает более экономичную тепловую обработку зернистого материала, в результате чего становится возможным использование низкосортных (например, с повышенной влажностью) материалов, которые иначе не могли бы составить конкуренцию традиционным материалам, используемым на промышленных предприятиях.The invention provides an apparatus for heat treatment or other improvement of the characteristics of granular materials, which is used as one of the main components of the production process of an industrial enterprise and in which clogging is prevented. Such granular materials may include fuels burned in the production processes of industrial enterprises, or raw materials used to produce finished products in the production process. Although this is not so significant, such a heat treatment plant is preferably heated by one or more sources of waste heat available within a working industrial plant. Such waste heat sources may include, but are not limited to, hot condenser cooling water, hot flue or flue gases, waste production steam from a turbine circuit, and other heat-producing production streams. Thus, the installation proposed in the invention provides a more economical heat treatment of the granular material, as a result of which it becomes possible to use low-grade (for example, with high humidity) materials, which otherwise could not compete with traditional materials used in industrial enterprises.

Хотя изобретение может быть использовано во многих отраслях промышленности, однако в иллюстративных целях оно описывается в заявке в отношении традиционной тепловой электростанции, работающей на угле, где удаление влаги из угля в сушильной установке необходимо для повышения теплотворной способности угля и, соответственно, увеличения эффективности работы парогенератора электростанции. Высушивание угля с помощью предложенной установки может способствовать использованию низкосортных углей, например бурых и полубитуминозных. Уменьшение содержания влаги в угле независимо от того, является он высокосортным или низкосортным, позволяет также улучшить рабочие характеристики.Although the invention can be used in many industries, however, for illustrative purposes, it is described in the application for a traditional coal-fired thermal power plant, where moisture removal from coal in a drying plant is necessary to increase the calorific value of coal and, accordingly, increase the efficiency of the steam generator power plants. Drying coal using the proposed installation can facilitate the use of low-grade coal, for example brown and semi-bituminous. Reducing the moisture content of coal, regardless of whether it is high-grade or low-grade, can also improve performance.

Стоит заметить, что нет необходимости в полном высушивании угля, используемого в качестве топлива, для того чтобы было экономически выгодно использовать его в парогенераторах тепловых электростанций. Вместо этого, используя имеющиеся источники отработанного тепла для высушивания угля в достаточной степени, можно существенно повысить эффективность работы парогенератора, одновременно поддерживая производственные затраты на уровне, обеспечивающем рентабельность процесса. Таким образом, обеспечивается действительный экономический выигрыш для оператора электростанции. Снижение уровня влаги в бурых углях возможно с типичных 39-60% до 10% и даже ниже, хотя предпочтительным является уровень 27-32%. Этот предпочтительный уровень определяется способностью парогенератора по теплопередаче.It is worth noting that there is no need to completely dry the coal used as fuel in order to be economically profitable to use it in steam generators of thermal power plants. Instead, using existing sources of waste heat to dry the coal to a sufficient degree, it is possible to significantly increase the efficiency of the steam generator, while maintaining production costs at a level that ensures the profitability of the process. Thus, a real economic gain is ensured for the operator of the power plant. Reducing the moisture level in brown coals is possible from typical 39-60% to 10% and even lower, although the level of 27-32% is preferred. This preferred level is determined by the heat transfer ability of the steam generator.

Хотя предлагаемая в изобретении установка тепловой обработки нацелена на использование имеющихся источников отработанного тепла, таких как отработанный пар из контура паровой турбины, топочные газы, выбрасываемые предприятием, или горячая вода охлаждения конденсатора, для снижения уровня влажности или для другой технологической стадии, однако необходимо понимать, что вместе с источниками отработанного тепла может использоваться первичный источник тепла, получаемого сжиганием топлива, для достижения необходимого результата наиболее экономичным образом. В большинстве случаев, тепла, получаемого из первичного источника, будет использоваться гораздо меньше, чем отработанного тепла.Although the heat treatment plant proposed in the invention is aimed at using available sources of waste heat, such as exhaust steam from the steam turbine circuit, flue gases emitted by the enterprise, or condenser cooling hot water to reduce the humidity level or for another technological stage, it must be understood that together with the sources of waste heat, a primary source of heat obtained by burning fuel can be used to achieve the desired result most e economical way. In most cases, the heat received from the primary source will be used much less than the waste heat.

В настоящем изобретении могут использоваться сушильные установки с псевдоожиженным и неподвижным слоем, как одноступенчатые, так и многоступенчатые, для предварительной сушки и последующей очистки материала перед тем, как он используется в технологическом процессе промышленного предприятия, хотя могут использоваться и другие известные типы сушильных установок. Кроме того, такой процесс сушки осуществляется при низкой температуре в открытом контуре (без герметизации), что позволяет снизить производственные затраты для промышленного предприятия. Температура осуществления процесса сушки предпочтительно поддерживается ниже 300°F и более предпочтительно в диапазоне 200-300°F. В соответствии с настоящим изобретением часть горячей охлаждающей воды охлаждения конденсатора, выходящая из конденсатора, могла бы отбираться и использоваться для подогрева воздуха, подаваемого в воздухоподогреватель, для получения эффекта "теплового усилителя".The present invention can use fluidized bed and fixed bed dryers, both single-stage and multi-stage, for pre-drying and subsequent cleaning of the material before it is used in the industrial process, although other known types of drying systems can be used. In addition, such a drying process is carried out at a low temperature in an open circuit (without sealing), which allows to reduce production costs for an industrial enterprise. The temperature of the drying process is preferably kept below 300 ° F and more preferably in the range of 200-300 ° F. In accordance with the present invention, a portion of the hot cooling water of the condenser cooling exiting the condenser could be selected and used to preheat the air supplied to the air preheater to obtain a “thermal amplifier” effect.

Предлагаемая в изобретении установка тепловой обработки также содержит транспортирующее средство, например винтовой шнек, размещенное внутри сушильной установки для перемещения к одной ее стороне или удаления за ее пределы более крупных и более плотных частиц ("тяжелые частицы") зернистого материала, которые иначе могли бы затруднять поддержание непрерывного потока зернистого материала через сушильную установку с псевдоожиженным слоем или забивать (засорять) ее. Удаление таких тяжелых частиц может повысить эффективность работы сушильной установки и легко может быть осуществлено в первой ступени многоступенчатой установки.The heat treatment unit according to the invention also comprises a conveying means, for example a screw auger, placed inside the dryer to move to its side or to remove larger and denser particles (“heavy particles”) of granular material that could otherwise make it difficult maintaining a continuous flow of granular material through a fluidized bed dryer or clogging (clogging) it. Removing such heavy particles can increase the efficiency of the drying unit and can easily be done in the first stage of a multi-stage unit.

В настоящем изобретении также предлагается система для удаления из угля зольной пыли, серы, материалов, содержащих ртуть, и других вредных загрязняющих веществ с использованием возможностей псевдоожиженных слоев по выделению и сортировке материалов, в отличие от используемых систем, в которых удаление загрязняющих веществ осуществляется после того, как уголь сжигается. Удаление таких загрязняющих веществ до сжигания угля исключает возможность нанесения вреда окружающей среде, который может быть вызван загрязняющими веществами производственных процессов предприятия, и к числу ожидаемых выигрышей относятся: низкий уровень выброса вредных веществ, уменьшение количества подаваемого угля, уменьшение потребления энергии вспомогательным оборудованием предприятия, уменьшение количества используемой воды, снижение расходов на техническое обслуживание, связанное с эрозией металла и с другими факторами, и снижение капитальных расходов, связанных с установкой оборудования, необходимого для извлечения этих загрязняющих веществ из топочных газов.The present invention also provides a system for removing fly ash, sulfur, mercury-containing materials and other harmful pollutants from coal using fluidized bed separation and sorting capabilities, as opposed to systems in which pollutants are subsequently removed how coal is burned. Removing such pollutants before burning coal eliminates the possibility of harm to the environment that may be caused by pollutants in the production processes of the enterprise, and the expected benefits include: low emissions of harmful substances, reduction in the amount of coal supplied, reduction in energy consumption by auxiliary equipment of the enterprise, reduction the amount of water used, reducing maintenance costs associated with metal erosion and other factors, lower capital costs associated with the installation of equipment needed to extract these contaminants from the flue gases.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙBRIEF DESCRIPTION OF THE DRAWINGS

На прилагаемых чертежах представлено следующее.The accompanying drawings show the following.

Фигура 1 - упрощенная схема, иллюстрирующая работу тепловой электростанции, в которой в качестве источника энергии используется уголь.Figure 1 is a simplified diagram illustrating the operation of a thermal power plant in which coal is used as an energy source.

Фигура 2 - схема модернизированной тепловой электростанции, работающей на угле, в которой для повышения эффективности работы парогенератора используются топочные газы и потоки отработанного тепла паровой турбины.Figure 2 is a diagram of a modernized coal-fired thermal power plant in which flue gases and waste heat flows from a steam turbine are used to increase the efficiency of the steam generator.

Фигура 3 - вид предлагаемой в настоящем изобретении сушильной установки с псевдоожиженным слоем и относящегося к ней оборудования для транспортировки угля и подачи горячего воздуха, используемого для создания псевдоожиженного слоя.Figure 3 is a view of a fluidized bed drying apparatus of the present invention and related equipment for transporting coal and supplying hot air used to create a fluidized bed.

Фигура 4 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 4 is a diagram of a single-stage fluidized bed dryer in accordance with the present invention.

Фигура 5 - вид в плане распределительной пластины для сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.5 is a plan view of a distribution plate for a fluidized bed dryer in accordance with the present invention.

Фигура 6 - вид в плане другого варианта распределительной пластины для сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.6 is a plan view of another embodiment of a distribution plate for a fluidized bed dryer in accordance with the present invention.

Фигура 7 - вид сечения распределительной пластины по линии 7-7 фигуры 6.Figure 7 is a sectional view of the distribution plate along the line 7-7 of figure 6.

Фигура 8 - вид в плане распределительной пластины, представленной на фигуре 6, содержащей винтовой шнек.Figure 8 is a plan view of the distribution plate shown in Figure 6 containing a screw auger.

Фигура 9 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется первичный источник тепла для опосредованного подогрева воздуха, используемого для создания псевдоожиженного слоя и сушки угля.Figure 9 is a diagram of a single-stage fluidized bed dryer in accordance with the present invention, which uses a primary heat source for indirect heating of air used to create a fluidized bed and drying coal.

Фигура 10 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется отработанное тепло производственного процесса для опосредованного подогрева воздуха, используемого для создания псевдоожиженного слоя и сушки угля.Figure 10 is a diagram of a single-stage fluidized bed dryer in accordance with the present invention, which uses the waste heat of the production process to indirectly heat the air used to create the fluidized bed and to dry the coal.

Фигура 11 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется сочетание отработанного тепла производственного процесса для подогрева воздуха, используемого для создания псевдоожиженного слоя угля (опосредованный нагрев), и горячей охлаждающей воды конденсатора, пропускаемой через теплообменник, размещенный внутри сушильной установки с псевдоожиженным слоем для сушки угля (непосредственный нагрев).Figure 11 is a diagram of a single-stage fluidized bed dryer in accordance with the present invention, which uses a combination of waste heat from a production process to heat the air used to create a fluidized bed of coal (indirect heating) and hot condenser cooling water passed through a heat exchanger placed inside a fluid bed dryer for coal drying (direct heating).

Фигура 12 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется сочетание отработанного тепла производственного процесса для подогрева воздуха, используемого для создания псевдоожиженного слоя угля (опосредованный нагрев), и горячего пара, отобранного из контура паровой турбины и пропускаемого через теплообменник, размещенный внутри сушильной установки с псевдоожиженным слоем для сушки угля (непосредственный нагрев).Figure 12 is a diagram of a single-stage fluidized-bed dryer in accordance with the present invention, which uses a combination of waste heat from a production process to heat the air used to create a fluidized bed of coal (indirect heating) and hot steam taken from a steam turbine circuit and passed through a heat exchanger located inside a fluidized-bed dryer for coal drying (direct heating).

Фигура 13 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется отработанное тепло производственного процесса как для подогрева воздуха, используемого для создания псевдоожиженного слоя угля (опосредованный нагрев), так и для нагрева жидкого теплоносителя, циркулирующего в теплообменнике, размещенном внутри сушильной установки с псевдоожиженным слоем для сушки угля (опосредованный нагрев).Figure 13 is a diagram of a single-stage fluidized-bed dryer in accordance with the present invention, which uses the waste heat of the production process both to heat the air used to create the fluidized bed of coal (indirect heating) and to heat the liquid coolant circulating in the heat exchanger, placed inside a fluidized-bed dryer for coal drying (indirect heating).

Фигура 14 - схема одноступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется горячие топочные газы, отбираемые из дымовой трубы печи предприятия как для подогрева воздуха, используемого для создания псевдоожиженного слоя угля (опосредованный нагрев), так и для нагрева жидкого теплоносителя, циркулирующего в теплообменнике, размещенном внутри сушильной установки с псевдоожиженным слоем для сушки угля (опосредованный нагрев).Figure 14 is a diagram of a single-stage fluidized bed dryer in accordance with the present invention, which uses hot flue gases taken from the chimney of an enterprise furnace both for heating air used to create a fluidized bed of coal (indirect heating) and for heating liquid coolant circulating in a heat exchanger placed inside a fluidized-bed dryer for coal drying (indirect heating).

Фигура 15 - схема двухступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 15 is a diagram of a two-stage fluidized bed dryer in accordance with the present invention.

Фигура 16 - схема двухступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, в которой используется отработанное тепло производственных процессов предприятия для подогрева воздуха, используемого для создания псевдоожиженного слоя угля в обеих камерах сушильной установки (опосредованный нагрев), и горячая вода охлаждения конденсатора, пропускаемая через теплообменники, размещенные внутри обеих камер сушильной установки с псевдоожиженным слоем для сушки угля (непосредственный нагрев).Figure 16 is a diagram of a two-stage fluidized bed dryer in accordance with the present invention, which uses the waste heat of production processes of the enterprise to heat the air used to create a fluidized bed of coal in both chambers of the dryer (indirect heating), and hot condenser cooling water, passed through heat exchangers located inside both chambers of a fluidized bed dryer for coal drying (direct heating).

Фигура 17 - вид сбоку нагревательного змеевика, используемого внутри псевдоожиженного слоя сушильной установки.Figure 17 is a side view of a heating coil used inside a fluidized bed of a dryer.

Фигура 18 - вид сечения нагревательного змеевика по линии 18-18 фигуры 17.Figure 18 is a sectional view of a heating coil along the line 18-18 of figure 17.

Фигура 19 - вид сбоку регулируемой перегородки первой ступени сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 19 is a side view of an adjustable partition of a first stage of a fluidized bed dryer in accordance with the present invention.

Фигура 20 - вид сбоку регулируемой перегородки второй ступени сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 20 is a side view of an adjustable partition of a second stage of a fluidized bed dryer in accordance with the present invention.

Фигура 21 - вид сбоку рассеивающей трубы, используемой внутри сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 21 is a side view of a scattering pipe used inside a fluidized bed dryer in accordance with the present invention.

Фигура 22 - вид с торца сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 22 is an end view of a fluidized bed dryer in accordance with the present invention.

Фигура 23 - схема одного из вариантов осуществления сушильной установки с неподвижным слоем.Figure 23 is a diagram of one embodiment of a fixed bed dryer.

Фигура 24 - схема двухступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением, которая интегрирована в тепловую электростанцию и в которой горячая вода охлаждения конденсатора используется для нагрева угля в первой ступени сушильной установки и нагрева воздуха, используемого для создания псевдоожиженного слоя угля в обеих ступенях сушильной установки. Горячая вода охлаждения конденсатора в сочетании с горячими топочными газами высушивает уголь во второй ступени сушильной установки.24 is a diagram of a two-stage fluidized bed dryer in accordance with the present invention, which is integrated in a thermal power plant and in which condenser hot water is used to heat coal in the first stage of the dryer and to heat the air used to create a fluidized bed of coal in both stages drying unit. The condenser cooling water in combination with hot flue gases dries the coal in the second stage of the drying unit.

Фигуры 25а и 25b - виды в перспективе с вырезом скруббера, используемого для удаления тяжелых частиц из сушильной установки с псевдоожиженным слоем.Figures 25a and 25b are perspective views of a cut-out scrubber used to remove heavy particles from a fluidized bed dryer.

Фигура 26 - вид в перспективе с вырезом скруббера, содержащего распределительную пластину для создания псевдоожиженного слоя зернистого материала внутри скруббера.Figure 26 is a perspective view with a cut-out of a scrubber containing a distribution plate for creating a fluidized bed of granular material inside the scrubber.

Фигура 27 - вид в перспективе другого варианта осуществления скруббера в соответствии с настоящим изобретением.Figure 27 is a perspective view of another embodiment of a scrubber in accordance with the present invention.

Фигура 28 - вид в плане скруббера, представленного на фигуре 27.Figure 28 is a plan view of the scrubber shown in Figure 27.

Фигура 29 - увеличенный вид в перспективе части скруббера, представленного на фигуре 27.Figure 29 is an enlarged perspective view of part of the scrubber shown in figure 27.

Фигура 30 - график, иллюстрирующий повышение удельного расхода тепла энергетического блока для различных значений уменьшения влажности угля.Figure 30 is a graph illustrating the increase in specific heat consumption of the energy block for various values of reducing coal moisture.

Фигура 31 - график величины высшей теплоты сгорания лигнита и углей бассейна Паудер Ривер (Powder River) для различных содержаний влаги.Figure 31 is a graph of the magnitude of the higher calorific value of lignite and coal from the Powder River basin for various moisture contents.

Фигура 32 - схема экспериментальной двухступенчатой сушильной установки с псевдоожиженным слоем в соответствии с настоящим изобретением.Figure 32 is a diagram of an experimental two-stage fluidized bed dryer in accordance with the present invention.

Фигуры 33-37 - графики различных характеристик работы сушильной установки с псевдоожиженным слоем, представленной на фигуре 32.Figures 33-37 are graphs of various operating characteristics of a fluidized bed dryer shown in Figure 32.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

В изобретении предлагается установка для тепловой обработки зернистых материалов при сравнительно низких температурах с предотвращением закупоривания. Предлагаемая в изобретении установка обеспечивает более экономичную сушку материала, в результате чего становится возможным использование низкосортных (например, с повышенной влажностью) материалов, которые иначе не могли бы составить конкуренцию традиционным материалам, используемым в промышленных установках. Использование установки тепловой обработки также может обеспечить снижение уровней загрязняющих веществ и других вредных компонентов, содержащихся в материале, прежде чем он будет использован в технологическом процессе промышленной установки.The invention provides an apparatus for heat treatment of granular materials at relatively low temperatures with the prevention of clogging. The installation proposed in the invention provides a more economical drying of the material, as a result of which it becomes possible to use low-grade (for example, with high humidity) materials, which otherwise could not compete with traditional materials used in industrial plants. Using a heat treatment plant can also reduce the levels of pollutants and other harmful components contained in the material before it can be used in the process of an industrial plant.

Хотя изобретение может быть использовано во многих отраслях промышленности, однако в иллюстративных целях оно описывается в заявке в отношении традиционной тепловой электростанции, работающей на угле, где удаление влаги из угля в сушильной установке необходимо для повышения теплотворной способности угля и, соответственно, увеличения эффективности работы парогенератора электростанции. Сушка угля с использованием предложенной установки может способствовать использованию низкосортных углей, например бурых и полубитуминозных. Уменьшение содержания влаги в угле независимо от того, является он высокосортным или низкосортным, позволяет также улучшить и другие характеристики. Например, высушенный уголь будет уменьшать нагрузку на систему погрузки-разгрузки, на конвейеры и на устройства измельчения угля, используемые на тепловой электростанции. Поскольку высушенный уголь легче транспортировать, то сокращаются расходы на техническое обслуживание и повышается коэффициент технического использования системы транспортировки. Высушенный уголь легче измельчать, поскольку необходимо меньше энергии для получения одного и того же размера частиц угля. Если топливо содержит меньше влаги, то уменьшается количество влаги, отводимой из мельницы. В результате улучшается эффективность дробления угля. Кроме того, для подачи, создания псевдоожиженного слоя и нагрева угля требуется меньше первичного воздуха. Уменьшение объемов первичного воздуха приводит к снижению скорости воздушного потока, и в результате существенно уменьшается эрозия углеразмольных мельниц, трубопроводов транспортировки угля, угольных горелок и другого соответствующего оборудования. В результате снижаются расходы на техническое обслуживание трубопроводов транспортировки угля и углеразмольных мельниц, которые для электростанций, работающих на бурых углях, очень высоки. Также может быть получено сокращение потоков дымовых газов, в результате чего улучшается эффективность работы выходных очистительных устройств.Although the invention can be used in many industries, however, for illustrative purposes, it is described in the application for a traditional coal-fired thermal power plant, where moisture removal from coal in a drying plant is necessary to increase the calorific value of coal and, accordingly, increase the efficiency of the steam generator power plants. Coal drying using the proposed installation can facilitate the use of low-grade coals, such as brown and semi-bituminous. Reducing the moisture content of coal, regardless of whether it is high-grade or low-grade, can also improve other characteristics. For example, dried coal will reduce the load on the loading and unloading system, on conveyors and on coal grinding devices used in a thermal power plant. Since dried coal is easier to transport, maintenance costs are reduced and the utilization rate of the transportation system is increased. Dried coal is easier to grind because less energy is needed to produce the same particle size of the coal. If the fuel contains less moisture, the amount of moisture removed from the mill is reduced. As a result, the efficiency of coal crushing is improved. In addition, less primary air is required to supply, create a fluidized bed and heat the coal. A decrease in the volume of primary air leads to a decrease in the air flow rate, and as a result, the erosion of coal mills, coal transportation pipelines, coal burners and other related equipment is significantly reduced. As a result, the maintenance costs of coal transportation pipelines and coal grinding mills are reduced, which are very high for brown coal power plants. Also, a reduction in flue gas flows can be obtained, thereby improving the efficiency of the outlet cleaning devices.

Стоит заметить, что нет необходимости в полном высушивании угля, используемого в качестве топлива, для того чтобы было экономически выгодно использовать его в парогенераторах тепловых электростанций. Вместо этого, используя имеющиеся источники отработанного тепла для сушки угля в достаточной степени, можно существенно повысить эффективность работы парогенератора, одновременно поддерживая производственные затраты на уровне, обеспечивающем рентабельность процесса. Таким образом, обеспечивается действительный экономический выигрыш для оператора электростанции. Возможно снижение уровня влаги в бурых углях с типичных 39-60% до 10% и даже ниже, хотя предпочтительным является 27-32%. Этот предпочтительный уровень определяется способностью парогенератора по теплопередаче.It is worth noting that there is no need to completely dry the coal used as fuel in order to be economically profitable to use it in steam generators of thermal power plants. Instead, using the available sources of waste heat to dry the coal to a sufficient degree, it is possible to significantly increase the efficiency of the steam generator while maintaining production costs at a level that ensures the profitability of the process. Thus, a real economic gain is ensured for the operator of the power plant. It is possible to reduce the moisture level in brown coals from a typical 39-60% to 10% or even lower, although 27-32% is preferred. This preferred level is determined by the heat transfer ability of the steam generator.

В настоящем изобретении предпочтительно используются в различных сочетаниях различные источники отработанного тепла, имеющиеся в промышленном предприятии, для высушивания материала без негативного воздействия на характеристики работы предприятия. На типичной тепловой электростанции имеется отработанное тепло различных процессов, которое может быть использовано. Одним из возможных источников является паровая турбина. Для сушки угля может быть отобран пар из контура паровой турбины. Для многих существующих турбин это могло бы привести к снижению выходной мощности и негативно повлиять на работу ступеней турбины ниже точки отбора пара, то есть целесообразность отбора тепла из этого источника весьма проблематична. Что же касается новых тепловых электростанций, то паровые турбины в них сконструированы таким образом, что отбор пара не приводит к ухудшению характеристик работы ступени, то есть контур турбины новых электростанций является одним из источников отработанного тепла, который может использоваться для сушки угля.In the present invention, various sources of waste heat available in the industrial plant are preferably used in various combinations to dry the material without adversely affecting the performance of the plant. A typical thermal power plant has waste heat from various processes that can be used. One possible source is a steam turbine. To dry the coal, steam can be taken from the steam turbine circuit. For many existing turbines, this could lead to a decrease in power output and adversely affect the operation of the turbine stages below the steam extraction point, that is, the feasibility of heat extraction from this source is very problematic. As for the new thermal power plants, the steam turbines in them are designed in such a way that the selection of steam does not degrade the performance of the stage, that is, the turbine circuit of the new power plants is one of the sources of waste heat that can be used to dry coal.

Другим возможным источником отработанного тепла, который может использоваться для сушки угля, являются топочные газы, которые выбрасываются электростанцией. Использование остаточного тепла, содержащегося в топочных газах, для удаления влаги из угля может понизить температуру в дымовой трубе, в результате чего снижается тяга и повышается возможность конденсации водяных паров и серной кислоты на стенках трубы. Это обстоятельство ограничивает количество тепла, которое может быть извлечено из топочных газов для сушки угля, особенно для предприятий, оборудованных скрубберами с водяным орошением, и поэтому горячие топочные газы не могут использоваться в качестве единственного источника отработанного тепла для конечного применения в соответствии с настоящим изобретением.Another possible source of waste heat that can be used to dry coal is flue gases that are emitted by a power plant. Using the residual heat contained in the flue gas to remove moisture from the coal can lower the temperature in the chimney, resulting in reduced draft and increased possibility of condensation of water vapor and sulfuric acid on the pipe walls. This circumstance limits the amount of heat that can be extracted from the flue gases for drying coal, especially for enterprises equipped with water scrubbers, and therefore hot flue gases cannot be used as the sole source of waste heat for the end use in accordance with the present invention.

В энергетическом цикле Ренкина тепло отходит из контура парового конденсатора и/или из башни охлаждения (градирни). Количество тепла, отходящего от парового конденсатора, которое обычно используется для коммунального теплоснабжения, достаточно велико, и его вторичное использование оказывает минимальное воздействие на работу электростанции. Поэтому часть этой горячей воды охлаждения конденсатора, выходящей из конденсатора, могла бы быть отведена и использована для сушки угля. Инженерный анализ показывает, что при полной нагрузке станции всего 2% тепла, отходящего от конденсатора, необходимо для снижения содержания влаги в угле на 4%. Использование этого источника тепла в качестве единственного источника или в сочетании с другими источниками отработанного тепла, имеющимися на электростанции, обеспечивает оптимальное использование источников отработанного тепла без негативного воздействия на характеристики работы станции.In the Rankine’s energy cycle, heat is removed from the steam condenser circuit and / or from the cooling tower (cooling tower). The amount of heat discharged from the steam condenser, which is usually used for public heating, is quite large, and its secondary use has minimal impact on the operation of the power plant. Therefore, part of this condenser cooling water leaving the condenser could be diverted and used to dry coal. An engineering analysis shows that when the station is fully loaded, only 2% of the heat leaving the condenser is necessary to reduce the moisture content in coal by 4%. The use of this heat source as the sole source or in combination with other sources of waste heat available at the power plant ensures optimal use of the sources of waste heat without negatively affecting the performance of the station.

Хотя это изобретение сосредоточено на использовании имеющихся источников отработанного тепла для удаления влаги из угля или для другой технологической стадии, необходимо понимать, что вместе с источниками отработанного тепла может использоваться первичный источник тепла, получаемого сжиганием топлива, для достижения необходимого результата наиболее экономичным образом. В большинстве случаев количество тепла, получаемого из первичного источника, будет гораздо меньше, чем используемое отработанное тепло.Although this invention focuses on the use of available sources of waste heat to remove moisture from coal or for another technological stage, it must be understood that together with sources of waste heat, a primary source of heat obtained by burning fuel can be used to achieve the desired result in the most economical way. In most cases, the amount of heat received from the primary source will be much less than the waste heat used.

В настоящем изобретении могут использоваться сушильные установки с псевдоожиженным и неподвижным слоем, как одноступенчатые, так и многоступенчатые, для предварительного высушивания и последующей очистки материала перед тем, как он будет использоваться в работе промышленного предприятия, хотя могут использоваться и другие известные типы сушильных установок. Кроме того, такой процесс сушки осуществляется при низкой температуре в открытом контуре (без герметизации), что позволяет снизить производственные затраты для промышленного предприятия. Температура осуществления процесса сушки предпочтительно поддерживается ниже 300°F и более предпочтительно в диапазоне 200-300°F.The present invention can use fluidized bed and fixed bed dryers, both single-stage and multi-stage, for pre-drying and subsequent cleaning of the material before it is used in an industrial plant, although other known types of drying systems can be used. In addition, such a drying process is carried out at a low temperature in an open circuit (without sealing), which allows to reduce production costs for an industrial enterprise. The temperature of the drying process is preferably kept below 300 ° F and more preferably in the range of 200-300 ° F.

Предлагаемая в настоящем изобретении установка тепловой обработки также обеспечивает удаление из угля зольной пыли, серы, материалов, содержащих ртуть, и других вредных загрязняющих веществ с использованием возможностей псевдоожиженных слоев по выделению и сортировке материалов в отличие от используемых систем, в которых удаление загрязняющих веществ осуществляется после того, как уголь сжигается. Удаление таких загрязняющих веществ до сжигания угля устраняет возможность нанесения вреда окружающей среде, который может быть вызван загрязняющими веществами производственных процессов предприятия, и к числу ожидаемых выигрышей относятся: низкий уровень выброса вредных веществ, уменьшение количества подаваемого угля, уменьшение потребления энергии вспомогательным оборудованием предприятия, уменьшение количества используемой воды, снижение расходов на техническое обслуживание, связанное с эрозией металла и с другими факторами, и снижение капитальных расходов, связанных с установкой оборудования, необходимого для извлечения этих загрязняющих веществ из топочных газов.The heat treatment unit proposed in the present invention also provides for the removal of fly ash, sulfur, materials containing mercury, and other harmful pollutants from coal using the capabilities of the fluidized beds for the selection and sorting of materials, in contrast to the systems used in which the pollutants are removed after of how coal is burned. Removal of such pollutants before burning coal eliminates the possibility of causing environmental damage that may be caused by pollutants in the production processes of the enterprise, and the expected benefits include: low emissions of harmful substances, reduction in the amount of coal supplied, reduction of energy consumption by auxiliary equipment of the enterprise, reduction the amount of water used, reducing maintenance costs associated with metal erosion and other factors, lower capital costs associated with the installation of equipment needed to extract these contaminants from the flue gases.

Для целей настоящего изобретения термин "зернистый материал" означает любой поступающий гранулированный или порошковый материал, вещество, элемент или ингредиент, который является необходимой частью работы промышленного предприятия, в частности сжигаемое топливо (например уголь, биомасса, кора, торф, древесные отходы), боксит и другие руды; и субстраты, которые должны быть модифицированы или преобразованы в технологических процессах промышленного предприятия, например зерновые и крупяные материалы, солод, какао.For the purposes of the present invention, the term “granular material” means any incoming granular or powder material, substance, element or ingredient that is a necessary part of the work of an industrial enterprise, in particular combustible fuel (eg coal, biomass, bark, peat, wood waste), bauxite and other ores; and substrates that must be modified or transformed in the technological processes of an industrial enterprise, for example, grain and cereal materials, malt, cocoa.

В контексте настоящего изобретения термин "технологический процесс промышленного предприятия" означает любое сжигание, потребление, преобразование, изменение или улучшение вещества для получения полезного результата или конечного продукта. Такие технологические процессы могут осуществляться, например, на тепловых электростанциях, на заводах по производству кокса, чугуна, стали или алюминия, цемента, стекла, этилового спирта, при высушивании зерна или других сельскохозяйственных материалов, при производстве пищевых продуктов и при получении тепла для производственных нужд предприятий и для обогрева зданий. Технологические процессы промышленного предприятия охватывают и другие процессы по тепловой обработке продукта или системы, в частности теплицы, коммунальное теплоснабжение, процессы регенерации аминов или других экстрагирующих веществ, используемых при разрушении двуокиси углерода или органических кислот.In the context of the present invention, the term "industrial process" means any burning, consumption, conversion, modification or improvement of a substance to obtain a useful result or end product. Such technological processes can be carried out, for example, in thermal power plants, in factories for the production of coke, cast iron, steel or aluminum, cement, glass, ethyl alcohol, when drying grain or other agricultural materials, in the production of food products and in the production of heat for industrial needs enterprises and for heating buildings. Technological processes of an industrial enterprise also cover other processes for the thermal processing of a product or system, in particular greenhouses, communal heat supply, regeneration processes of amines or other extracting substances used in the destruction of carbon dioxide or organic acids.

В контексте настоящего изобретения термин "уголь" означает антрацит, битуминозный уголь, полубитуминозный уголь и лигнит (бурый уголь) и торф. Отдельно указывается уголь бассейна Паудер Ривер (Powder River).In the context of the present invention, the term "coal" means anthracite, bituminous coal, semi-bituminous coal and lignite (brown coal) and peat. The coal of the Powder River basin is separately indicated.

Для целей настоящего изобретения термин "качественная характеристика" означает отличительное свойство зернистого материала, которое влияет на его горение, потребление, преобразование, изменение или улучшение в технологическом процессе промышленного предприятия, в частности содержание влаги, углерода, серы, ртути, зольной пыли, а также образование SO2 и золы, двуокиси углерода и окиси ртути при сгорании материала.For the purposes of the present invention, the term "quality characteristic" means a distinctive property of a granular material that affects its combustion, consumption, conversion, change or improvement in the technological process of an industrial enterprise, in particular the moisture content, carbon, sulfur, mercury, fly ash, and the formation of SO 2 and ash, carbon dioxide and mercury oxide during the combustion of the material.

В данной заявке термин "установка тепловой обработки" означает любое устройство, которое может использоваться для воздействия теплом на продукт, в частности печи, сушилки, плиты, духовые шкафы, инкубаторы, камеры искусственного климата и обогреватели.In this application, the term "heat treatment unit" means any device that can be used to expose a product to heat, in particular ovens, dryers, stoves, ovens, incubators, artificial chambers and heaters.

В контексте настоящего изобретения термин "сушильная установка" означает любое устройство, которое может использоваться для снижения содержания влаги в зернистом материале путем применения тепла, непосредственного или опосредованного, в частности сушильная установка с псевдоожиженным слоем, сушильная установка с вибрирующим псевдоожиженным слоем, сушильная установка с неподвижным слоем, сушильная установка с подвижным слоем, многоступенчатый сушильная установка с псевдоожиженным слоем, удлиненная щелевая сушильная установка, бункерная сушильная установка или сушильная печь. Такие сушильные установки также могут содержать один или несколько резервуаров, одну или несколько ступеней и внутренние или внешние теплообменники.In the context of the present invention, the term “drying unit” means any device that can be used to reduce the moisture content of a granular material by applying heat directly or indirectly, in particular a fluidized bed dryer, a vibrating fluidized bed dryer, a fixed-bed dryer bed, moving bed dryer, multi-stage fluidized bed dryer, elongated slotted dryer, hopper Black oven or dryer. Such dryers may also contain one or more tanks, one or more stages and internal or external heat exchangers.

Для целей настоящей заявки термин "основной источник тепла" означает количество тепла, получаемого непосредственно для основной цели выполнения работы в части оборудования, в частности в парогенераторе, турбине, печи, сушильной установке, теплообменнике, реакторе или дистилляционной колонне. Примеры такого основного источника тепла могут включать, в частности, тепло сгорающего топлива и производственный пар, выходящий непосредственно из парогенератора.For the purposes of this application, the term “primary heat source” means the amount of heat generated directly for the primary purpose of performing work on equipment, in particular in a steam generator, turbine, furnace, drying plant, heat exchanger, reactor or distillation column. Examples of such a primary heat source may include, in particular, the heat of the combusting fuel and the production steam exiting directly from the steam generator.

В настоящей заявке термин "источник отработанного тепла" означает остаточный поток побочного газообразного или жидкого продукта, имеющего повышенное содержание тепла, являющегося результатом работы, уже выполненной основным источником тепла в части оборудования в технологическом процессе промышленного предприятия, причем это отработанное тепло не выпускается, а используется дополнительно для выполнения работы в части оборудования. Примеры таких источников отработанного тепла могут включать, в частности, потоки охлаждающей воды, горячую воду охлаждения конденсатора, горячие топочные или дымовые газы, отработанный производственный пар, например, из контура турбины, выбрасываемое тепло из рабочего оборудования, например из компрессора, реактора или дистилляционной колонны.In this application, the term "source of waste heat" means the residual flow of a by-product gaseous or liquid product having an increased heat content resulting from work already carried out by the main heat source in the equipment part in the technological process of an industrial enterprise, and this waste heat is not released but used additionally to perform work in terms of equipment. Examples of such waste heat sources may include, but are not limited to, cooling water flows, condenser cooling water, hot flue or flue gases, waste production steam, for example, from a turbine circuit, heat emitted from operating equipment, such as a compressor, reactor or distillation column .

Для целей настоящей заявки уголь, сжигаемый в печи парогенератора тепловой электростанции, используется в качестве типичного зернистого материала, используемого в технологическом процессе промышленного предприятия, однако важно отметить, что любой другой материал, подача которого необходима или полезна для технологического процесса промышленного предприятия, также охватывается настоящей заявкой.For the purposes of this application, coal burned in the furnace of a steam generator of a thermal power plant is used as a typical granular material used in the technological process of an industrial enterprise, however it is important to note that any other material whose supply is necessary or useful for the technological process of an industrial enterprise is also covered by this application.

На фигуре 1 представлена упрощенная схема тепловой электростанции 10, в которой для выработки электричества используется уголь. Запас необработанного угля 12 содержится в угольном бункере 14. Затем из бункера он подается с помощью подающего устройства 16 в углеразмольную мельницу 18, в которой он превращается в порошок и распыляется с помощью потока первичного воздуха 20.The figure 1 presents a simplified diagram of a thermal power plant 10, in which coal is used to generate electricity. The raw coal stock 12 is contained in the coal hopper 14. Then it is fed from the hopper using a feed device 16 to the coal grinding mill 18, in which it is converted into powder and sprayed using a stream of primary air 20.

Затем распыленные частицы угля подаются в печь 25, в которой они сжигаются с использованием потока вторичного воздуха 30 для получения тепла. В результате реакции сгорания выделяются топочные газы 27, которые выпускаются в атмосферу.The atomized coal particles are then fed to a furnace 25, in which they are burned using a stream of secondary air 30 to produce heat. As a result of the combustion reaction, flue gases 27 are released, which are released into the atmosphere.

Этот источник тепла превращает воду 31 в парогенераторе 32 в пар 33, который подается в паровую турбину 34. Паровая турбина 34 может состоять из турбины 36 высокого давления (HP), турбины 38 среднего давления (IP) и турбин 40 низкого давления (LP), соединенных последовательно. Пар 33 выполняет работу, толкая лопатки рабочих колес турбин, установленных на валу. Пар толкает лопатки турбин и приводит во вращение рабочие колеса турбин и, соответственно, вал. Вращающийся вал является приводом электрического генератора 43, который вырабатывает электричество 45.This heat source turns the water 31 in the steam generator 32 into steam 33, which is supplied to the steam turbine 34. The steam turbine 34 may consist of a high pressure turbine 36 (HP), a medium pressure turbine 38 (IP) and a low pressure turbine 40 (LP), connected in series. Steam 33 does the work by pushing the blades of the impellers of the turbines mounted on the shaft. The steam pushes the turbine blades and drives the turbine impellers and, accordingly, the shaft. The rotating shaft drives an electric generator 43 that generates electricity 45.

Пар 47, выходящий из турбин 40 низкого давления, подается в конденсатор 50, в котором он охлаждается для превращения в воду с помощью охлаждающей воды 52. Большинство паровых конденсаторов имеет водяное охлаждение, причем может использоваться как закрытый, так и открытый контур охлаждения. В схеме с закрытым контуром, представленной на фигуре 1, латентное тепло, содержащееся в паре 47, будет повышать температуру холодной охлаждающей воды 52, так что она выходит из парового конденсатора уже как горячая охлаждающая вода 54, которая затем охлаждается в градирне 56 и возвращается обратно как холодная охлаждающая вода 52. В схеме с открытым контуром тепло, переносимое охлаждающей водой, сбрасывается в охлаждающий водоем (например, в реку или в озеро). В схеме с закрытым контуром, напротив, тепло, переносимое охлаждающей водой, отводится в градирню.Steam 47 exiting the low pressure turbines 40 is supplied to a condenser 50 in which it is cooled to be converted into water by means of cooling water 52. Most steam condensers are water-cooled, both indoor and outdoor cooling circuits can be used. In the closed-loop circuit of FIG. 1, the latent heat contained in steam 47 will raise the temperature of the cold cooling water 52 so that it leaves the steam condenser already as hot cooling water 54, which is then cooled in the cooling tower 56 and returned as cold cooling water 52. In an open circuit design, the heat transferred by the cooling water is discharged into a cooling water reservoir (for example, a river or a lake). In a closed loop circuit, on the contrary, the heat carried by the cooling water is removed to the cooling tower.

КПД тепловой электростанции 10, схема которой представлена на фигуре 1, может быть повышен путем извлечения и использования некоторых потоков отработанного тепла и побочных продуктов, как показано на фигуре 2. Парогенераторы тепловых электростанций, работающие на ископаемом топливе, в большинстве случаев оборудованы воздухоподогревателями, предназначенными для нагрева потоков первичного и вторичного воздуха, используемых в процессах размельчения угля и его сжигания, соответственно. Сжигаемый уголь используется в системе парогенератора (печь, горелка и котлоагрегат) для превращения воды в пар, который затем используется для привода паровых турбин, соединенных с электрическими генераторами. В теплообменниках, предназначенных для нагрева воздуха с помощью пара (SAH), пар, отобранный из паровой турбины, используется для предварительного подогрева потоков первичного и вторичного воздуха перед их нагревом устройствами. Отбор пара из турбины приводит к уменьшению выходной мощности турбины (и всей электростанции) и снижает эффективность использования топлива.The efficiency of thermal power plant 10, the scheme of which is shown in figure 1, can be improved by extracting and using some flows of waste heat and by-products, as shown in figure 2. Steam generators of thermal power plants that run on fossil fuels are in most cases equipped with air heaters designed for heating the flows of primary and secondary air used in the processes of coal grinding and combustion, respectively. Burned coal is used in a steam generator system (furnace, burner and boiler) to turn water into steam, which is then used to drive steam turbines connected to electric generators. In heat exchangers designed to heat air with steam (SAH), steam taken from a steam turbine is used to preheat the primary and secondary air flows before being heated by the devices. The extraction of steam from the turbine leads to a decrease in the output power of the turbine (and the entire power plant) and reduces the fuel efficiency.

Типичный подогреватель АРН может быть регенеративным (конструкция Люнгстрема или Ротемюле) или может иметь трубчатую конструкцию. Подогреватели SAH используются для поддержания повышенной температуры воздуха на входе подогревателя АРН и для защиты его холодной стороны от коррозии, вызываемой серной кислотой, осаждающейся на теплопередающих поверхностях подогревателя, и от забивания, которое приводит к увеличению сопротивления потоку и к повышенному потреблению энергии вентиляторами. Более высокая температура воздуха на входе подогревателя АРН приводит к повышению температуры воздуха на его выходе и температуры теплопередающих поверхностей (теплопроводных каналов в регенеративных подогревателях или труб в трубчатых подогревателях) холодной стороны нагревателя. Более высокие температуры уменьшают зону осаждения кислот внутри подогревателя АРН и также снижают интенсивность их осаждения.A typical AVR heater may be regenerative (Lyngstrem or Rotemule design) or may have a tubular design. SAH heaters are used to maintain increased air temperature at the inlet of the AVR heater and to protect its cold side from corrosion caused by sulfuric acid deposited on the heat transfer surfaces of the heater and from clogging, which leads to increased flow resistance and increased energy consumption by fans. Higher air temperature at the inlet of the AVR heater leads to an increase in the temperature of the air at its outlet and the temperature of the heat transfer surfaces (heat-conducting channels in regenerative heaters or pipes in tubular heaters) of the cold side of the heater. Higher temperatures reduce the acid deposition zone inside the AVR heater and also reduce their deposition rate.

Таким образом, внутри модифицированной системы 65 обогреватель SAH 70 использует часть 71 отработанного производственного пара, отобранного из турбины 38 промежуточного давления пара для предварительного подогрева потока первичного воздуха 20 и потока вторичного воздуха 30 до того, как они будут поданы в углеразмольную мельницу 18 и печь 26, соответственно. Максимальная температура потока первичного воздуха 20 и потока вторичного воздуха 30, которая может быть достигнута в подогревателе SAH 70, ограничивается его тепловым сопротивлением и температурой отобранного пара 71, выходящего из паровой турбины 38.Thus, within the retrofit system 65, the SAH heater 70 uses a waste steam portion 71 taken from the intermediate steam pressure turbine 38 to preheat the primary air stream 20 and the secondary air stream 30 before they are fed to the coal grinding mill 18 and furnace 26 , respectively. The maximum temperature of the primary air stream 20 and the secondary air stream 30, which can be achieved in the heater SAH 70, is limited by its thermal resistance and the temperature of the selected steam 71 exiting the steam turbine 38.

Кроме того, потоки первичного воздуха 20 и вторичного воздуха 30 подаются с помощью вентиляторов РА 72 (первичный воздух) и FD 74 (вторичный воздух), соответственно, в трехсекционный подогреватель АРН 76, в котором указанные потоки воздуха дополнительно нагреваются с помощью потока топочных газов 27 до того, как они будут выброшены в атмосферу. Таким образом, потоки первичного воздуха 20 и вторичного воздуха 30, имеющие повышенную температуру, повышают эффективность работы углеразмольной мельницы 18 и получения производственного тепла в печи 25. Далее, поток воды 78, сбрасываемый из конденсатора 50, может быть возвращен в парогенератор для повторного превращения в производственный пар. Топочные газы 27 и производственный пар 71, выходящий из паровой турбины 38, и вода 78, выходящая из конденсатора, которые в противном случае просто бы выбрасывались, с успехом используются для повышения общего КПД тепловой электростанции 65.In addition, the flows of primary air 20 and secondary air 30 are supplied using fans RA 72 (primary air) and FD 74 (secondary air), respectively, in a three-section heater APH 76, in which these air flows are additionally heated using a flue gas stream 27 before they are released into the atmosphere. Thus, the streams of primary air 20 and secondary air 30 having an elevated temperature increase the efficiency of the coal mill 18 and the production of heat in the furnace 25. Further, the stream of water 78 discharged from the condenser 50 can be returned to the steam generator for re-conversion into production steam. The flue gases 27 and the production steam 71 exiting the steam turbine 38 and the water 78 exiting the condenser, which otherwise would simply be emitted, are successfully used to increase the overall efficiency of the thermal power station 65.

Как указывалось выше, эффективность работы тепловой электростанции можно было бы повысить еще больше, если бы уровень содержания влаги в угле 12 был уменьшен перед его подачей в печь 25. Такой предварительный процесс высушивания мог бы также обеспечить использование низкосортных углей, например полубитуминозных и бурых углей, с достаточной экономической эффективностью.As mentioned above, the efficiency of a thermal power plant could be improved even more if the moisture content in coal 12 was reduced before it was fed to furnace 25. Such a preliminary drying process could also ensure the use of low-grade coals, such as semi-bituminous and brown coals, with sufficient economic efficiency.

На фигуре 3 представлена схема сушильной установки 100 с псевдоожиженным слоем, используемой для уменьшения содержания влаги в угле 12, хотя ясно, что для целей настоящего изобретения может использоваться любой другой тип сушильной установки. Кроме того, вся система сушки угля может состоять из нескольких сушильных установок, соединенных последовательно или параллельно для удаления влаги из угля. Такая конструкция, содержащая несколько одинаковых сушильных установок, обеспечивает гибкость в эксплуатации и техническом обслуживании, и поскольку она, как правило, требует меньше места для размещения, то сушильные установки для угля могут устанавливаться и интегрироваться внутри существующего оборудования электростанции последовательно, одна за другой. Это минимизирует возможное нарушение обычных производственных процессов электростанции.3 is a diagram of a fluidized bed dryer 100 used to reduce the moisture content of coal 12, although it is clear that any other type of dryer can be used for the purposes of the present invention. In addition, the entire coal drying system may consist of several drying plants connected in series or in parallel to remove moisture from the coal. Such a design, containing several identical drying plants, provides flexibility in operation and maintenance, and since it usually requires less space for placement, coal drying plants can be installed and integrated within the existing equipment of a power plant in series, one after another. This minimizes possible disruption to the normal production processes of a power plant.

Псевдоожиженные слои будут работать в открытом контуре при сравнительно невысоких температурах. Теплообменник, установленный в слое, будет использоваться со стационарной конструкцией установки с псевдоожиженным или неподвижным слоем для обеспечения дополнительного тепла для сушки угля, в результате чего могут быть уменьшены размеры оборудования. В случае достаточной теплопередающей поверхности в псевдоожиженном слое сушильной установки поток воздуха, используемый для создания псевдоожиженного слоя и для сушки угля, может быть уменьшен до уровня, соответствующего минимальной скорости, необходимой для создания псевдоожиженного слоя. Это будет снижать эрозионное разрушение сушильной установки и интенсивность выноса частиц материала из псевдоожиженного слоя.The fluidized beds will operate in an open circuit at relatively low temperatures. The heat exchanger installed in the bed will be used with the stationary design of the installation with a fluidized or fixed bed to provide additional heat for drying the coal, as a result of which the size of the equipment can be reduced. In the case of a sufficient heat transfer surface in the fluidized bed of the dryer, the air flow used to create the fluidized bed and to dry the coal can be reduced to a level corresponding to the minimum velocity required to create the fluidized bed. This will reduce the erosion destruction of the drying unit and the rate of removal of material particles from the fluidized bed.

Тепло для теплообменника, размещенного в псевдоожиженном слое, может доставляться непосредственно или опосредованно (с использованием промежуточного теплоносителя). Непосредственная подача тепла предусматривает отбор горячей воды охлаждения конденсатора, производственного пара, горячих топочных газов, части потока горячего воздуха, используемого для создания псевдоожиженного слоя, или других источников отработанного тепла и пропускание их через теплообменник, размещенный в псевдоожиженном слое. Опосредованная подача тепла предусматривает использование воды или другого теплоносителя, который нагревается потоком горячего первичного воздуха, горячей водой охлаждения конденсатора, паром, отобранным из контура паровой турбины, горячими топочными газами или другими источниками отработанного тепла во внешнем теплообменнике перед тем, как этот теплоноситель подается в теплообменник, размещенный в псевдоожиженном слое.Heat for a heat exchanger placed in a fluidized bed can be delivered directly or indirectly (using an intermediate heat transfer medium). Direct heat supply involves the selection of hot water for cooling the condenser, production steam, hot flue gases, part of the hot air stream used to create the fluidized bed, or other sources of waste heat and passing them through a heat exchanger located in the fluidized bed. Indirect heat supply involves the use of water or another heat carrier that is heated by a stream of hot primary air, hot condenser cooling water, steam taken from the steam turbine circuit, hot flue gases or other sources of waste heat in an external heat exchanger before this heat carrier is supplied to the heat exchanger placed in a fluidized bed.

Псевдоожиженный слой может быть единым (см. фигуру 3) или разделенным на несколько частей, "ступеней" (см. фигуры 15-16). Сушильная установка с псевдоожиженным слоем является хорошим решением для высушивания влажного угля в том месте, где его нужно будет сжигать. Несколько ступеней могут быть выполнены в одном резервуаре или в нескольких резервуарах. Многоступенчатая конструкция позволяет максимально использовать возможности сушильных установок с псевдоожиженным слоем по смешиванию, разделению и высушиванию. Сушильная установка для угля может содержать первичный или вторичный источник тепла для сушки угля.The fluidized bed can be a single (see figure 3) or divided into several parts, "steps" (see figures 15-16). A fluid bed dryer is a good solution for drying wet coal where it needs to be burned. Several steps can be performed in one tank or in several tanks. The multi-stage design allows you to make the most of the capabilities of fluidized-bed drying plants for mixing, separation and drying. The coal dryer may contain a primary or secondary heat source for drying the coal.

На фигуре 3 представлена схема сушильной установки для угля в форме сушильной установки 100 с псевдоожиженным слоем и относящегося к ней оборудования на площадке промышленного предприятия. Влажный уголь хранится в бункере 14, из которого через питательный затвор 15 он поступает на вибрационный питатель 16, который транспортирует уголь в углеразмольную мельницу 18 для измельчения угля. Затем измельченный уголь пропускается через сито 102 для отбора (сортировки) частиц, размеры которых не превышают 1/4 дюйма в диаметре. Затем отобранные по размеру частицы угля транспортируются с помощью конвейера 104 в верхнюю зону сушильной установки 100 с псевдоожиженным слоем, в которой с помощью горячего воздуха 106 создается псевдоожиженный слой и осуществляется высушивание частиц угля. Затем высушенные частицы угля транспортируются нижним конвейером 108, ковшовым элеватором 110 и верхним конвейером 112 в верхние части бункеров 114 и 116 для высушенного угля, в которых высушенный уголь хранится перед подачей в печь 25 парогенератора.The figure 3 presents a diagram of a drying plant for coal in the form of a drying plant 100 with a fluidized bed and related equipment at the site of an industrial enterprise. Wet coal is stored in the hopper 14, from which through the feed gate 15 it enters the vibrating feeder 16, which transports the coal to a coal-grinding mill 18 for grinding coal. The crushed coal is then passed through a sieve 102 to select (sort) particles that do not exceed 1/4 inch in diameter. Then, particle-sized coal particles are transported by conveyor 104 to the upper zone of a fluidized bed dryer 100 in which a fluidized bed is created using hot air 106 and the coal particles are dried. The dried coal particles are then transported by a lower conveyor 108, a bucket elevator 110, and an upper conveyor 112 to the upper parts of the dried coal bins 114, in which the dried coal is stored before being supplied to the furnace 25 of the steam generator.

Влажный воздух и вынесенные им мелкие частицы 120 из сушильной установки 100 с псевдоожиженным слоем подаются в пылеулавливатель 122, в котором вынесенные мелкие частицы отделяются от влажного воздуха. Пылеулавливатель 122 создает силу всасывания для забора влажного воздуха и вынесенных мелких частиц. После этого воздух, очищенный от мелких частиц, пропускается через дымовую трубу 126 для последующей очистки в модуле скруббера (не показан) от загрязняющих веществ, таких как сера, зола и соединения ртути, содержащиеся в воздушном потоке.The moist air and the fine particles removed by it 120 from the fluidized-bed dryer 100 are supplied to the dust collector 122, in which the fine particles removed are separated from the moist air. The dust collector 122 creates a suction force to draw in moist air and particulate matter. After that, the air purified from small particles is passed through a chimney 126 for subsequent cleaning in the scrubber module (not shown) of pollutants such as sulfur, ash and mercury compounds contained in the air stream.

На фигуре 4 иллюстрируется вариант конструкции для создания слоя для сушки угля в соответствии с настоящим изобретением, представляющей собой одноступенчатую сушильную установку 150 с псевдоожиженным слоем, которая содержит один резервуар и в которой используется первичный источник тепла. Хотя имеется много различных возможных конструкций сушильной установки 150 с псевдоожиженным слоем, однако все они содержат резервуар 152, в котором осуществляется обработка угля в псевдоожиженном слое и его транспортировка. Резервуар 152 может представлять собой закрытый контейнер с желобом или другую подходящую конструкцию. Резервуар 152 содержит распределительную пластину 154, представляющую собой настил над нижней частью резервуара, который делит его на зону 156 псевдоожиженного слоя и зону 158 повышенного давления (нижняя зона). Как можно видеть на фигуре 5, распределительная пластина 154 может быть перфорированной или же выполняется таким образом, чтобы обеспечивать поступление воздуха 160, создающего псевдоожиженный слой, в зону 158 повышенного давления резервуара 152. Воздух 160, используемый для создания псевдоожиженного слоя, распределяется в зоне 158 повышенного давления и нагнетается вверх через отверстия 155 или клапаны в распределительной пластине 154 под давлением для создания псевдоожиженного слоя угля 12, находящегося внутри зоны 156 псевдоожиженного слоя.Figure 4 illustrates an embodiment of a design for creating a coal drying layer in accordance with the present invention, which is a single-stage fluidized bed dryer 150 that contains one tank and which uses a primary heat source. Although there are many different possible designs of a fluidized bed dryer 150, they all contain a reservoir 152 in which coal is treated in a fluidized bed and transported. The reservoir 152 may be a closed gutter container or other suitable structure. The reservoir 152 comprises a distribution plate 154, which is a deck over the bottom of the reservoir, which divides it into a fluidized bed zone 156 and an elevated pressure zone 158 (lower zone). As can be seen in FIG. 5, the distribution plate 154 may be perforated or configured to provide air 160 creating a fluidized bed in the pressure zone 158 of the reservoir 152. Air 160 used to create the fluidized bed is distributed in the zone 158 high pressure and is pumped upward through the openings 155 or valves in the distribution plate 154 under pressure to create a fluidized bed of coal 12 located inside the zone 156 of the fluidized bed.

В верхней части резервуара 152, находящейся выше псевдоожиженного слоя, формируется верхняя зона 162. Влажный сортированный уголь 12 подается в зону 156 псевдоожиженного слоя сушильной установки 150 через впускное отверстие 164, как показано на фигуре 4. Когда влажный сортированный уголь 12 обрабатывается в псевдоожиженном слое воздухом 160, влага, содержащаяся в угле, и выносимые мелкие частицы угля перемещаются в верхнюю часть 162 резервуара 152, и обычно выходят из резервуара через выпускные отверстия 166, находящиеся вверху сушильной установки 150 с псевдоожиженным слоем. Тем временем высушенный уголь 168 будет выводиться из резервуара 152 через разгрузочный желоб 170 для транспортировки по конвейеру 172 в накопительный бункер или в печь парогенератора. По мере того как частицы угля перемещаются в псевдоожиженном слое в зоне 156 над распределительной пластиной 154 в направлении стрелки А (см. фигуру 4), они будут накапливаться возле перегородки 174, которая является вертикальной стенкой, пересекающей сушильную установку по ширине. Высота перегородки 174 будет определять максимальную толщину псевдоожиженного слоя частиц угля внутри сушильной установки, поскольку, после того как высота скапливающихся частиц угля превысит высоту перегородки, они переваливаются через верх перегородки и падают в зону сушильной установки 150, прилегающую к разгрузочному желобу 170. Конструкция и расположение впускных 164 и выпускных 169 отверстий для угля, выпускных отверстий 166 для выносимых мелких частиц, распределительной пластины 154 и конфигурация резервуара 152 могут быть модифицированы при необходимости для получения лучших результатов.In the upper part of the reservoir 152 above the fluidized bed, an upper zone 162 is formed. Wet sorted coal 12 is supplied to the bed 156 of the fluidized bed of the dryer 150 through the inlet 164, as shown in figure 4. When the wet sorted coal 12 is treated in the fluidized bed with air 160, the moisture contained in the coal and the emitted small particles of coal are transported to the upper part 162 of the tank 152, and usually exit the tank through the outlet openings 166 located at the top of the drying unit 150 with fluidized bed. Meanwhile, dried coal 168 will be discharged from reservoir 152 via discharge chute 170 for transport via conveyor 172 to a storage bin or to a steam generator furnace. As the coal particles move in the fluidized bed in zone 156 above the distribution plate 154 in the direction of arrow A (see FIG. 4), they will accumulate near the bulkhead 174, which is a vertical wall that crosses the drying unit in width. The height of the partition 174 will determine the maximum thickness of the fluidized bed of coal particles inside the drying unit, because, after the height of the accumulated coal particles exceeds the height of the partition, they pass through the top of the partition and fall into the area of the drying unit 150 adjacent to the discharge chute 170. Design and location inlet 164 and outlet 169 openings for coal, outlet openings 166 for emitted fine particles, the distribution plate 154 and the configuration of the tank 152 can be modified if necessary for best results.

Сушильная установка 150 с псевдоожиженным слоем предпочтительно содержит ротационный воздушный шлюз 176, соединенный с впускным отверстием 164 для подачи влажного угля, для обеспечения уплотнения между трубопроводом подачи угля и сушильной установкой и обеспечения в то же время подачи влажного угля в псевдоожиженный слой 156. Ротационный воздушный шлюз 176 должен иметь литой чугунный корпус с проходом, стенки которого покрыты карбидом никеля. Торцевые крышки шлюза должны быть изготовлены из литого чугуна, и их поверхности должны быть покрыты карбидом никеля. Роторы воздушного шлюза должны быть изготовлены из литого чугуна с закрытым торцом, сглаженными краями и сварной сателлитной шестерней. В одном из вариантов осуществления изобретения размеры воздушного шлюза 176 должны быть подобраны таким образом, чтобы пропускать примерно 115 тонн в час влажного угля, и соответствующая скорость вращения ротора при коэффициенте заполнения 60% должна быть равна примерно 13 об/мин. Воздушный шлюз поставляется с редукторным электродвигателем мощностью 3 л.с. и комплектом для продувки шлюза. В то время как воздушный шлюз 172 приводится непосредственно двигателем, любой дополнительный воздушный шлюз, установленный на дополнительном впускном отверстии для загрузки угля в сушильную установку, может приводиться с помощью цепной передачи. Необходимо заметить, что подходящее покрытие, например, из карбида никеля используется на поверхностях деталей воздушного шлюза из литого чугуна, которые могут повреждаться в результате долговременного абразивного действия частиц угля. На поверхность, покрытую этим материалом, ничего не прилипает.The fluidized bed dryer 150 preferably comprises a rotary air lock 176 connected to a wet coal inlet 164 to provide a seal between the coal feed line and the dryer and at the same time provide wet coal to the fluidized bed 156. The rotary air lock 176 should have a cast iron body with a passage, the walls of which are coated with nickel carbide. The end covers of the airlock should be made of cast iron and their surfaces should be coated with nickel carbide. The rotors of the air lock should be made of cast iron with a closed end, smooth edges and a welded satellite gear. In one embodiment of the invention, the dimensions of the air lock 176 should be selected so as to pass about 115 tons per hour of wet coal, and the corresponding rotor speed at a fill factor of 60% should be about 13 rpm. The airlock comes with a 3 hp gear motor. and a kit for purging the gateway. While the air lock 172 is driven directly by the engine, any additional air lock installed on the additional inlet for loading coal into the drying unit can be driven by a chain drive. It should be noted that a suitable coating, for example, of nickel carbide, is used on the surfaces of cast iron air lock parts that can be damaged by the long-term abrasive action of coal particles. On the surface covered with this material, nothing sticks.

Ротационный воздушный шлюз 178 для продукта размещается сразу за выпускным отверстием 169 для выгрузки высушенного угля 168 по мере того, как он выходит из сушильной установки с псевдоожиженным слоем. В одном из вариантов осуществления изобретения ротационный воздушный шлюз 178 должен иметь литой чугунный корпус с проходом, стенки которого покрыты карбидом никеля. Аналогично, торцевые крышки воздушного шлюза должны быть изготовлены из литого чугуна, и их поверхности должны быть покрыты карбидом никеля. Ротор воздушного шлюза должен быть изготовлен из литого чугуна с закрытым торцом, сглаженными краями и сварной сателлитной шестерней. Скорость вращения воздушного шлюза должна быть равна примерно 19 об/мин при коэффициенте заполнения 60% для того, чтобы обеспечивать необходимый поток продукта. Воздушный шлюз должен быть снабжен редукторным электродвигателем мощностью 2 л.с., цепным приводом и комплектом для продувки шлюза.A rotary product air lock 178 is located immediately after the outlet 169 for discharging dried coal 168 as it leaves the fluidized bed dryer. In one of the embodiments of the invention, the rotary air lock 178 should have a cast iron body with a passage, the walls of which are coated with nickel carbide. Similarly, the end caps of the air lock should be made of cast iron, and their surfaces should be coated with nickel carbide. The rotor of the air lock should be made of cast iron with a closed end, smooth edges and a welded satellite gear. The speed of rotation of the air lock should be approximately 19 rpm with a fill factor of 60% in order to ensure the required product flow. The airlock should be equipped with a 2 hp geared motor, chain drive and airlock purge kit.

Распределительная пластина 154 отделяет зону 158 горячего воздуха, поступающего под давлением, от камер 156 и 162 высушивания сушильной установки. Распределительная пластина предпочтительно должна быть изготовлена из листа углеродистой стали толщиной 3/8 дюйма с отверстиями, выполненными с использованием струи воды под давлением 50000 psi (см. фигуру 5). Распределительная пластина 154 может быть плоской и может быть расположена горизонтально по отношению к сушильной установке 150 с псевдоожиженным слоем. Отверстия 155 должны иметь диаметр порядка 1/8 дюйма и должны быть выполнены от стороны подачи до стороны выгрузки распределительной пластины с шагом примерно 1 дюйм и с расстоянием между рядами отверстий 1/2 дюйма, и должны быть направлены перпендикулярно поверхности пластины. Более предпочтительно отверстия 155 могут быть выполнены под углом примерно 65° к поверхности распределительной пластины, так чтобы воздух 160, подаваемый через отверстия 155, выталкивал частицы угля внутри зоны 156 псевдоожиженного слоя к центру сушильной установки в сторону от боковых стенок. Частицы угля перемещаются в псевдоожиженном слое в направлении стрелки В (см. фигуру 5).A distribution plate 154 separates the hot air zone 158 supplied under pressure from the drying chambers 156 and 162 of the dryer. The distribution plate should preferably be made of 3/8 inch thick carbon steel sheet with openings made using a jet of water under a pressure of 50,000 psi (see Figure 5). The distribution plate 154 may be flat and may be positioned horizontally with respect to the fluidized bed dryer 150. The openings 155 should have a diameter of about 1/8 inch and should be formed from the supply side to the discharge side of the distributor plate in increments of about 1 inch and the distance between the rows of holes 1/2 inch and should be directed perpendicular to the wafer surface. More preferably, the openings 155 can be made at an angle of about 65 ° to the surface of the distribution plate, so that air 160 supplied through the openings 155 pushes out coal particles inside the fluidized bed zone 156 toward the center of the dryer, away from the side walls. The particles of coal move in the fluidized bed in the direction of arrow B (see figure 5).

Другой вариант распределительной пластины 180 показан на фигурах 6 и 7. В отличие от вышеописанной конструкции пластины, имеющей плоскую форму, распределительная пластина 180 состоит из двух секций 182 и 184 с отверстиями, которые имеют плоские части 182а и 184а, закругленные части 182b и 184b и вертикальные части 182с и 184с, соответственно. Для того чтобы сформировать распределительную пластину 180, две вертикальные части 182с и 184с скреплены с помощью болтов 186 и гаек 188. "Плоские" части 182а и 184а распределительной пластины 180 в действительности располагаются с наклоном 5° в направлении средней части сушильной установки для того, чтобы способствовать движению частиц угля в направлении центральной части распределительной пластины. Закругленные части 182b и 184b распределительной пластины вместе образуют полукруглую часть 190, имеющую примерно 1 фут в диаметре для размещения в ней винтового шнека 192, как показано на фигуре 8. Отверстия 183 и 185, просверленные в частях 182 и 184 распределительной пластины, соответственно, также выполняются от стороны подачи до стороны выгрузки с шагом 1 дюйм и с расстоянием 1/2 дюйма между рядами, причем они сверлятся под углом 65° к горизонтальной поверхности сушильной установки. В то время как плоские части 182а и 184а и вертикальные части 182с и 184с секций 182 и 184 распределительной пластины должны быть выполнены из листа углеродистой стали толщиной 3/8 дюйма с отверстиями, выполненными с использованием струи воды под давлением 50000 psi, причем закругленные части 182b и 184b предпочтительно выполняются из листа углеродистой стали толщиной 1/2 дюйма для получения усиленной конструкции вокруг желоба 190 для винтового шнека. Частицы угля перемещаются в псевдоожиженном слое в направлении стрелки С (см. фигуру 6).Another embodiment of the distribution plate 180 is shown in Figures 6 and 7. In contrast to the above-described plate design having a flat shape, the distribution plate 180 consists of two sections 182 and 184 with openings that have flat parts 182a and 184a, rounded parts 182b and 184b and vertical parts 182c and 184c, respectively. In order to form the distribution plate 180, the two vertical parts 182c and 184c are fastened with bolts 186 and nuts 188. The "flat" parts 182a and 184a of the distribution plate 180 are actually inclined 5 ° in the direction of the middle of the dryer so that facilitate the movement of coal particles in the direction of the central part of the distribution plate. The rounded parts 182b and 184b of the distribution plate together form a semicircular part 190 having about 1 foot in diameter for receiving a screw screw 192 therein, as shown in FIG. 8. Holes 183 and 185 drilled in the parts of the distribution plate 182 and 184, respectively, also performed from the feed side to the discharge side with a pitch of 1 inch and a length of 1/2 inch between the rows, wherein they are drilled at an angle of 65 ° to the horizontal surface of the dryer. While the flat portions 182a and 184a and vertical portions 182c and 184s sections 182 and 184 of the distributor plate should be made of a carbon steel plate thickness of 3/8 inch holes, made using a water jet at a pressure of 50,000 psi, wherein the rounded portion 182b and 184b are preferably made of a carbon steel plate thickness of 1/2 inch to obtain a reinforced construction around the groove 190 of the screw auger. The coal particles move in the fluidized bed in the direction of arrow C (see figure 6).

По мере того как частицы угля обрабатываются в зоне 156 псевдоожиженного слоя сушильной установки и перемещаются в направлении стрелки D вдоль псевдоожиженного слоя, более крупные и более плотные частицы будут естественным образом опускаться под действием силы тяжести в нижнюю часть псевдоожиженного слоя. В то же время более легкие частицы угля и выносимые мелкие частицы будут подниматься в верхнюю часть псевдоожиженного слоя, поскольку их относительная плотность меньше. Обычно такие более плотные частицы угля, имеющие увеличенные размеры, будут покрывать поверхность распределительной пластины 180 и закупоривать просверленные отверстия 183 и 185, препятствуя, таким образом, поступлению горячего воздуха 160 под давлением в сушильную установку для создания псевдоожиженного слоя частиц угля. Кроме того, частицы угля могут накапливаться неравномерно по длине сушильной установки, затрудняя, таким образом, необходимое движение потока частиц от стороны подачи к стороне разгрузки сушильной установки. Поэтому возникает необходимость периодически останавливать работу сушильной установки 150 для очистки от частиц увеличенного размера зоны 156 псевдоожиженного слоя для того, чтобы обеспечить беспрепятственную возможность поступления горячего воздуха 160 для создания псевдоожиженного слоя частиц угля и обеспечить их беспрепятственное движение по длине сушильной установки. Необходимость проведения таких работ вступает в противоречие с необходимостью обеспечения режима непрерывной работы сушильной установки.As the coal particles are processed in the fluidized bed zone 156 of the dryer and moved in the direction of the arrow D along the fluidized bed, the larger and denser particles will naturally fall by gravity into the lower part of the fluidized bed. At the same time, lighter particles of coal and small particles carried out will rise to the upper part of the fluidized bed, since their relative density is less. Typically, such denser, larger sized coal particles will cover the surface of the distribution plate 180 and clog the drilled holes 183 and 185, thereby preventing the flow of hot pressurized air 160 into the dryer to create a fluidized bed of coal particles. In addition, coal particles can accumulate unevenly along the length of the drying unit, thereby hampering the necessary movement of the particle stream from the feed side to the discharge side of the drying unit. Therefore, there is a need to periodically stop the operation of the drying unit 150 to clean the particles of the increased size of the zone 156 of the fluidized bed in order to provide unhindered access to hot air 160 to create a fluidized bed of coal particles and to ensure their unhindered movement along the length of the drying unit. The need for such work is in conflict with the need to ensure continuous operation of the drying unit.

Поэтому в зоне 190, имеющей цилиндрическую форму, размещается винтовой шнек 194, как показано на фигуре 8. Этот винтовой шнек должен иметь диаметр 12 дюймов, чтобы обеспечивать удаление порядка 11,5 тонн/час укрупненных частиц угля, и иметь достаточный вращающий момент для того, чтобы он мог начать вращение под слоем частиц угля толщиной 4 фута. В качестве привода используется редукторный электродвигатель мощностью 3 л.с. с понижающим передаточным числом 10. Для обеспечения продолжительного срока службы винтовой шнек 194 должен быть выполнен из углеродистой стали.Therefore, in the cylindrical-shaped zone 190, a screw auger 194 is placed, as shown in FIG. 8. This screw auger must have a diameter of 12 inches in order to remove about 11.5 tons / hour of coarse coal particles, and have sufficient torque to so that it can begin to rotate under a 4-foot-thick layer of coal particles. A 3 hp gear motor is used as a drive. with a reduction gear ratio of 10. To ensure a long service life, the screw auger 194 must be made of carbon steel.

Цилиндрический желоб 190 распределительной пластины 180 и винтовой шнек 194 должны быть перпендикулярны продольной оси сушильной установки. Это дает возможность ребрам 196 винтового шнека в процессе работы захватывать укрупненные частицы угля вдоль нижней части псевдоожиженного слоя и подавать их к одной стороне сушильной установки, в результате чего предотвращается забивание этими укрупненными частицами отверстий в распределительной пластине и создание препятствий для движения потока частиц угля по длине псевдоожиженного слоя сушильной установки.The cylindrical groove 190 of the distribution plate 180 and the screw auger 194 should be perpendicular to the longitudinal axis of the dryer. This allows the ribs 196 of the screw auger during operation to capture coarse coal particles along the lower part of the fluidized bed and feed them to one side of the dryer, which prevents clogging of the holes in the distribution plate with these coarse particles and obstructs the length of coal particles fluidized bed dryer.

На фигуре 9 представлена схема сушильной установки 150 с псевдоожиженным слоем, вид которой приведен на фигуре 4, на которой для упрощения описания для указания одинаковых частей сушильной установки используются одинаковые ссылочные номера. Внешний воздух 160 подается с помощью вентилятора 200 через подогреватель 202, в котором используется источник 204 горения. Часть воздуха 206, который используется для создания псевдоожиженного слоя влажного сортированного угля 12 и который подогревается с помощью подогревателя 202, направляется в зону 156. Для подогревателя 202 может использоваться любой источник горения, такой как уголь, нефть или природный газ.FIG. 9 is a diagram of a fluidized bed dryer 150, shown in FIG. 4, in which, for simplicity of description, the same reference numbers are used to indicate the same parts of the dryer. External air 160 is supplied by a fan 200 through a heater 202 that uses a combustion source 204. Part of the air 206, which is used to create a fluidized bed of moist sorted coal 12 and which is heated by a heater 202, is directed to zone 156. For the heater 202, any combustion source, such as coal, oil, or natural gas, can be used.

В то время как такой подогретый сжижающий воздух 206 может использоваться для нагрева частиц угля 12, которые обрабатываются в зоне 156 псевдоожиженного слоя, и для испарения воды с поверхности частиц путем конвекционной передачи тепла, для обеспечения передачи тепла частицам угля для дальнейшего улучшения указанного процесса нагрева и высушивания предпочтительно используется теплообменник 208, размещенный внутри псевдоожиженного слоя. В этом случае создается первичный источник тепла путем отбора части горячего воздуха 206 (подогретого подогревателем 202) и подачи его в теплообменник 208, который проходит через псевдоожиженный слой 156 для нагрева угля с целью удаления из него влаги. Воздух 206, выходящий из внутреннего теплообменника 208, возвращается в вентилятор 200 для повторной подачи для нагрева в подогреватель 202. Имеют место некоторые потери сжижающего воздуха 206, когда он непосредственно входит в зону 156 псевдоожиженного воздуха через зону 158 повышенного давления. Эти потери возмещаются за счет забора дополнительного наружного воздуха 160 и включения его в контур циркуляции воздуха.While such heated fluidizing air 206 can be used to heat coal particles 12, which are processed in the fluidized bed zone 156, and to evaporate water from the surface of the particles by convection heat transfer, to provide heat transfer to the coal particles to further improve said heating process and for drying, preferably a heat exchanger 208 is used located inside the fluidized bed. In this case, a primary heat source is created by taking part of the hot air 206 (heated by a heater 202) and supplying it to the heat exchanger 208, which passes through the fluidized bed 156 to heat the coal in order to remove moisture from it. Air 206 exiting the internal heat exchanger 208 is returned to the fan 200 for re-supply for heating to the heater 202. There is some loss of fluidizing air 206 when it directly enters the fluidized air zone 156 through the pressure zone 158. These losses are recovered through the collection of additional external air 160 and its inclusion in the air circuit.

Схема, приведенная на фигуре 10, иллюстрирует другой вариант одноступенчатой сушильной установки 150 с одним резервуаром, представленной на фигуре 4, за исключением того, что вместо подогревателя 202 используется внешний теплообменник 210, в котором для подогрева используется отработанное производственное тепло 212 из окружающего промышленного предприятия. Поскольку промышленные предприятия, подобные тепловым электростанциям, обычно содержат источники отработанного производственного тепла, которое в противном случае выбрасывалось бы в окружающую среду, то техническое решение настоящего изобретения дает возможность продуктивного использования этого отработанного тепла для нагрева и высушивания влажного угля 12 в сушильной установке 150 с псевдоожиженным слоем для того, чтобы повысить экономическую эффективность сжигания этого высушенного угля. Использование первичного источника тепла, такого как уголь, нефть или природный газ, как показано на фигуре 9, для высушивания частиц угля является более дорогостоящим решением.The diagram shown in FIG. 10 illustrates another embodiment of a single-tank single-stage dryer 150 shown in FIG. 4, except that instead of a heater 202, an external heat exchanger 210 is used in which waste production heat 212 from a surrounding industrial plant is used for heating. Since industrial enterprises, like thermal power plants, usually contain sources of waste production heat that would otherwise be emitted into the environment, the technical solution of the present invention enables the efficient use of this waste heat to heat and dry wet coal 12 in a fluidized-bed dryer 150 layer in order to increase the economic efficiency of burning this dried coal. Using a primary heat source, such as coal, oil, or natural gas, as shown in FIG. 9, for drying coal particles is a more expensive solution.

На фигуре 11 иллюстрируется еще один вариант одноступенчатой сушильной установки 150 с одним резервуаром, аналогичной установке, представленной на фигуре 10, за исключением того, что отработанное производственное тепло 212 не используется в качестве источника тепла одновременно для внешнего 210 и для внутреннего 208 теплообменников. В этом случае во внутренний теплообменник 208, размещенный в псевдоожиженном слое, подается часть горячей воды 222 охлаждения конденсатора электростанции, отбираемой для подачи в качестве требуемого источника тепла. Таким образом, в варианте 220 сушильной установки с псевдоожиженным слоем, схема которой представлена на фигуре 11, для повышения эффективности процесса сушки угля используются два независимых источника отработанного тепла (а именно: отработанное производственное тепло и горячая вода охлаждения конденсатора).Figure 11 illustrates another embodiment of a single-stage single-tank drying plant 150 similar to that shown in Figure 10, except that the waste production heat 212 is not used as a heat source for both the external 210 and the internal 208 heat exchangers. In this case, a portion of the hot condenser cooling water 222 of the power plant selected for supply as the required heat source is supplied to the internal fluidized bed heat exchanger 208. Thus, in embodiment 220 of a fluidized bed dryer, the circuit of which is shown in FIG. 11, two independent sources of waste heat are used to increase the efficiency of the coal drying process (namely, waste production heat and condenser cooling hot water).

На фигуре 12 представлена схема еще одного варианта одноступенчатой сушильной установки 230 с псевдоожиженным слоем, аналогичной установке, схема которой представлена на фигуре 11, за исключением того, что вместо горячей воды охлаждения конденсатора в качестве источника тепла для внутреннего теплообменника 208 используется горячий производственный пар 232, отобранный из контура паровой турбины тепловой электростанции. Снова, как и в предыдущем варианте, в сушильной установке 230 с псевдоожиженным слоем для повышения эффективности процесса сушки угля используются два разных источника отработанного тепла (отработанное производственное тепло 212 и горячий производственный пар 232).12 is a diagram of another embodiment of a single-stage fluidized bed dryer 230, similar to that shown in FIG. 11, except that instead of hot condenser cooling water, hot production steam 232 is used as a heat source for internal heat exchanger 208, selected from the steam turbine circuit of a thermal power plant. Again, as in the previous embodiment, two different sources of waste heat (waste production heat 212 and hot production steam 232) are used in the fluidized bed dryer 230 to increase the efficiency of the coal drying process.

Еще один вариант одноступенчатой сушильной установки 240 с псевдоожиженным слоем, содержащей один резервуар, с вторичным источником тепла представлен на фигурах 13-14. Вторичным источником тепла для внутреннего теплообменника 208, размещенного в псевдоожиженном слое, является вода или другой жидкий теплоноситель 242, который нагревается во внешнем теплообменнике 210 воздухом 206, используемым для создания псевдоожиженного слоя, горячей водой 222 охлаждения конденсатора, производственным паром 232, отобранным из контура паровой турбины, или горячими топочными газами 248 из дымовой трубы и затем подается во внутренний теплообменник 208 с помощью насоса 246, как показано на фигуре 13. Могут также использоваться любые сочетания вышеуказанных (и других) источников тепла.Another embodiment of a single-stage fluidized bed dryer 240 containing one reservoir with a secondary heat source is shown in FIGS. 13-14. The secondary heat source for the internal fluidized bed heat exchanger 208 is water or other liquid heat carrier 242, which is heated in the external heat exchanger 210 by the air 206 used to create the fluidized bed, condenser cooling hot water 222, production steam 232 taken from the steam circuit turbines, or hot flue gases 248 from the chimney and then fed into the internal heat exchanger 208 using a pump 246, as shown in figure 13. Can also be used any a combination of the above (and other) heat sources.

На фигурах 15-16 представлен еще один вариант конструкции низкотемпературной сушильной установки с псевдоожиженным слоем с открытым контуром в соответствии с настоящим изобретением, которая является многоступенчатой сушильной установкой 250 с одним резервуаром, в которой во внутреннем теплообменнике 208 используется первичный источник тепла (горячая вода 252 охлаждения конденсатора из градирни электростанции). Резервуар 152 разделен на две ступени: первую ступень 254 и вторую ступень 256. Хотя на фигурах 15-16 иллюстрируется двухступенчатая сушильная установка, однако могут использоваться дополнительные ступени, обеспечивающие дополнительную обработку. Как правило, влажный сортированный уголь 12 поступает в первую ступень 254 сушильной установки 250 с псевдоожиженным слоем через верхнюю зону 162 в точке 164 впуска. Влажный сортированный уголь 12 предварительно подогревается и частично высушивается (а именно, удаляется часть поверхностной влаги) горячей водой 252 охлаждения конденсатора, которая поступает в змеевик внутреннего теплообменника 258, размещенного внутри первой ступени 254 (непосредственный нагрев), циркулирует в нем и выходит из него. Влажный сортированный уголь 12 также подогревается и обрабатывается в псевдоожиженном слое горячим сжижающим воздухом 206. Воздух 206 подается вентилятором 200 через распределительную пластину 154 первой ступени 254 сушильной установки 250 с псевдоожиженным слоем после того, как он нагревается отработанным производственным теплом 212 во внешнем теплообменнике 210.Figures 15-16 show another design of an open circuit low temperature fluidized bed dryer in accordance with the present invention, which is a multi-stage single-tank dryer 250 in which a primary heat source is used in the internal heat exchanger 208 (cooling hot water 252 condenser from the cooling tower of a power plant). The tank 152 is divided into two stages: a first stage 254 and a second stage 256. Although a two-stage drying unit is illustrated in Figures 15-16, additional stages may be used to provide additional processing. Typically, wet sorted coal 12 enters the first stage 254 of a fluidized bed dryer 250 through an upper zone 162 at an inlet point 164. Wet sorted coal 12 is preheated and partially dried (namely, part of the surface moisture is removed) with condenser cooling hot water 252, which enters the coil of the internal heat exchanger 258 located inside the first stage 254 (direct heating), and circulates in it and leaves it. Wet sorted coal 12 is also heated and treated in a fluidized bed with hot fluidizing air 206. Air 206 is supplied by a fan 200 through a distribution plate 154 of a first stage 254 of a fluidized bed dryer 250 after it is heated by waste production heat 212 in an external heat exchanger 210.

В первой ступени 254 поток горячего сжижающего воздуха 206 пропускается через влажный сортированный уголь 12, находящийся на распределительной пластине 154, для его высушивания и для разделения частиц угля на поддающиеся псевдоожижению и не поддающиеся псевдоожижению. Более тяжелые или более плотные частицы, не поддающиеся псевдоожижению, отделяются и накапливаются в нижней части псевдоожиженного слоя на распределительной пластине 154. Затем эти частицы, не поддающиеся псевдоожижению ("тяжелые" частицы), выгружаются из первой ступени 254 как Поток 1 (260), как это более подробно описано в патентной заявке США, поданной в один день с настоящей заявкой, с указанием того же соавтора и владельца, что и в настоящей заявке, которая является частичным продолжением патентной заявки США № 11/107,153, поданной 15 апреля 2005 г.; причем обе заявки вводятся ссылкой в настоящую заявку. Сушильные установки с псевдоожиженным слоем в общем случае обеспечивают возможность обработки слоя материала, не поддающегося псевдоожижению, толщиной до четырех дюймов, который скапливается в нижней части псевдоожиженного слоя. Материал, который не поддается псевдоожижению, может составлять до 25% всего угля, загружаемого в сушильную установку. Этот поток 260 может быть направлен для обработки в другом обогатительном процессе или может быть просто отброшен. Движение отделенного материала вдоль распределительной пластины 154 к точке выгрузки потока 260 осуществляется за счет наклона распределительной пластины 154, как показано на фигуре 16. Таким образом, в первой ступени 254 осуществляется разделение материалов, поддающихся псевдоожижению и не поддающихся псевдоожижению, предварительный нагрев и высушивание влажного сортированного угля 12, и обеспечивается однородный поток влажного сортированного угля 12 во вторую ступень 256 сушильной установки 250 с псевдоожиженным слоем. Псевдоожиженный уголь 12 перетекает из первой ступени 254 через первую перегородку 262 во вторую ступень 256 сушильной установки 250. В этой второй ступени сушильной установки 250 псевдоожиженный уголь 12 дополнительно нагревается и высушивается до необходимого конечного уровня содержания влаги, причем горячая вода 252 охлаждения конденсатора поступает в змеевик внутреннего теплообменника 264, размещенного во второй ступени 256, циркулирует и выходит из него, в результате чего излучается тепло. Уголь 12 также нагревается, высушивается и осуществляется его псевдоожижение с помощью горячего сжижающего воздуха 206, нагнетаемого вентилятором через распределительную пластину 154 во вторую ступень 256 сушильной установки 250 после того, как он нагревается отработанным производственным теплом 212 во внешнем теплообменнике 210.In the first stage 254, a stream of hot fluidizing air 206 is passed through moist sorted coal 12 located on the distribution plate 154 to dry it and to separate the coal particles into fluidizable and non-fluidizable ones. Heavier or denser, non-fluidizable particles are separated and accumulate in the lower part of the fluidized bed on the distribution plate 154. Then, these non-fluidizable particles (“heavy” particles) are discharged from the first stage 254 as Stream 1 (260), as described in more detail in the US patent application filed on the same day as this application, indicating the same co-author and owner as in this application, which is a partial continuation of US patent application No. 11 / 107,153, filed April 15, 2005. ; moreover, both applications are entered by reference in this application. Fluidized bed dryers generally provide the ability to process a bed of non-fluidizable material up to four inches thick that accumulates at the bottom of the fluidized bed. Material that cannot be fluidized can make up to 25% of all coal loaded into the drying plant. This stream 260 may be directed for processing in another enrichment process, or may simply be discarded. The movement of the separated material along the distribution plate 154 to the discharge point of the stream 260 is due to the inclination of the distribution plate 154, as shown in figure 16. Thus, in the first stage 254, materials that are fluidizable and not amenable to fluidization are separated, pre-heated and dried wet sorted coal 12, and a uniform flow of wet sorted coal 12 is provided to the second stage 256 of a fluidized bed dryer 250. Fluidized coal 12 flows from the first stage 254 through the first baffle 262 into the second stage 256 of the drying unit 250. In this second stage of the drying unit 250, the fluidized coal 12 is further heated and dried to the desired final moisture content, with the condenser cooling water 252 entering the coil the internal heat exchanger 264, located in the second stage 256, circulates and leaves it, as a result of which heat is radiated. Coal 12 is also heated, dried and fluidized using hot liquefying air 206, which is pumped by a fan through a distribution plate 154 into the second stage 256 of the drying unit 250 after it is heated by the waste production heat 212 in an external heat exchanger 210.

Поток высушенного угля перетекает через вторую перегородку 266 на стороне 169 выгрузки сушильной установки 250 с псевдоожиженным слоем, а поток 166 выносимых мелких частиц и влажного воздуха выпускается через верхнюю часть сушильной установки. Вторая ступень 256 также может использоваться для дополнительного отделения от угля 12 зольной пыли и других примесей. Отделяемый материал, обозначенный на фигуре 16 как Потоки 2 (268) и 3 (270), будет удаляться из второй ступени 256 через ряд точек 268 и 270 выгрузки, расположенных в нижней части псевдоожиженного слоя сушильной установки 250 (или в других подходящих точках). Число точек выгрузки может быть изменено в зависимости от размеров и других характеристик частиц влажного сортированного угля 12, в частности от характера вредных примесей, параметров псевдоожижения и конфигурации псевдоожиженного слоя. Перемещение выделяемого материала к точкам 260, 268 и 270 выгрузки может осуществляться с помощью наклонной распределительной пластины 154, показанной на фигуре 16, или могут использоваться подходящие горизонтальные распределительные пластины, имеющиеся на рынке. Потоки 1, 2 и 3 могут либо удаляться из процесса для захоронения или для дальнейшей обработки с целью отделения вредных примесей.The dried coal stream flows through a second baffle 266 on the discharge side 169 of the fluidized bed dryer 250, and a stream of fine particles and moist air 166 is discharged through the top of the dryer. The second stage 256 can also be used to further separate fly ash and other impurities from coal 12. The detachable material, indicated in Figure 16 as Streams 2 (268) and 3 (270), will be removed from the second stage 256 through a series of discharge points 268 and 270 located at the bottom of the fluidized bed of the drying unit 250 (or at other suitable points). The number of discharge points can be changed depending on the size and other characteristics of the particles of wet sorted coal 12, in particular on the nature of the harmful impurities, the parameters of the fluidization and the configuration of the fluidized bed. The release of material to the discharge points 260, 268 and 270 can be carried out using the inclined distribution plate 154 shown in FIG. 16, or suitable horizontal distribution plates available on the market can be used. Streams 1, 2 and 3 can either be removed from the process for disposal or for further processing in order to separate harmful impurities.

Поток ожижающего воздуха 206 охлаждается и увлажняется по мере того, как он проходит через псевдоожиженный слой сушильной установки 250 влажного сортированного угля 12, содержащегося в первой 254 и второй 256 ступенях псевдоожиженного слоя 156. Количество влаги, которое может быть удалено из угля 12 внутри псевдоожиженного слоя, ограничивается сушильной способностью потока ожижающего воздуха 206. Таким образом, тепло, вводимое в псевдоожиженный слой 156 змеевиками внутренних теплообменников 258 и 264, увеличивает сушильную способность потока воздуха 206 и уменьшает количество воздуха, которое необходимо для обеспечения необходимого уровня сушки угля. Если теплопередающая поверхность внутри псевдоожиженного слоя имеет достаточную величину, то поток высушивающего воздуха 206 может быть уменьшен до уровня, соответствующего минимальной скорости, необходимой для поддержания частиц во взвешенном состоянии. Эта скорость обычно составляет величину порядка 0,8 м/с, но на практике следует использовать более высокие скорости, порядка 1,4 м/с, чтобы гарантировать, что скорость не упадет ниже минимальной величины.The fluidizing air stream 206 is cooled and moistened as it passes through the fluidized bed of the drying plant 250 of wet sorted coal 12 contained in the first 254 and second 256 stages of the fluidized bed 156. The amount of moisture that can be removed from coal 12 inside the fluidized bed is limited by the drying ability of the fluidizing air stream 206. Thus, the heat introduced into the fluidized bed 156 by the coils of the internal heat exchangers 258 and 264 increases the drying ability of the air flow 206 and reduces the amount of air that is needed to provide the required level of drying of coal. If the heat transfer surface inside the fluidized bed is of sufficient size, then the flow of drying air 206 can be reduced to a level corresponding to the minimum speed necessary to maintain the particles in suspension. This speed is usually of the order of 0.8 m / s, but in practice higher speeds of the order of 1.4 m / s should be used to ensure that the speed does not fall below the minimum value.

Для достижения максимальной высушивающей способности поток ожижающего воздуха 206 выходит из псевдоожиженного слоя 156 в состоянии насыщения (то есть его относительная влажность равна 100%). Для предотвращения конденсации влаги в верхней части 162 сушильной установки 250 с псевдоожиженным слоем и в других частях оборудования дальше по потоку установка 250 сушки угля сконструирована так, чтобы относительная влажность выходящего воздуха была меньше 100%. Кроме того, часть горячего ожижающего воздуха 206 может быть пущена в обход псевдоожиженного слоя 156 и далее может смешиваться в верхней зоне 162 с насыщенным воздухом для снижения его относительной влажности, как указано более подробно ниже. В качестве альтернативного варианта внутри верхней зоны 162 могут быть размещены поверхности дополнительного подогрева, или же может использоваться подогрев оболочки резервуара или другие технические средства для повышения температуры и уменьшения относительной влажности воздуха 206, выходящего из сушильной установки 250, для предотвращения конденсации влаги в оборудовании, расположенном дальше по потоку. Количество влаги, извлеченной в сушильной установке, прямо пропорционально количеству тепла, содержащегося в ожижающем воздухе 206, и количеству тепла, излучаемого внутренними теплообменниками. Чем больше тепла вводится, тем выше температура псевдоожиженного слоя и температура выходящего воздуха, то есть улучшается способность воздуха по транспортировке влаги, в результате чего уменьшается удельное количество воздуха, необходимого для обеспечения определенного уровня высушивания угля. Требования по мощности, необходимой для высушивания, зависят от потока воздуха и перепада давления, создаваемого вентилятором. Способность дополнительной подачи тепла в псевдоожиженный слой зависит от разности температур слоя и нагревающей воды, коэффициента теплопередачи и площади поверхности теплообменника. Поэтому в случае использования отработанного тепла при пониженных температурах, требуется бóльшая площадь теплопередающей поверхности для подачи тепла в процесс. Это в большинстве случаев означает увеличение толщины псевдоожиженного слоя для обеспечения достаточного объема для размещения змеевиков внутренних теплообменников. Таким образом, выполнение заявленных целей может требовать точного выдерживания размеров и конфигурации конструкции предлагаемой в изобретении сушильной установки с псевдоожиженным слоем.To achieve maximum drying capacity, the fluidizing air stream 206 exits the fluidized bed 156 in a saturated state (i.e., its relative humidity is 100%). To prevent moisture condensation in the upper part 162 of the fluidized bed dryer 250 and in other parts of the equipment downstream, the coal drying unit 250 is designed so that the relative humidity of the exhaust air is less than 100%. In addition, part of the hot fluidizing air 206 may be bypassed by the fluidized bed 156 and further mixed in the upper zone 162 with saturated air to reduce its relative humidity, as described in more detail below. Alternatively, additional heating surfaces may be placed inside the upper zone 162, or heating of the tank shell or other technical means may be used to increase the temperature and reduce the relative humidity of the air 206 exiting the dryer 250 to prevent moisture condensation in the equipment located downstream. The amount of moisture recovered in the dryer is directly proportional to the amount of heat contained in the fluidizing air 206 and the amount of heat emitted by the internal heat exchangers. The more heat that is introduced, the higher the temperature of the fluidized bed and the temperature of the exhaust air, that is, the ability of the air to transport moisture improves, resulting in a decrease in the specific amount of air required to provide a certain level of drying of coal. The power requirements for drying depend on the air flow and pressure drop generated by the fan. The ability to provide additional heat to the fluidized bed depends on the temperature difference between the bed and the heating water, the heat transfer coefficient, and the surface area of the heat exchanger. Therefore, in the case of using waste heat at low temperatures, a larger area of the heat transfer surface is required to supply heat to the process. This in most cases means increasing the thickness of the fluidized bed to provide sufficient volume to accommodate the coils of internal heat exchangers. Thus, the fulfillment of the stated objectives may require accurate adherence to the dimensions and configuration of the design proposed in the invention of a fluidized bed dryer.

Потоки угля, поступающие в сушильную установку и выгружаемые из нее, включают влажный сортированный уголь 12, поток обработанного угля, поток 166 выносимых мелких частиц и потоки 260, 268 и 270 тяжелых частиц. Для выгрузки частиц угля, не поддающихся псевдоожижению, сушильная установка 250 снабжена винтовым шнеком 194, размещенным в цилиндрической зоне 190 распределительной пластины 254 первой ступени, а также бункерным накопителем и скруббером для накопления осевших частиц угля, как описано более подробно ниже. Указанный винтовой шнек и скруббер более подробно описаны в патентной заявке США, которая была подана в один день с настоящей заявкой с указанием одного и того же соавтора и владельца и которая является частичным продолжением патентной заявки США № 11/107,153, поданной 15 апреля 2005 г.; причем обе заявки вводятся ссылкой в настоящую заявку.The coal streams entering and discharging from the dryer include wet sorted coal 12, a treated coal stream, a fine particle stream 166, and heavy particle streams 260, 268, and 270. For unloading coal particles that are not amenable to fluidization, the drying unit 250 is equipped with a screw screw 194 located in the cylindrical zone 190 of the distribution plate 254 of the first stage, as well as a hopper storage and scrubber for accumulating settled coal particles, as described in more detail below. The specified screw auger and scrubber are described in more detail in the US patent application, which was filed on the same day as this application with the same co-author and owner, and which is a partial continuation of US patent application No. 11 / 107,153, filed April 15, 2005. ; moreover, both applications are entered by reference in this application.

К типичным компонентам комплекса сушильной установки относятся в частности: оборудование подачи угля, бункер для складирования угля, сушильная установка с псевдоожиженным слоем, система подачи и подогрева воздуха, внутренние теплообменники, очистные устройства (пылеулавливатель), контрольно-измерительная аппаратура и система управления и сбора данных. В одном из вариантов осуществления изобретения для подачи влажного угля в сушильную установку и выгрузки из нее высушенного продукта используются винтовые шнеки. Для регулирования скорости подачи и обеспечения воздушного шлюза в каналах подачи и выгрузки угля могут использоваться лопаточные загрузчики. Тензодатчики угольного бункера обеспечивают необходимую интенсивность подачи и общее количество угля, подаваемого в сушильную установку. Контрольно-измерительная аппаратура может включать, в частности, термопары, датчики давления, измерители влажности воздуха, расходомеры и датчики деформаций.Typical components of a drying plant complex include, but are not limited to: coal supply equipment, a coal storage bin, a fluidized bed dryer, an air supply and heating system, internal heat exchangers, purification devices (dust collector), instrumentation and a control and data acquisition system . In one embodiment of the invention, screw augers are used to feed wet coal into the drying unit and discharge the dried product from it. To control the feed rate and provide an air lock in the channels of coal supply and discharge, blade loaders can be used. The coal hopper load sensors provide the necessary feed rate and the total amount of coal supplied to the drying unit. Instrumentation may include, in particular, thermocouples, pressure sensors, air humidity meters, flow meters and strain gauges.

В сушильных установках с псевдоожиженным слоем в первой ступени осуществляется предварительный подогрев и отделение материала, не поддающегося псевдоожижению. Она может иметь конструкцию небольшой высокопроизводительной камеры, используемой для разделения угля. Во второй ступени уголь высушивается в результате испарения содержащейся в нем влаги благодаря разнице парциальных давлений воздушных паров и угля. В предпочтительном варианте осуществления изобретения большая часть влаги удаляется во второй ступени.In a fluidized-bed dryer in the first stage, preheating and separation of non-fluidizable material are carried out. It may have the design of a small high-performance chamber used to separate coal. In the second stage, the coal is dried by evaporation of the moisture contained in it due to the difference in partial pressures of air vapor and coal. In a preferred embodiment, most of the moisture is removed in the second stage.

Трубчатые нагревательные элементы 280 теплообменников 258 и 264, размещенных внутри псевдоожиженного слоя сушильной установки 250, более подробно изображены на фигурах 17-18. Каждый трубчатый нагревательный элемент, представляющий две трубки, соединенные с помощью U-образного соединительного элемента, изготовлен из углеродистой стали и соединен с баком 284 для воды, закрытым крышкой и имеющим входной 286 и выходной 288 фланцы и подъемные проушины 290. Эти пакеты трубчатых нагревательных элементов предназначены для работы при давлении 150 psig и температуре 300°F с фланцами 150# ANSI для впускного 286 и выпускного 288 отверстий для воды. Трубчатые нагревательные элементы 280 расположены по ширине первой 254 и второй 256 ступеней сушильной установки, и по длине пакетов трубчатых нагревательных элементов распределены поддерживающие пластины 292 с подъемными проушинами, которые обеспечивают опору в боковом направлении.Tubular heating elements 280 of heat exchangers 258 and 264, located inside the fluidized bed of the drying unit 250, are shown in more detail in figures 17-18. Each tubular heating element, representing two tubes connected by a U-shaped connecting element, is made of carbon steel and connected to a water tank 284, a closed lid and having inlet 286 and outlet 288 flanges and lifting eyes 290. These packages of tubular heating elements Designed to operate at 150 psig and 300 ° F with 150 # ANSI flanges for inlet 286 and outlet 288 water holes. Tubular heating elements 280 are located across the width of the first 254 and second 256 steps of the drying unit, and support plates 292 with lifting eyes that provide lateral support are distributed along the length of the packages of tubular heating elements.

Один из вариантов теплообменника 258 первой ступени содержит 50 трубчатых нагревательных элементов 280, имеющих диаметр 11/2 дюйма и изготовленных из углеродистой стали Sch 40 SA-214, с ребрами, имеющими высоту, равную 1/2 дюйма, шаг - 1/2 дюйма, толщину - 16, причем спиральные приваренные ребра из углеродистой стали имеют проход, равный 1 дюйму по горизонтали и 11/2 дюйма по диагонали. При этом теплообменник 264 второй ступени сушильной установки может состоять из одного пакета длинных трубчатых элементов или из нескольких пакетов трубчатых элементов, соединенных последовательно, в зависимости от длины второй ступени. Теплообменник 264 второй ступени в общем случае состоит из труб, имеющих внешний диаметр 1-11/2 дюйма и толщину стенки 10 BWG и изготовленных из углеродистой стали SA-214, с ребрами, имеющими высоту, равную 1/4-1/2 дюйма, шаг - 1/2-3/4 дюйма, толщину - 16, причем спиральные приваренные ребра из углеродистой стали имеют проход, равный 1 дюйму по горизонтали и 11/2 дюйма по диагонали. В одном из вариантов осуществления настоящего изобретения теплообменник второй ступени содержит 110-140 труб. Общая площадь поверхности пакетов трубчатых элементов теплообменников 258 и 264 первой и второй ступеней, соответственно, составляет примерно 8483 фут2.One of the heat exchanger embodiment 258 of the first stage comprises 50 of tubular heating elements 280 having a diameter of 1 1/2 inches and constructed of carbon steel Sch 40 SA-214, with ribs having a height equal to 1/2 inch, Step - 1/2 inches , thickness - 16, wherein the spiral welded carbon steel fins have a passage of 1 inch horizontally and a 1 1/2 inches on the diagonal. Moreover, the heat exchanger 264 of the second stage of the drying installation may consist of one package of long tubular elements or several packages of tubular elements connected in series, depending on the length of the second stage. The heat exchanger 264 of the second stage generally consists of a pipe having an outer diameter of 1-1 1/2 inches and a wall thickness of 10 BWG and made from SA-214 carbon steel with ribs having a height equal to a 1/4 - 1/2 inches step - 1/2 - 3/4 inch, thickness - 16, wherein the spiral welded carbon steel fins have a passage of 1 inch horizontally and a 1 1/2 inches on the diagonal. In one embodiment, the second stage heat exchanger comprises 110-140 pipes. The total surface area of the stack of tubular elements of the heat exchangers 258 and 264 of the first and second stages, respectively, is approximately 8483 ft 2 .

Перегородка 262 первой ступени показана более подробно на фигуре 19. Она тянется по всей ширине сушильной установки 250 с псевдоожиженным слоем между первой 254 и второй 256 ступенями. Поскольку ширина сушильной установки составляет 14 футов, то регулируемая переливная перегородка состоит из двух панелей 300 и 302. Панели 300 и 302 перегородки содержат нижние секции 301 и 303, соответственно, приваренные к нижней части сушильной установки и к ее боковым стенкам, и регулируемые верхние секции 304 и 305, которые могут перемещаться по вертикали внутри направляющих, размещенных на боковых стенках, и подвешены на цепях 308, закрепленных на опорной трубе 310 квадратного сечения 5×5 дюймов, которая проходит по всей ширине сушильной установки. С помощью этих цепей обеспечивается перемещение верхних секций 304, 305 панелей регулируемой переливной перегородки по вертикали для регулирования высоты перегородки. Выравнивание распределения псевдоожиженных частиц угля по ширине перегородки обеспечивается с помощью отверстий 314 в верхних секциях перегородки, в результате чего поддерживается равномерность толщины слоя частиц угля по ширине сушильной установки. В каждой панели перегородки имеются по три отверстия 315, которые имеют форму ромба с длиной сторон, равной 12 дюймам. Однако могут использоваться и другие формы, размеры и количество отверстий в зависимости от характеристик псевдоожиженного слоя сушильной установки 250. По мере того как верхние секции панелей перегородки смещаются по отношению к нижним секциям, размер этих отверстий может увеличиваться или уменьшаться для обеспечения определенной степени регулирования высоты перегородки.The partition 262 of the first stage is shown in more detail in figure 19. It stretches across the entire width of the fluidized bed dryer 250 between the first 254 and second 256 steps. Since the width of the dryer is 14 feet, the adjustable overflow partition consists of two panels 300 and 302. The partition panels 300 and 302 contain lower sections 301 and 303, respectively, welded to the lower part of the dryer and its side walls, and adjustable upper sections 304 and 305, which can be moved vertically inside the rails located on the side walls, and suspended on chains 308, mounted on a support pipe 310 of square cross section 5 × 5 inches, which runs across the entire width of the drying unit. Using these chains, the upper sections 304, 305 of the adjustable overflow partition panels are moved vertically to control the height of the partition. Alignment of the distribution of fluidized coal particles along the width of the partition is provided by holes 314 in the upper sections of the partition, as a result of which the uniformity of the thickness of the layer of coal particles across the width of the drying unit is maintained. Each partition panel has three openings 315, which are diamond-shaped with a side length of 12 inches. However, other shapes, sizes, and number of holes may be used depending on the characteristics of the fluidized bed of the drying unit 250. As the upper sections of the partition panels move relative to the lower sections, the size of these holes may increase or decrease to provide a certain degree of regulation of the height of the partition .

Перегородка 266 на стороне разгрузки второй ступени 256 сушильной установки более подробно изображена на фигуре 20. Как и в случае первой регулируемой переливной перегородки 262, вторая регулируемая переливная перегородка 266 состоит из двух панелей 320 и 322 с нижними секциями 321, 323, приваренными к нижней части и к боковым стенкам сушильной установки. Верхние регулируемые секции 324, 325 могут перемещаться по вертикали вдоль направляющих, размещенных на боковых стенках сушильной установки, и, подвешены за верхние края 328 на цепях 332, закрепленных на опорной трубе 330 квадратного сечения 5×5 дюймов, которая проходит по всей ширине сушильной установки. Так же, как и в предыдущем варианте, для выравнивания распределения частиц угля вдоль регулируемой переливной перегородки используются отверстия 334, имеющие форму ромбов, длина сторон которых предпочтительно равна 12 дюймам.The partition 266 on the discharge side of the second stage 256 of the drying unit is shown in more detail in Figure 20. As with the first adjustable overflow partition 262, the second adjustable overflow partition 266 consists of two panels 320 and 322 with lower sections 321, 323 welded to the bottom and to the side walls of the dryer. The upper adjustable sections 324, 325 can be moved vertically along the guides located on the side walls of the dryer, and are suspended by the upper edges 328 on chains 332, mounted on a support tube 330 square section 5 × 5 inches, which runs along the entire width of the dryer . As in the previous embodiment, to align the distribution of coal particles along the adjustable overflow baffle, diamond-shaped holes 334 are used, the sides of which are preferably 12 inches long.

В качестве нижних секций панелей распределительной перегородки используются поворотные затворы 336 и 338. Поворотные затворы соединены с регулируемой переливной перегородкой с помощью петель и приводятся в действие воздушными цилиндрами 340 и 342 с помощью соответствующих соединительных элементов для открытия и закрытия проемов 344 размерами 8 дюймов на 3 фута, имеющихся в каждой панели регулируемой переливной перегородки. Когда поворотные затворы открыты, псевдоожиженные частицы угля во второй ступени 256 сушильной установки могут падать в разгрузочные бункеры 346, из которых затем высушенный уголь выгружается из сушильной установки. Распределительные перегородки изготавливаются из листовой углеродистой стали толщиной 1/2 дюйма.As the lower sections of the distribution partition panels, butterfly valves 336 and 338 are used. Butterfly valves are connected to an adjustable overflow partition by means of hinges and are actuated by air cylinders 340 and 342 by means of corresponding connecting elements for opening and closing openings 344 measuring 8 inches by 3 feet available in each panel of an adjustable overflow partition. When the butterfly valves are open, fluidized coal particles in the second stage 256 of the drying plant may fall into the discharge bins 346, from which the dried coal is then discharged from the drying plant. Distributing partitions are made of carbon steel sheet of thickness 1/2 inch.

Рассеивающая труба 350, размещенная в верхней зоне 162 сушильной установки 250, способствует поддержанию влажности воздуха в этой зоне выше точки росы. Это важно, поскольку влага, испарившаяся из частиц угля в псевдоожиженном слое, поднимается в верхнюю зону сушильной установки, и влажность в этой зоне повышается. При определенных температурных условиях влага, содержащаяся в воздухе, будет конденсироваться, и водяные капли могут падать в псевдоожиженный слой, в результате чего частицы угля будут слипаться и могут нарушать работу псевдоожиженного слоя и забивать распределительную пластину.The diffusion pipe 350, located in the upper zone 162 of the drying unit 250, helps to maintain air humidity in this zone above the dew point. This is important because the moisture evaporated from the coal particles in the fluidized bed rises in the upper zone of the drying unit, and the humidity in this zone rises. Under certain temperature conditions, the moisture contained in the air will condense and water droplets may fall into the fluidized bed, as a result of which the coal particles will stick together and may interfere with the functioning of the fluidized bed and clog the distribution plate.

Конструкция рассеивающей трубы иллюстрируется на фигуре 21. Она состоит из ряда соединенных между собой трубных секций 352, 354, 356 с концами 358 и 360. Конец 358 выходит в сушильную установку, как показано на фигуре 15. Конец 360 подающей трубы 350 подсоединен к воздуховоду 362, отходящему от трубопровода, по которому в две ступени сушильной установки подается горячий воздух для создания псевдоожиженного слоя. Таким образом, часть горячего воздуха 206 с помощью рассеивающей трубы 350 может подаваться в верхнюю зону сушильной установки. Рассеивающая труба 350 предпочтительно имеет диаметр 20 дюймов, и в ней выполнены три ряда отверстий 364 диаметром 1 дюйм для подачи горячего воздуха по всей ширине сушильной установки 250 с псевдоожиженным слоем. Рассеивающая труба предпочтительно размещается в верхней зоне сушильной установки возле стороны первой ступени, поскольку основная часть влаги, образующаяся в сушильной установке, может накапливаться именно здесь. Кроме того, некоторые отверстия в подающей трубе могут быть выполнены под углом для направления подаваемого воздуха таким образом, чтобы уменьшить образование слоя частиц угля на стенках сушильной установки.The design of the scattering pipe is illustrated in figure 21. It consists of a series of interconnected pipe sections 352, 354, 356 with ends 358 and 360. The end 358 goes into the drying unit, as shown in figure 15. The end 360 of the supply pipe 350 is connected to the duct 362 leaving the pipeline through which hot air is supplied to the two stages of the drying unit to create a fluidized bed. Thus, a portion of the hot air 206 can be supplied to the upper zone of the drying unit via a diffusion pipe 350. The diffuser pipe 350 preferably has a diameter of 20 inches, and there are three rows of holes 364 with a diameter of 1 inch for supplying hot air over the entire width of the fluidized bed dryer 250. The diffusion pipe is preferably located in the upper zone of the drying installation near the side of the first stage, since the bulk of the moisture generated in the drying installation can accumulate here. In addition, some openings in the supply pipe can be made at an angle to direct the supplied air in such a way as to reduce the formation of a layer of coal particles on the walls of the drying unit.

На фигуре 22 представлен вид сушильной установки 250 с псевдоожиженным слоем со стороны загрузки. Необходимо обратить особое внимание на установки 370 огнетушения. Хотя вероятность самопроизвольного возгорания частиц высушенного угля и угольного порошка в псевдоожиженном слое снижается за счет того, что сушильная установка нагревается до температуры не более 300°F, и предпочтительно до 200-300°F, однако опасность взрыва все-таки существует. Поэтому установки 370 огнетушения содержат систему подачи воды, которая начинает распылять воду внутрь сушильной установки в случае возникновения чрезвычайной ситуации в процессе ее работы. Она состоит из труб с фланцевыми соединениями, на концах которых находятся распылительные головки. Система контролируется блоком управления с одной зоной, причем батарея резервного источника питания блока управления обеспечивает его работу в течение 24 часов. Сухие контакты обеспечивают дистанционную передачу сигнала тревоги при обнаружении ранней стадии взрыва, развивающегося внутри сушильной установки. Для подавления взрыва и создания изолирующих барьеров используются огнетушители, имеющие высокую скорость разряда. Огнетушители находятся под давлением 500 psig, заполнены сухим азотом и содержат заряд бикарбоната натрия для подавления взрыва. Когда происходит обнаружение начинающегося взрыва, датчики посылают электрические сигналы через блок управления в исполнительный механизм взрывного действия, размещенный на выходе огнетушителя. В огнетушителе разрывается мембрана, и происходит мгновенный разряд вещества, подавляющего взрыв. В качестве детектора взрыва используются два датчика давления, содержащих диафрагмы с малой инерцией, изготовленные из нержавеющей стали. При установке датчиков давления используется специальное крепление, позволяющее минимизировать ложные срабатывания. Используются шесть 30-литровых огнетушителей, по три с каждой стороны сушильной установки, и в случае срабатывания реагент подается через телескопическую распылительную головку.The figure 22 presents a view of a drying installation 250 with a fluidized bed from the loading side. Special attention must be paid to fire extinguishing installations 370. Although the probability of spontaneous combustion of particles of dried coal and coal powder in the fluidized bed is reduced due to the fact that the drying unit is heated to a temperature of not more than 300 ° F, and preferably to 200-300 ° F, there is still a danger of explosion. Therefore, the fire extinguishing installations 370 comprise a water supply system that begins to spray water into the drying installation in the event of an emergency during operation. It consists of pipes with flange connections, at the ends of which there are spray heads. The system is controlled by a control unit with one zone, and the battery of the backup power source of the control unit ensures its operation for 24 hours. Dry contacts provide remote alarm transmission upon detection of an early stage of an explosion developing inside the dryer. To suppress the explosion and create insulating barriers, fire extinguishers are used that have a high discharge rate. Fire extinguishers are pressurized at 500 psig, filled with dry nitrogen and contain a charge of sodium bicarbonate to suppress the explosion. When a starting explosion is detected, the sensors send electrical signals through the control unit to the explosive actuator located at the output of the fire extinguisher. In the fire extinguisher, the membrane ruptures, and an instant discharge of the substance that suppresses the explosion occurs. Two pressure sensors containing diaphragms with low inertia made of stainless steel are used as an explosion detector. When installing pressure sensors, a special mount is used to minimize false alarms. Six 30-liter fire extinguishers are used, three on each side of the dryer, and if triggered, the reagent is fed through a telescopic spray head.

Другим типом устройства для сушки угля в соответствии с настоящим изобретением является одноступенчатая сушильная установка с неподвижным слоем, в которой используется один резервуар и первичный или вторичный источник тепла. Схема одного из вариантов такой сушильной установки с первичным источником тепла представлена на фигуре 23, хотя возможны и другие конфигурации. Сушильная установка с неподвижным слоем является хорошим решением для сушки угля, который предназначается для продажи другим тепловым электростанциям или другим промышленным предприятиям. Это связано с более низкими скоростями высушивания и увеличенным временем проведения процесса высушивания, которыми отличаются сушильные установки с неподвижным слоем по сравнению с установками с псевдоожиженным слоем. Кроме того, обычно имеются практические ограничения на использование сушильной установки с псевдоожиженным слоем, если она используется не в комплексе промышленного предприятия, например на месте разработки месторождения. В этом случае такие источники тепла, как горячая вода охлаждения конденсатора или тепло компрессора, которые используются для осуществления процесса сушки, могут отсутствовать. Кроме того, может быть затруднительным дешевое получение необходимого количества воздуха для создания псевдоожиженного слоя.Another type of coal drying apparatus in accordance with the present invention is a one-stage fixed bed dryer in which one tank and a primary or secondary heat source are used. A diagram of one embodiment of such a dryer with a primary heat source is shown in FIG. 23, although other configurations are possible. A fixed bed dryer is a good solution for drying coal, which is intended for sale to other thermal power plants or other industrial enterprises. This is due to lower drying rates and an extended drying process time, which distinguishes fixed bed dryers compared to fluidized bed plants. In addition, there are usually practical restrictions on the use of a fluidized bed dryer if it is not used in an industrial complex, for example, at a field development site. In this case, heat sources such as condenser cooling water or compressor heat, which are used to carry out the drying process, may be absent. In addition, it may be difficult to cheaply obtain the required amount of air to create a fluidized bed.

Как можно видеть на фигуре 23, сушильная установка 400 с неподвижным слоем имеет две концентрические стенки, причем внешняя стенка 402, имеющая в общем цилиндрическую форму, и внутренняя стенка 404, также имеющая в основном цилиндрическую форму, формируют кольцевое пространство 406 между указанными стенками для прохождения воздушного потока. Коническая конструкция 408, диаметр основания которой меньше диаметра внутренней стенки 404, размещается в нижней части сушильной установки 400 с неподвижным слоем коаксиально с внутренней стенкой 404, формируя в полу кольцевое отверстие 410 для разгрузки высушенного угля 412.As can be seen in FIG. 23, the fixed bed dryer 400 has two concentric walls, the outer wall 402 having a generally cylindrical shape, and the inner wall 404 also having a generally cylindrical shape, form an annular space 406 between these walls for passage air flow. A conical structure 408, the diameter of the base of which is smaller than the diameter of the inner wall 404, is located in the lower part of the fixed-bed dryer 400 coaxially with the inner wall 404, forming an annular hole 410 in the floor for unloading the dried coal 412.

Уголь (обычно, но не обязательно, влажный сортированный уголь 12) поступает в сушильную установку 400 через открытую верхнюю часть 414. Под действием силы тяжести влажный сортированный уголь 12 перемещается в нижнюю часть сушильной установки 400. Поток воздуха 416 для создания псевдоожиженного слоя создается вентилятором 418, прогоняющим холодный высушивающий воздух 420 через воздушно-водяной теплообменник 422. Воздух 420 нагревается с помощью отработанного тепла, как показано на фигуре 23, при прохождении горячей воды 424 охлаждения конденсатора, отобранной из контура охлаждения конденсатора (не показан). Так же, как и в случае всех других вариантов осуществления изобретения, описанных в настоящей заявке, возможны и другие источники отработанного тепла.Coal (usually, but not necessarily, wet sorted coal 12) enters the dryer 400 through an open top 414. Under gravity, the moist sorted coal 12 moves to the bottom of the dryer 400. An air stream 416 is created by a fan 418 to create a fluidized bed driving cold drying air 420 through an air-water heat exchanger 422. The air 420 is heated using waste heat, as shown in figure 23, when the passage of hot water 424 cooling the condenser, Anna from the condenser cooling circuit (not shown). As with all other embodiments described herein, other sources of waste heat are possible.

Нагретый ожижающий воздух 420 поступает в нижнюю часть сушильной установки 400 с неподвижным слоем как через коническую структуру 408, так и через кольцевое пространство 406 между внутренней 404 и внешней 402 стенками. В конической структуре 408 и во внутренней стенке 404 предусмотрены отверстия или другие средства, которые обеспечивают прохождение воздуха 416 через влажный сортированный уголь 12, находящийся в пространстве, ограниченном внутренней стенкой 404 сушильной установки 400 с неподвижным слоем, как показано на фигуре 23. Воздух 416 выходит в атмосферу через открытую верхнюю часть 414 сушильной установки 400.The heated fluidizing air 420 enters the lower part of the fixed bed dryer 400 both through the conical structure 408 and through the annular space 406 between the inner 404 and outer 402 walls. Openings or other means are provided in the conical structure 408 and in the inner wall 404 that allow air 416 to pass through the moist sorted coal 12 located in the space defined by the fixed wall of the drying unit 400 of the drying unit 400, as shown in FIG. 23. Air 416 exits to the atmosphere through the open top 414 of the drying unit 400.

Сушильная установка 400 содержит теплообменник 426, находящийся внутри псевдоожиженного слоя. Для работы внутреннего теплообменника 426 используется отработанное тепло, в данном случае горячая вода 424 охлаждения конденсатора. Кроме того, другие источники отработанного тепла или пар, отобранный из контура паровой турбины, по отдельности или совместно, также могут использоваться отдельно или вместе с горячей водой 424 охлаждения конденсатора. В то время как влажный сортированный уголь 12 нагревается во взвешенном состоянии в сушильной установке 400 с неподвижным слоем, высушенный уголь 412 под действием силы тяжести или с помощью механических устройств, имеющихся на рынке, перемещается в нижнюю часть сушильной установки, где он выгружается через разгрузочное кольцевое отверстие 410, сформированное в нижней части сушильной установки 400.The dryer 400 includes a heat exchanger 426 located inside the fluidized bed. For operation of the internal heat exchanger 426, waste heat is used, in this case, the condenser cooling hot water 424. In addition, other sources of waste heat or steam taken from the steam turbine circuit, individually or in combination, can also be used separately or together with the condenser cooling hot water 424. While wet sorted coal 12 is heated in suspension in a fixed bed dryer 400, dried charcoal 412 is moved to the bottom of the dryer, using gravity or mechanical devices on the market, where it is discharged through a discharge ring an opening 410 formed at the bottom of the dryer 400.

Конструкции сушильной установки в соответствии с настоящим изобретением специально разрабатываются для максимального использования потоков отработанного тепла, отходящих из различных производственных процессов предприятия, причем температура нагрева угля не должна превышать 149°С и предпочтительно должна находиться в диапазоне 93-149°С. Сырье, градиенты температуры топлива и потоки теплоносителя могут изменяться в зависимости от назначения, свойств топлива или сырья и других факторов, относящихся к назначению. При температурах, превышающих 149°С, обычно ближе к 205°С, начинают происходить окислительные процессы, и из угля выделяются летучие компоненты, образующие поток продуктов, содержащий вредные составляющие, которые необходимо обрабатывать, то есть могут возникать различные проблемы для производства.The design of the drying apparatus in accordance with the present invention is specifically designed to maximize the use of waste heat streams from various production processes of the enterprise, and the temperature of the coal should not exceed 149 ° C and preferably should be in the range 93-149 ° C. Raw materials, fuel temperature gradients and coolant flows can vary depending on the purpose, properties of the fuel or raw materials and other factors related to the purpose. At temperatures exceeding 149 ° C, usually closer to 205 ° C, oxidative processes begin to occur, and volatile components are released from coal, forming a product stream containing harmful components that must be processed, that is, various problems for production can occur.

Сушильные установки способны работать с источниками отработанного тепла, имеющими более высокую температуру, путем регулирования температуры воздуха, подаваемого в сушильную установку, на уровне, не превышающем 149°С, и подачей этого тепла во внутренний теплообменник. Многоступенчатая конструкция сушильной установки с псевдоожиженным слоем обеспечивает создание температурных зон, которые могут быть использованы для достижения более эффективной теплопередачи за счет применения противотока теплоносителя. Температура угля на выходе предлагаемой в изобретении сушильной установки сравнительно невысока (обычно не выше 60°С), то есть такой продукт сравнительно несложно хранить и обрабатывать. Если для какого-то зернистого материала необходима повышенная или пониженная температура, то может быть разработана сушильная установка, работающая при повышенной или пониженной температуре.Drying units are able to work with waste heat sources having a higher temperature by controlling the temperature of the air supplied to the drying unit at a level not exceeding 149 ° C and supplying this heat to the internal heat exchanger. The multi-stage design of the fluidized-bed dryer provides the creation of temperature zones that can be used to achieve more efficient heat transfer through the use of a countercurrent coolant. The temperature of the coal at the outlet of the drying plant proposed in the invention is relatively low (usually not higher than 60 ° C), that is, such a product is relatively easy to store and process. If for some granular material an elevated or lowered temperature is required, a drying unit operating at elevated or lowered temperatures can be developed.

Необходимый уровень влаги в выходном продукте может быть достигнут за счет выбора подходящей конструкции сушильной установки, ее температурного режима и времени нахождения угля внутри псевдоожиженного слоя. Для низкосортных углей, используемых в качестве топлива для тепловых электростанций, в частности для лигнитов Северной Америки, можно получить снижение влажности от примерно 35-40 вес.% до примерно 10-30 вес.%, и более предпочтительно 27-32 вес.%. В других регионах, например в Австралии и России, в которых начальный уровень влажности лигнитов может достигать 50-60%, потребители угля могут выбирать возможность уменьшения уровня влажности путем высушивания ниже уровня 27%. Для полубитуминозных углей такое снижение уровня влажности может составлять от примерно 25-30 вес.% до примерно 10-30 вес.%, и более предпочтительно 20-25 вес.%. Хотя предлагаемые в настоящем изобретении сушильные установки, разработанные соответствующим образом, способны, используя источники тепла, имеющие пониженную температуру, уменьшить уровень влажности зернистых материалов до 0%, однако в случае угля, используемого для работы тепловых электростанций, это может быть необязательным и только будет приводить к увеличению производственных расходов. Разработка специализированных конструкций позволяет получить псевдоожиженные слои для сушки угля с высоким уровнем влажности, которые наилучшим образом подходят для производственных процессов конкретного промышленного предприятия.The necessary moisture level in the output product can be achieved by choosing the appropriate design of the drying unit, its temperature regime and the residence time of the coal inside the fluidized bed. For low-grade coals used as fuel for thermal power plants, in particular for lignites of North America, a moisture reduction of from about 35-40 wt.% To about 10-30 wt.%, And more preferably 27-32 wt.%, Can be obtained. In other regions, such as Australia and Russia, in which the initial moisture level of lignites can reach 50-60%, coal consumers can choose to reduce the humidity level by drying below 27%. For semi-bituminous coals, such a reduction in moisture level may be from about 25-30 wt.% To about 10-30 wt.%, And more preferably 20-25 wt.%. Although the dryers proposed in the present invention, suitably designed, are able, using heat sources having a reduced temperature, to reduce the moisture level of granular materials to 0%, however, in the case of coal used for operation of thermal power plants, this may be optional and will only result in to increase production costs. The development of specialized designs makes it possible to obtain fluidized beds for drying coal with a high level of humidity, which are best suited for the production processes of a particular industrial enterprise.

На фигуре 24 представлена схема двухступенчатой сушильной установки 502 с псевдоожиженным слоем с одним резервуаром, которая интегрирована в тепловую электростанцию 500 и в которой горячая вода 504 охлаждения конденсатора и горячие топочные газы 506 используются в качестве единственных источников тепла в низкотемпературном процессе высушивания с открытым контуром. Исходный уголь 12, являющийся лигнитом, имеющим влажность порядка 35-40 вес.%, подается на сито 510 для отбора частиц, пригодных для обработки в используемом процессе. Отобранные кусочки угля 12, размеры которых не превышают 2 дюймов, более предпочтительно 0,25 дюйма или менее, с помощью обычных средств транспортируются в угольный бункер 512. Кусочки угля, размеры которых превышают 0,25 дюйма, сначала подаются в мельницу 514 и затем транспортируются в бункер 512.24 is a diagram of a two-stage fluidized bed two-stage drying plant 502 that is integrated into a thermal power station 500 and in which hot condenser cooling water 504 and hot flue gases 506 are used as sole heat sources in an open loop low-temperature drying process. The original coal 12, which is a lignite having a moisture content of about 35-40 wt.%, Is fed to a sieve 510 to select particles suitable for processing in the process used. Selected pieces of coal 12, the dimensions of which do not exceed 2 inches, more preferably 0.25 inches or less, are transported by conventional means into the coal bin 512. Pieces of coal larger than 0.25 inches are first fed to the mill 514 and then transported into the bunker 512.

Затем влажный сортированный уголь 12 из угольного бункера транспортируется с помощью конвейерной системы в сушильную установку 502 с псевдоожиженным слоем, в которой общее количество влаги на поверхности и внутри пор частиц угля снижается до заданного уровня для получения "сухого" угля 516, имеющего среднее значение влажности порядка 28-30 вес.%. Этот высушенный уголь 516 транспортируется конвейером 518 к ковшовому элеватору 520 и затем в бункер 522 высушенного угля, в котором он хранится до подачи в печь парогенератора.Then, the wet sorted coal 12 from the coal hopper is transported by a conveyor system to a fluidized bed dryer 502, in which the total amount of moisture on the surface and inside the pores of the coal particles is reduced to a predetermined level to obtain “dry” coal 516 having an average moisture content of about 28-30 wt.%. This dried coal 516 is transported by conveyor 518 to a bucket elevator 520 and then to the dried coal hopper 522, in which it is stored until the steam generator is fed to the furnace.

Высушенный уголь 516, накапливаемый в бункере 522, с помощью известных технических средств подается в углеразмольную мельницу 524, в которой он превращается в сухой угольный порошок 526 перед подачей в дутьевую камеру 528 печи 530. Для целей настоящей заявки для процесса сушки угля, схема которого представлена на фигуре 24, обеспечиваются параметры процесса, типичные для "зимних условий" штата Северная Дакота, а именно расход угля в печи парогенератора, равный 4 млн фунтов/час. При сгорании угля 526 в печи 530 выделяющееся тепло в количестве до 6 млрд БТЕ/час передается воде 532, находящейся в котлоагрегате 534. Затем образующийся пар 536, имеющий среднюю температуру порядка 538°С и давление 2520 psig, подается сначала в турбину высокого давления, затем в турбину промежуточного давления и наконец в турбину низкого давления пара (не показаны), приводящие по меньшей мере один генератор (не показан) для производства электричества. Отработанный пар выходит из турбины высокого давления обычно при температуре 316°С и давлении 650 psi, а из турбины промежуточного давления пар выходит при температуре порядка 287-316°С и давлении 70 psi.The dried coal 516 accumulated in the hopper 522, using known technical means, is fed into a coal grinding mill 524, in which it is converted into dry coal powder 526 before being fed into the blow chamber 528 of the furnace 530. For the purposes of this application, for the coal drying process, the scheme of which is presented figure 24, provides process parameters typical of the "winter conditions" of the state of North Dakota, namely the coal consumption in the furnace of the steam generator, equal to 4 million pounds / hour. When coal 526 is burned in a furnace 530, the generated heat in an amount of up to 6 billion BTU / hour is transferred to water 532 located in the boiler unit 534. Then, the generated steam 536, having an average temperature of about 538 ° C and a pressure of 2520 psig, is first fed to a high pressure turbine, then to an intermediate pressure turbine and finally to a low pressure steam turbine (not shown), leading at least one generator (not shown) to generate electricity. Waste steam leaves the high-pressure turbine, usually at a temperature of 316 ° C and a pressure of 650 psi, and leaves the intermediate-pressure turbine at a temperature of about 287-316 ° C and a pressure of 70 psi.

Отработанный пар 538 выходит из турбины низкого давления при температуре примерно 51-55°С и давлении 1,5 psia, после чего он направляется в конденсатор 540 для превращения в воду. В конденсаторе 540 циркулирует холодная вода 542 охлаждения, имеющая температуру порядка 29°С, которая используется для отвода латентной тепловой энергии отработанного пара 538. В процессе охлаждения вода 542 нагревается и выходит из конденсатора уже как горячая вода 544 при температуре порядка 49°С. Затем эта горячая вода 544 охлаждения конденсатора подается в градирню 546, в которой ее температура понижается снова до величины порядка 29°С для получения холодной воды охлаждения конденсатора, которая снова подается в конденсатор 540. После этого сконденсировавшийся пар из конденсатора снова подается в парогенератор 534 для превращения в пар 536, вращающий паровые турбины.Waste steam 538 exits the low pressure turbine at a temperature of about 51-55 ° C and a pressure of 1.5 psia, after which it is sent to the condenser 540 for conversion into water. In the condenser 540, cold cooling water 542 circulates, having a temperature of the order of 29 ° C, which is used to remove the latent thermal energy of the exhaust steam 538. During the cooling process, the water 542 heats up and leaves the condenser as hot water 544 at a temperature of about 49 ° C. Then, this condenser cooling hot water 544 is supplied to a cooling tower 546, in which its temperature is lowered again to a value of the order of 29 ° C. to produce cold condenser cooling water, which is again supplied to the condenser 540. After that, the condensed steam from the condenser is again fed to the steam generator 534 for steam conversion 536 rotating steam turbines.

Сушильная установка 502 с псевдоожиженным слоем состоит из первой ступени 550, которая содержит распределительную зону площадью 70 фут2 для приема угля 12, который должен высушиваться, и большей второй ступени 552, содержащей распределительную зону 240 фут2. Эти ступени сушильной установки 502 с псевдоожиженным слоем снабжены внутренними теплообменниками 554 и 556, соответственно, которые более подробно будут рассмотрены ниже.The fluidized bed dryer 502 consists of a first stage 550, which comprises a distribution area of 70 ft 2 for receiving coal 12 to be dried, and a larger second stage 552, containing a distribution area of 240 ft 2 . These stages of a fluidized bed dryer 502 are provided with internal heat exchangers 554 and 556, respectively, which will be discussed in more detail below.

Часть 504 горячей воды охлаждения конденсатора отбирается и пропускается через теплообменник 554 в качестве первичного источника тепла для первой ступени 550 сушильной установки. Эта часть 504 горячей воды охлаждения конденсатора в большинстве случаев имеет среднюю температуру 49°С, и при ее циркуляции во внутреннем теплообменнике первой ступени излучается порядка 2,5 млн БТЕ/час тепла. Отработанная горячая вода 558 охлаждения конденсатора, выходящая из теплообменника при температуре порядка 37°С, возвращается в градирню, в которой она используется для дополнительного охлаждения отработанного пара 558 турбин и снова становится горячей водой 504 охлаждения конденсатора.A condenser cooling hot water portion 504 is withdrawn and passed through a heat exchanger 554 as a primary heat source for the first stage 550 of the drying unit. This part 504 of the condenser cooling hot water in most cases has an average temperature of 49 ° C, and when it circulates in the first-stage internal heat exchanger, about 2.5 million BTU / hour of heat is emitted. The spent condenser cooling hot water 558 leaving the heat exchanger at a temperature of about 37 ° C is returned to the cooling tower, in which it is used to further cool the spent steam of 558 turbines and again becomes the condenser cooling hot water 504.

Часть 504а горячей воды охлаждения конденсатора пропускается через внешний теплообменник 560, который используется для нагрева жидкого теплоносителя 562 на основе гликоля, используемого для нагрева предварительного теплообменника 564 вентиляционной камеры. Этот предварительный теплообменник 564 вентиляционной камеры повышает температуру потоков первичного воздуха 566 и вторичного воздуха 568 от температуры окружающего воздуха, которая изменяется в течение года, до температуры примерно (-3)-(-1)°С (зимние условия). Гликоль не замерзает при низких температурах, поэтому температура потоков первичного и вторичного воздуха не будет опускаться ниже минимальной температуры -3°С.The condenser cooling hot water portion 504a is passed through an external heat exchanger 560, which is used to heat the glycol-based heat transfer fluid 562 used to heat the ventilation chamber pre-heat exchanger 564. This preliminary heat exchanger 564 of the ventilation chamber raises the temperature of the primary air flow 566 and secondary air 568 from the ambient temperature, which varies during the year, to a temperature of about (-3) - (- 1) ° C (winter conditions). Glycol does not freeze at low temperatures, so the temperature of the primary and secondary air flows will not fall below a minimum temperature of -3 ° C.

Затем потоки первичного 566 и вторичного 568 воздуха, выходящие из теплообменника 564 предварительного нагрева вентиляционной камеры, пропускаются через основной теплообменник 570 вентиляционной камеры, который является воздушно-водяным теплообменником. Часть 504b горячей воды 504 охлаждения конденсатора пропускается через основной теплообменник 570 вентиляционной камеры в качестве необходимого источника тепла. Потоки первичного 566 и вторичного 568 воздуха выходят из основного теплообменника вентиляционной камеры при температуре примерно 27-38°С, после чего они направляются с помощью вентиляторов РА 572 и FD 574 при температурах 60°С и 45°С, соответственно, во внешний подогреватель 576 воздуха, который является трехсекционным ротационным регенеративным подогревателем.Then, the primary air flows 566 and secondary 568 leaving the heat exchanger 564 for pre-heating the ventilation chamber are passed through the main heat exchanger 570 of the ventilation chamber, which is an air-water heat exchanger. A condenser cooling part 504b of hot water 504 is passed through the main heat exchanger 570 of the ventilation chamber as a necessary heat source. The primary 566 and secondary 568 air flows from the main heat exchanger of the ventilation chamber at a temperature of approximately 27-38 ° C, after which they are directed by means of fans RA 572 and FD 574 at temperatures of 60 ° C and 45 ° C, respectively, to an external heater 576 air, which is a three-section rotational regenerative heater.

Использование теплообменников 564 и 570 вентиляционной камеры для предварительного подогрева наружного воздуха, поступающего в воздухоподогреватель 576, и потоков горячего 580 и холодного 566а первичного воздуха, соответственно, обеспечивает повышение температуры источника тепла, используемого во внешнем теплообменнике 586, и потока 588 жидкого теплоносителя от примерно 40°С до 94°С. Это положительно сказывается на расходе воздуха 552, используемого для создания псевдоожиженного слоя и сушки угля, и на потребной площади поверхности внутреннего теплообменника 556. И одна, и другая величина уменьшаются при повышении температуры потоков подогрева и высушивания.The use of heat exchangers 564 and 570 of the ventilation chamber for preheating the outdoor air entering the air heater 576 and the hot air flows 580 and cold 566a of the primary air, respectively, provides an increase in the temperature of the heat source used in the external heat exchanger 586 and the liquid coolant stream 588 from about 40 ° C to 94 ° C. This has a positive effect on the flow rate of air 552 used to create the fluidized bed and drying the coal, and on the required surface area of the internal heat exchanger 556. Both one and the other value decrease with increasing temperature of the heating and drying flows.

Часть 566а первичного воздуха 566 отбирается перед внешним воздухоподогревателем 576 и подается в смеситель 578 при температуре порядка 63°F. После смешивания с более горячим потоком (примерно 306°С) первичного воздуха 380а получается воздух 582 при температуре примерно 86°С, который используется для создания псевдоожиженного слоя в первой 550 и второй 552 ступенях сушильной установки 502 с псевдоожиженным слоем. Для получения указанной температуры 86°С воздуха, используемого для создания псевдоожиженного слоя, в смеситель 578 подают примерно 54% горячего первичного воздуха 580а и 46% холодного первичного воздуха 566а. Воздух 582, используемый для создания псевдоожиженного слоя, подается в первую ступень со скоростью примерно 3,5 фут/с для создания слоя частиц угля толщиной примерно 40 дюймов. Через первую ступень 550 проходит примерно 132000 фунт/час угля 12, причем частицы угля нагреваются внутренним теплообменником и горячим сжижающим воздухом до температуры примерно 33°С, в результате чего происходит небольшое снижение влажности угля. При достижении конца первой ступени 550 частицы угля "переливаются" через верх перегородки во вторую ступень 552.The primary air portion 566a 566 is taken in front of the external air heater 576 and fed to the mixer 578 at a temperature of about 63 ° F. After mixing with the hotter stream (approximately 306 ° C.) of primary air 380a, air 582 is obtained at a temperature of approximately 86 ° C., which is used to create a fluidized bed in the first 550 and second 552 steps of the fluidized bed dryer 502. To obtain the indicated temperature of 86 ° C. of the air used to create the fluidized bed, approximately 54% of the hot primary air 580a and 46% of the cold primary air 566a are supplied to the mixer 578. Air 582, used to create the fluidized bed, is supplied to the first stage at a speed of about 3.5 ft / s to create a layer of coal particles with a thickness of about 40 inches. Approximately 132,000 lb / h of coal 12 passes through the first stage 550, the coal particles being heated by an internal heat exchanger and hot liquefying air to a temperature of about 33 ° C., resulting in a slight decrease in coal moisture. When the end of the first stage 550 is reached, the coal particles “overflow” through the top of the partition into the second stage 552.

Топочные газы 506 выходят из печи 530 парогенератора при температуре примерно 440°С. Этот источник отработанного тепла пропускается через внешний воздухоподогреватель 576 в качестве теплоносителя. Топочные газы выходят из внешнего подогревателя при температуре примерно 172°С и направляются в дымовую трубу через электростатический пылеуловитель и скруббер. Топочные газы нагревают потоки первичного 566 и вторичного 568 воздуха до температуры примерно 403°С и 393°С, соответственно, для получения горячего первичного воздуха 580 и подогретого вторичного воздуха 582. Подогретый вторичный воздух 582 подается в печь 530 с превышением на 17% необходимого количества воздуха для обеспечения эффективности процесса сжигания топлива и повышения КПД парогенератора.The flue gases 506 exit the steam generator furnace 530 at a temperature of about 440 ° C. This waste heat source is passed through an external air heater 576 as a heat transfer medium. The flue gases exit the external heater at a temperature of approximately 172 ° C and are sent to the chimney through an electrostatic dust collector and scrubber. The flue gases heat the primary 566 and secondary 568 air streams to a temperature of about 403 ° C and 393 ° C, respectively, to produce hot primary air 580 and heated secondary air 582. Heated secondary air 582 is supplied to furnace 530 with a 17% excess of the required amount air to ensure the efficiency of the fuel combustion process and increase the efficiency of the steam generator.

Горячий первичный воздух 580, имеющий температуру примерно 403°С, подается в углеразмольную мельницу 524, где он создает повышенное давление для выталкивания частиц угля в дутьевую камеру 528 и далее в печь 530. Снова предварительный подогрев частиц угля 526 повышает КПД парогенератора и дает возможность использовать парогенератор и относящееся к нему оборудование меньших размеров.Hot primary air 580, having a temperature of about 403 ° C, is supplied to a coal-grinding mill 524, where it creates an increased pressure for expelling the coal particles into the blasting chamber 528 and then to the furnace 530. Again, preheating the coal particles 526 increases the efficiency of the steam generator and makes it possible to use steam generator and related equipment of smaller sizes.

При сжигании высушенного угля температура горения повышается благодаря снижению уровня водяных паров, и процессы теплопередачи в печи 530 улучшаются. Более высокая температура горения повышает тепловой поток, излучаемый в направлении стенок печи 530. Поскольку содержание влаги в выходящих топочных газах 506 снижено, то изменяются характеристики излучения тепла пламенем, что также влияет на величину теплового потока, излучаемого в направлении стенок печи 530. При повышении температуры пламени повышается температура частиц угольной золы, выходящих из печи 530, что может интенсифицировать процессы засорения и зашлаковывания печи. Осаждение шлака на стенках печи уменьшает теплопередачу, что приводит к повышению температуры топочных газов на выходе печи. Благодаря уменьшению скорости подачи угля в печь в связи с тем, что влажность топлива снижена, количество золы, поступающей в парогенератор, также снижается. Кроме того, уменьшается эрозия парогенератора 534 твердыми частицами и уменьшается объем его технического обслуживания (например, удаление сажи, которая осаждается на внутренних поверхностях котлоагрегата).When burning dried coal, the combustion temperature rises due to a decrease in water vapor, and the heat transfer processes in the furnace 530 are improved. A higher combustion temperature increases the heat flux emitted in the direction of the walls of the furnace 530. Since the moisture content in the exhaust flue gases 506 is reduced, the characteristics of heat radiation by the flame change, which also affects the amount of heat flux emitted in the direction of the walls of the furnace 530. As the temperature rises flame temperature increases the particles of coal ash exiting the furnace 530, which can intensify the processes of clogging and slagging of the furnace. The deposition of slag on the walls of the furnace reduces heat transfer, which leads to an increase in the temperature of the flue gases at the outlet of the furnace. Due to the decrease in the rate of coal supply to the furnace due to the fact that the humidity of the fuel is reduced, the amount of ash entering the steam generator is also reduced. In addition, the erosion of the steam generator 534 by solid particles is reduced and its maintenance is reduced (for example, the removal of soot, which is deposited on the internal surfaces of the boiler).

Часть потока горячего первичного воздуха 580 подается в теплообменник 586, который нагревает до температуры примерно 94°С теплоноситель 588, используемый в качестве источника тепла во внутреннем теплообменнике 556, размещенном во второй ступени 552 сушильной установки 502 с псевдоожиженным слоем. Этот теплоноситель выходит из теплообменника при температуре примерно 74°С, после чего он направляется обратно в теплообменник 586 для повторного нагрева. Как уже указывалось, поток первичного воздуха 580а, выходящий из теплообменника 586 при температуре примерно 139°С, соединяется с холодным первичным воздухом 566а в смесителе 578 для получения потока воздуха 582, направляемого в сушильную установку 502 для создания псевдоожиженного слоя. Смеситель обеспечивает получение необходимой температуры воздуха, используемого для создания псевдоожиженного слоя.A portion of the hot primary air stream 580 is supplied to a heat exchanger 586, which heats the heat carrier 588 to a temperature of about 94 ° C, used as a heat source in an internal heat exchanger 556, located in the second stage 552 of the fluidized bed dryer 502. This coolant exits the heat exchanger at a temperature of about 74 ° C, after which it is sent back to the heat exchanger 586 for reheating. As already mentioned, the primary air stream 580a leaving the heat exchanger 586 at a temperature of about 139 ° C is connected to the cold primary air 566a in the mixer 578 to produce an air stream 582 directed to the drying unit 502 to create a fluidized bed. The mixer provides the necessary air temperature used to create the fluidized bed.

Частицы угля псевдоожиженного слоя, которые поступают из первой ступени 550 во вторую ступень 552 при температуре примерно 33°С и с несколько пониженной влажностью, формируют слой толщиной примерно 38-42 дюйма, который ожижается потоком воздуха 582 и дополнительно нагревается внутренним теплообменником 556. Этим частицам угля требуется примерно 12 минут для прохождения всей длины второй ступени 552 псевдоожиженного слоя, после чего они выгружаются уже как сухой уголь 516, имеющий влажность 29,5%, при температуре 488°С. Что более важно, теплотворная способность угля 12, которая при его поступлении в первую ступень сушильной установки 502 составляет 6200 БТЕ/фунт, увеличивается до 7045 БТЕ/фунт.The particles of coal fluidized bed, which come from the first stage 550 to the second stage 552 at a temperature of about 33 ° C and with slightly reduced humidity, form a layer with a thickness of about 38-42 inches, which is liquefied by a stream of air 582 and additionally heated by an internal heat exchanger 556. These particles coal takes about 12 minutes to pass the entire length of the second stage 552 of the fluidized bed, after which they are discharged as dry coal 516, having a moisture content of 29.5%, at a temperature of 488 ° C. More importantly, the calorific value of coal 12, which when it enters the first stage of the drying unit 502 is 6200 BTU / lb, increases to 7045 BTU / lb.

В отрасли вычисляется "коэффициент X" для оценки относительной эффективности передачи тепла в воздушном теплообменнике 576 от топочных газов 506 к первичному воздуху 566 и вторичному воздуху 568. Определяется в соответствии с уравнением:The industry calculates a “coefficient X” to evaluate the relative heat transfer efficiency in the air heat exchanger 576 from the flue gases 506 to the primary air 566 and the secondary air 568. It is determined in accordance with the equation:

mPA+FD · cppa+FD · (Tout-Tin)PA+FD=mflue · cpflue · (Tout-Tin)flue,m PA + FDcp pa + FD (T out -T in ) PA + FD = m fluecp flue (T out -T in ) flue ,

где m - массовый расход, ср - удельная теплоемкость, Tin - температура на входе, Tout - температура на выходе для соответствующих потоков воздуха горения (то есть первичного и вторичного воздуха) и топочных газов, соответственно. Поскольку произведение (m · ср) для потока воздуха горения (выраженного в БТЕ/час) обычно составляет только 80% от соответствующей величины для потока топочных газов, это означает, что при обычных условиях для электростанции падение температуры топочных газов при их прохождении через теплообменник может быть равно только 80% роста температуры потока воздуха горения. Однако уменьшение в соответствии с изобретением содержания влаги в угле и, соответственно, в топочных газах, образующихся при сгорании этого угля в печи, будет уменьшать массовый поток и величину удельной теплоемкости для потока топочных газов 506, в то время как предварительный подогрев потока первичного воздуха 566 и потока вторичного воздуха 568 с помощью теплообменников 564 и 570 вентиляционной камеры будет повышать массовый поток воздуха горения. Это будет приводить к увеличению коэффициента Х до 100%, что означает значительное увеличение КПД парогенератора тепловой электростанции. Кроме того, выполнение конструкции системы сушки угля в точном соответствии с принципами настоящего изобретения может дополнительно повысить коэффициент Х вплоть до 112%, в результате чего работа парогенератора при производстве электричества становится еще более эффективной. Более того, это значительное увеличение коэффициента Х для воздушного теплообменника и КПД парогенератора достигается за счет использования имеющихся в тепловой электростанции источников отработанного тепла, что, в свою очередь, улучшает экономическую эффективность работы электростанции. Другие варианты осуществления низкотемпературного процесса высушивания с открытым контуром с использование сушильной установки в соответствии с настоящим изобретением описываются в патентной заявке США № 11/107,152, поданной 15.04.2005 г., в которой указан тот же соавтор и владелец, что и в настоящей заявке, и которая вводится ссылкой в настоящую заявку.where m is the mass flow rate, cf is the specific heat, T in is the inlet temperature, T out is the outlet temperature for the corresponding combustion air flows (i.e., primary and secondary air) and flue gases, respectively. Since the product (m · sr) for the combustion air stream (expressed in BTU / hour) is usually only 80% of the corresponding value for the flue gas stream, this means that under normal conditions for a power plant, the temperature drop of the flue gases as they pass through the heat exchanger can only 80% of the temperature increase of the combustion air flow is equal. However, a reduction in accordance with the invention of the moisture content in the coal and, accordingly, in the flue gases generated by the combustion of this coal in the furnace will decrease the mass flow and the specific heat for the flue gas stream 506, while preheating the primary air stream 566 and the secondary air stream 568 using heat exchangers 564 and 570 of the ventilation chamber will increase the mass flow of combustion air. This will lead to an increase in the coefficient X to 100%, which means a significant increase in the efficiency of the steam generator of a thermal power plant. In addition, the design of the coal drying system in strict accordance with the principles of the present invention can further increase the coefficient X up to 112%, as a result of which the operation of the steam generator in the production of electricity becomes even more efficient. Moreover, this significant increase in the coefficient X for the air heat exchanger and the efficiency of the steam generator is achieved through the use of waste heat sources available in the thermal power plant, which, in turn, improves the economic efficiency of the power plant. Other embodiments of a low temperature open loop drying process using a dryer in accordance with the present invention are described in US Patent Application No. 11 / 107,152, filed April 15, 2005, which indicates the same co-author and owner as in this application, and which is incorporated by reference into the present application.

Система в соответствии с настоящим изобретением обладает многими достоинствами. В системе обеспечивается отбор отработанного тепла из различных источников, в том числе из горячей воды охлаждения конденсатора, горячих топочных газов, производственного пара, отобранного из контура турбины (перечень не является исчерпывающим), температуры которых являются приемлемыми, для их использования в процессе сушки. В системе также может обеспечиваться лучшее использование тепла горячей воды охлаждения конденсатора путем повышения температуры вентиляционной камеры на 50-100°F при малых издержках, в результате чего уменьшаются потери тепла, и тепло отбирается у потоков первичного 580 и вторичного 582 воздуха, выходящих из воздухоподогревателя (АРН). Это тепло также может быть извлечено непосредственно из топочных газов путем использования теплообменника воздухоподогревателя. В результате существенно уменьшается отношение потока воздуха, подаваемого в сушильную установку, к потоку угля, а также возможно уменьшение размеров самой сушильной установки.The system in accordance with the present invention has many advantages. The system provides the selection of waste heat from various sources, including from the condenser cooling hot water, hot flue gases, production steam selected from the turbine circuit (the list is not exhaustive), the temperatures of which are acceptable for their use in the drying process. The system can also provide the best use of heat from the condenser cooling hot water by increasing the temperature of the ventilation chamber by 50-100 ° F at low costs, resulting in reduced heat loss, and heat is taken from the primary 580 and secondary 582 air flows leaving the air heater ( ARN). This heat can also be extracted directly from the flue gases by using an air heater heat exchanger. As a result, the ratio of the air flow supplied to the drying plant to the coal flow is substantially reduced, and the size of the drying plant itself is also possible.

Сушильная установка может быть сконструирована так, чтобы использовать существующие вентиляторы для подачи воздуха, необходимого для создания псевдоожиженного слоя, путем регулирования разности давления псевдоожиженного слоя и характеристик работы вентилятора пылеуловителя. Для псевдоожиженных слоев могут использоваться различные схемы пылеуловители, и некоторые из них описаны в настоящей заявке. В описанных вариантах осуществления изобретения достигается снижение использования первичного воздуха, поскольку использование сушильной установки в соответствии с изобретением обеспечивает уменьшение количества угля, необходимого для нагрева парогенератора, и поэтому требуется меньше углеразмольных мельниц для измельчения угля, в результате чего уменьшается количество воздуха, который необходимо подавать в мельницы для подачи воздуха в сушильную установку.The dryer can be designed to use existing fans to supply the air needed to create a fluidized bed by adjusting the pressure difference of the fluidized bed and the performance of the dust collector fan. For fluidized beds can be used in various schemes dust collectors, and some of them are described in this application. In the described embodiments of the invention, a reduction in the use of primary air is achieved, since the use of a drying unit in accordance with the invention reduces the amount of coal needed to heat the steam generator, and therefore less coal grinding mills are needed to grind the coal, thereby reducing the amount of air that must be supplied to mills for supplying air to the drying unit.

Интеграция сушильной установки в систему обработки угля перед загрузкой угля в бункеры печи парогенератора обладает тем достоинством, что в мельницы подается нагретый уголь, поскольку уголь выходит из сушильной установки при повышенной температуре. Ожидается, что уменьшение объема топочных газов, времени нахождения угля в псевдоожиженном слое, содержания влаги в топочных газах и ускорение процессов очистки существенно уменьшат выбросы ртути промышленным комплексом.The integration of the drying unit into the coal processing system before loading the coal into the bins of the steam generator furnace has the advantage that heated coal is fed into the mills, since the coal leaves the drying unit at elevated temperature. It is expected that reducing the volume of flue gases, the residence time of coal in the fluidized bed, the moisture content in the flue gases and accelerating the purification processes will significantly reduce mercury emissions from the industrial complex.

Достоинством предварительного подогрева воздуха, подаваемого в воздухоподогреватель, является повышение температуры теплопередающих поверхностей на холодной стороне воздухоподогревателя. Более высокие температуры поверхностей снижают интенсивность осаждения кислот и, соответственно, уменьшают интенсивность забивания (засорения) и коррозии. Это положительно сказывается на потреблении вентилятора, производительности энергетического блока и общих характеристиках его работы. Использование отработанного тепла конденсатора для предварительного нагрева воздуха, подаваемого в воздухоподогреватель, вместо тепла, извлеченного из пара турбины, приводит к увеличению выходной мощности турбины и всего блока и к улучшению характеристик работы электростанции. Увеличение температуры воздуха на входе воздухоподогревателя (АРН) приводит к уменьшению скорости утечки из него воздуха. Это происходит благодаря уменьшению плотности воздуха. Снижение скорости утечки воздуха из воздухоподогревателя положительно сказывается на мощности всасывания и нагнетания вентилятора, в результате чего снижается объем технического обслуживания, увеличивается выходная мощность энергетического блока и улучшаются характеристики его работы. Для тепловых электростанций с градирнями использование отработанного тепла для предварительного подогрева воздуха, подаваемого в воздухоподогреватель, будет уменьшать тепловую нагрузку на градирни, в результате чего снижается потребление ими воды.The advantage of preheating the air supplied to the air heater is to increase the temperature of the heat transfer surfaces on the cold side of the air heater. Higher surface temperatures reduce the rate of acid deposition and, accordingly, reduce the rate of plugging (clogging) and corrosion. This has a positive effect on the consumption of the fan, the performance of the energy block and the general characteristics of its operation. Using the waste heat of the condenser to preheat the air supplied to the air heater instead of the heat extracted from the steam of the turbine leads to an increase in the output power of the turbine and the entire unit and to an improvement in the performance of the power plant. An increase in the temperature of the air at the inlet of the air heater (AVR) leads to a decrease in the rate of leakage of air from it. This is due to a decrease in air density. Reducing the rate of air leakage from the air heater positively affects the suction and discharge power of the fan, as a result of which the amount of maintenance is reduced, the output power of the energy block increases and its performance improves. For thermal power plants with cooling towers, the use of waste heat to preheat the air supplied to the air heater will reduce the heat load on the cooling towers, resulting in reduced water consumption.

Сушка угля с использованием описанного способа будет снижать потери воды в системе парогенератора, в результате чего его КПД повышается. Снижение потерь тепла в системе парогенератора повышает его КПД. Кроме того, уменьшение объема образующихся топочных газов приводит к снижению выбросов двуокиси углерода, оксидов серы, ртути, твердых частиц и окислов азота в расчете на мегаватт выходной мощности. Также снижается эрозия трубопроводов подачи угля (например, эрозия труб частицами угля и воздухом), уменьшается объем работ по превращению угля в порошок, снижается мощность, потребляемая вспомогательным оборудованием, в результате чего повышается мощность энергетического блока, снижаются объемы золы и отложений в скрубберах, уменьшается потребление воды промышленным предприятием (это не затрагивает воду, отбираемую из контура паровой турбины), снижается засорение и коррозия холодной стороны воздухоподогревателя, а также эрозия трубы для выпуска топочных газов, и повышается степень очистки топочных газов. Сушильные установки с псевдоожиженным слоем также могут быть снабжены скрубберами, устройствами, отделяющими более плотные частицы, что позволяет удалить загрязняющие вещества и обеспечить обработку угля перед его сжиганием. Существует неограниченное множество уровней температуры и схем конструкций, которые могут использоваться с настоящим изобретением для обработки других сырьевых материалов и топлив.Coal drying using the described method will reduce water losses in the steam generator system, as a result of which its efficiency increases. Reducing heat loss in the steam generator system increases its efficiency. In addition, a decrease in the volume of flue gas generated leads to a reduction in emissions of carbon dioxide, sulfur oxides, mercury, particulate matter and nitrogen oxides per megawatt of output power. The erosion of coal supply pipelines is also reduced (for example, erosion of pipes by coal particles and air), the amount of work to turn coal into powder is reduced, the power consumed by auxiliary equipment is reduced, as a result of which the power of the energy block increases, the volumes of ash and deposits in scrubbers decrease, and industrial water consumption (this does not affect water taken from the steam turbine circuit), clogging and corrosion of the cold side of the air heater, as well as pipe erosion are reduced for the release of flue gases, and increases the degree of purification of flue gases. Fluidized bed dryers can also be equipped with scrubbers, devices separating denser particles, which allows the removal of contaminants and the processing of coal before burning it. There are an unlimited number of temperature levels and design patterns that can be used with the present invention for processing other raw materials and fuels.

Сочетание воздухоподогревателя со схемой использования горячей воды охлаждения конденсатора позволяет использовать для сушки угля псевдоожиженный слой меньших размеров с большей эффективностью. Псевдоожиженные слои известных систем, в которых используется производственный пар из контура паровой турбины, имеют гораздо большие размеры. В настоящем изобретении используется разделение материалов. Это позволяет повысить эффективность высушивания. Описанный способ обработки может использоваться с сушильными установками либо со статическим (псевдоожиженным слоем), либо с неподвижным слоем. В двухступенчатой сушильной установке может регулироваться относительная разница скоростей в первой и второй ступенях. В различных ступенях могут выбираться различные градиенты температур и тепловые режимы для получения максимальной эффективности процесса. В конструкции многоступенчатой сушильной установки с псевдоожиженным слоем обеспечивается отделение материала, не поддающегося псевдоожижению, дожигание и регулирование содержания кислорода. В первой ступени, площадь которой в одном из вариантов осуществления изобретения составляет 20% площади поверхности распределения сушильной установки, удаляется больше соединений ртути и серы. Поскольку двухступенчатая сушильная установка с псевдоожиженным слоем может иметь меньшие размеры, то в этом случае требуется вентилятор меньшей мощности, что означает значительную экономию электроэнергии. Требуемая мощность вентилятора в процессе сушки угля является существенным экономическим фактором. Сушильная установка в соответствии с настоящим изобретением может использоваться вместе с модулем очистки. В системе также обеспечивается сортировка для регулирования содержания NOx или введение углерода для регулирования содержания ртути.The combination of an air heater with a scheme for using hot condenser cooling water makes it possible to use a smaller fluidized bed with greater efficiency for drying coal. The fluidized beds of known systems that use production steam from a steam turbine circuit are much larger. In the present invention, separation of materials is used. This improves the drying efficiency. The described processing method can be used with drying plants either with a static (fluidized bed) or with a fixed bed. In a two-stage drying unit, the relative speed difference in the first and second stages can be adjusted. At different stages, different temperature gradients and thermal conditions can be selected to obtain maximum process efficiency. The design of a multi-stage fluidized-bed dryer provides the separation of non-fluidizable material, afterburning and regulation of oxygen content. In the first stage, the area of which in one embodiment of the invention is 20% of the distribution surface area of the drying unit, more mercury and sulfur compounds are removed. Since a two-stage fluidized bed dryer can be smaller, a lower power fan is required in this case, which means significant energy savings. The required fan power during coal drying is a significant economic factor. The dryer in accordance with the present invention can be used in conjunction with a cleaning module. The system also provides sorting to control the NO x content or introducing carbon to control the mercury content.

Система позволяет снизить износ и объем технического обслуживания конвейеров для транспортировки угля и дробилок для угля, уменьшить уровень золы и снизить эрозию. Облегчается процесс превращения угля в порошок, так что обеспечивается более полное высушивание в углеразмольной мельнице, уменьшаются засорения трубопроводов, требуется меньше первичного воздуха, и могут использоваться пониженные скорости потока первичного воздуха. Могут быть снижены потребности электростанции в электроэнергии для работы вспомогательного оборудования, повышена мощность электростанции, улучшена работа скрубберов и снижен уровень выброса вредных веществ.The system allows to reduce wear and maintenance of conveyors for transporting coal and crushers for coal, reduce ash levels and reduce erosion. The process of converting coal to powder is facilitated, so that a more complete drying in the coal-grinding mill is ensured, clogging of pipelines is reduced, less primary air is required, and lower primary air flow rates can be used. The power plant's demand for electricity for auxiliary equipment can be reduced, the power of the power plant is increased, the operation of scrubbers is improved, and the level of emission of harmful substances is reduced.

Также снижается скорость потока топочных газов 506, выходящих из печи 530, при сжигании сухого порошкообразного угля 526 по сравнению со случаем сжигания влажного угольного порошка. Также снижается удельная теплоемкость топочных газов 506 благодаря пониженному содержанию влаги в высушенном порошке угля 526. В результате снижается тепловая энергия топочных газов 506 и появляется возможность использования очистного оборудования меньших размеров. Пониженная скорость потока топочных газов 506 также обусловливает меньшую интенсивность конвективной теплопередачи. Поэтому при использовании высушенного топлива, несмотря на увеличение температуры топочных газов на выходе из печи, меньше тепла будет передаваться рабочему теплоносителю (вода или пар, не показаны) в парогенераторе 534. Для парогенераторов с постоянной конфигурацией теплопередачи температура горячего повторно нагретого пара (циркулирующий производственный пар) может быть снижена по сравнению с работой на более влажном топливе. Некоторое снижение температуры горячего повторно нагретого пара можно скомпенсировать за счет увеличения площади поверхности подогревателя (повторный нагрев, не показано) или изменения рабочего режима работы парогенератора, например, за счет изменения угла наклона горелки, в результате чего изменяется угол подачи тепла к стенкам котлоагрегата, или за счет использования повышенного уровня избыточности воздуха. Можно было бы разработать новую конструкцию парогенератора для пониженных скоростей топочных газов 506 в конвективном газоходе (путь выхода топочных газов внутри печи) для получения необходимой температуры пара при нормальном рабочем режиме. Это позволит дополнительно уменьшить размеры конструкции и ее стоимость.Also, the flow rate of the flue gases 506 exiting the furnace 530 is reduced when burning dry powdered coal 526 as compared to the case of burning wet coal powder. The specific heat of the flue gases 506 is also reduced due to the reduced moisture content in the dried coal powder 526. As a result, the thermal energy of the flue gases 506 is reduced and it becomes possible to use smaller treatment equipment. A reduced flue gas flow rate 506 also results in lower convective heat transfer rates. Therefore, when using dried fuel, despite the increase in the temperature of the flue gases at the outlet of the furnace, less heat will be transferred to the working heat carrier (water or steam, not shown) in the steam generator 534. For steam generators with a constant heat transfer configuration, the temperature of the hot reheated steam (circulating production steam ) can be reduced compared to running on wetter fuel. A certain decrease in the temperature of hot reheated steam can be compensated by increasing the surface area of the heater (reheating, not shown) or changing the operating mode of the steam generator, for example, by changing the angle of the burner, as a result of which the angle of heat supply to the walls of the boiler changes, or through the use of increased levels of redundancy of air. It would be possible to develop a new design of a steam generator for reduced flue gas velocities 506 in a convective gas duct (flue gas exit path inside the furnace) to obtain the required steam temperature under normal operating conditions. This will further reduce the size of the structure and its cost.

При сжигании высушенного угля мощность, необходимая для работы вспомогательного оборудования, будет уменьшаться в результате снижения мощностей вентиляторов нагнетания (FD), всасывания (ID) и первичного воздуха (РА) и уменьшения мощности углеразмольной мельницы. Сочетание снижения подачи угля, меньшего потребного потока воздуха, и меньшей скорости истечения топочных газов при сжигании высушенного угла улучшают эффективность работы парогенератора и удельный расход тепла энергетического блока, прежде всего за счет уменьшения потерь в дымовой трубе и снижения потребления углеразмольных мельниц и вентиляторов. Это улучшение характеристик позволяет повысить мощность промышленного предприятия на существующем оборудовании. Работа очистных систем (скрубберы, электростатические пылеуловители и устройства извлечения ртути), которые устанавливаются на выходе и обычно используются на электростанциях, работающих на угле, улучшается при сжигании высушенного угля благодаря снижению скорости истечения топочных газов и увеличению времени нахождения газов в очистных устройствах.When burning dried coal, the power required to operate auxiliary equipment will decrease as a result of a decrease in the capacity of the discharge fans (FD), suction (ID) and primary air (RA) and a decrease in the power of the coal-grinding mill. The combination of a reduction in coal supply, a lower required air flow, and a lower exhaust gas flow rate when burning a dried angle improve the efficiency of the steam generator and the specific heat consumption of the energy block, primarily by reducing losses in the chimney and reducing the consumption of coal-grinding mills and fans. This improvement in performance allows you to increase the capacity of an industrial enterprise on existing equipment. The operation of treatment systems (scrubbers, electrostatic dust collectors and mercury extraction devices), which are installed at the outlet and are usually used in coal-fired power plants, is improved by burning dried coal by reducing the rate of expiration of flue gases and increasing the residence time of gases in the treatment devices.

Сжигание высушенного угля также положительно сказывается на уменьшении выбросов вредных веществ. Уменьшение потребного количества подаваемого угля может быть непосредственно выражено в массовых количествах золы, CO2, SO2 и твердых частиц. Параметры подачи первичного воздуха влияют на содержание NOx. При сжигании высушенного угля поток первичного воздуха будет меньше, чем в случае сжигания влажного угля. В результате интенсивность выброса NOx будет меньше, поскольку создается большая гибкость на входе сушильной установки по подготовке воздуха сгорания.Burning dried coal also has a positive effect on reducing emissions. The decrease in the required amount of coal supplied can be directly expressed in mass quantities of ash, CO 2 , SO 2 and particulate matter. Primary air supply parameters affect the NO x content. When burning dried coal, the flow of primary air will be less than in the case of burning wet coal. As a result, the NO x emission rate will be lower since greater flexibility is created at the inlet of the drying plant for the preparation of combustion air.

Для энергетических установок, оборудованных мокрыми скрубберами, выбросы ртути, возникающие в результате сжигания более сухого угля, могут быть снижены благодаря меньшей температуре газа на выходе воздухоподогревателя, что благоприятствует образованию HgO and HgCl2 из элементарной ртути. Эти окисленные формы ртути растворимы в воде и поэтому могут быть удалены с помощью скруббера. Кроме того, влажность топочных газов замедляет окисление ртути в водорастворимые формы. Снижение влажности топлива приводит к снижению содержания влаги в топочных газах, что будет способствовать окислению ртути с образованием ее водорастворимых форм. Таким образом, при сжигании более сухого угля выбросы ртути будут ниже по сравнению с использованием более влажного угля. В патентной заявке США, которая была подана в один день с настоящей заявкой с указанием одного и того же соавтора и владельца и которая является частичным продолжением патентной заявки США №11/107,153, поданной 15 апреля 2005 г., более подробно описывается применение слоя сушильного устройства для удаления из угля серы, золы, ртути и других вредных составляющих; причем указанная заявка вводится ссылкой в настоящую заявку.For power plants equipped with wet scrubbers, mercury emissions resulting from the combustion of drier coal can be reduced due to the lower gas temperature at the outlet of the air heater, which favors the formation of HgO and HgCl 2 from elemental mercury. These oxidized forms of mercury are soluble in water and therefore can be removed using a scrubber. In addition, the humidity of the flue gases slows down the oxidation of mercury to water-soluble forms. Reducing the moisture content of the fuel leads to a decrease in the moisture content in the flue gases, which will contribute to the oxidation of mercury with the formation of its water-soluble forms. Thus, when burning drier coal, mercury emissions will be lower compared to using wetter coal. The U.S. patent application, which was filed on the same day as this application with the same co-author and owner, and which is a partial continuation of U.S. Patent Application No. 11 / 107,153, filed April 15, 2005, describes in more detail the use of a dryer layer. to remove sulfur, ash, mercury and other harmful components from coal; moreover, the specified application is introduced by reference to this application.

Снижение содержания влаги в угле по мере того, как он движется через эту ограниченную часть системы, обладает следующими достоинствами: более сухой уголь легче превращать в порошок, и требуется меньше энергии для получения одной и той же степени помола; повышается выходная температура (температура угля и смеси первичного воздуха на выходе мельницы), и улучшаются характеристики транспортировки угля по трубопроводу (меньше забивается), по которому уголь подается в печь 530. Кроме того, требуется меньше первичного воздуха 580 для высушивания и транспортировки угля. Меньшие скорости первичного воздуха означают снижение эрозии углеразмольной мельницы 524, угольных трубопроводов, горелки и вспомогательного оборудования, что уменьшает затраты на техническое обслуживание трубопроводов и мельницы, которые для электростанций, работающих на бурых углях, очень высоки.The decrease in moisture content in coal as it moves through this limited part of the system has the following advantages: drier coal is easier to turn into powder, and less energy is required to obtain the same degree of grinding; the outlet temperature rises (the temperature of the coal and the primary air mixture at the mill outlet), and the characteristics of coal transportation through the pipeline (less clogged) through which the coal is fed to the furnace 530 are improved. In addition, less primary air 580 is required to dry and transport the coal. Faster primary air speeds mean less erosion of the 524 coal mill, coal pipelines, burner and auxiliary equipment, which reduces the maintenance costs of pipelines and mills, which are very high for brown coal power plants.

При высушивании угля температура в печи 530 выше благодаря снижению уровня водяных паров, и процессы теплопередачи улучшаются. Более высокая температура горения повышает радиационный тепловой поток в направлении стенок печи 530. Поскольку содержание влаги в выходящих топочных газах 506 снижено, то изменяются характеристики излучения тепла пламенем, что также влияет на величину теплового потока, излучаемого в направлении стенок печи 530. При повышении температуры пламени повышается температура частиц угольной золы, выходящих из печи 530, что может интенсифицировать процессы засорения и зашлаковывания печи. Осаждение шлака на стенках печи уменьшает теплопередачу, что приводит к повышению температуры топочных газов на выходе печи. Благодаря уменьшению скорости подачи угля в печь в связи с тем, что влажность топлива снижена, количество золы, поступающей в парогенератор, также снижается. В результате уменьшается эрозия парогенератора 534 твердыми частицами и уменьшается объем его технического обслуживания (например, удаление сажи, которая осаждается на внутренних поверхностях котлоагрегата).When coal is dried, the temperature in the furnace 530 is higher due to lower water vapor levels, and heat transfer processes are improved. A higher combustion temperature increases the radiation heat flux towards the walls of the furnace 530. Since the moisture content in the exhaust flue gases 506 is reduced, the characteristics of heat radiation by the flame change, which also affects the amount of heat flux radiated towards the walls of the furnace 530. As the temperature of the flame increases the temperature of the coal ash particles exiting the furnace 530 rises, which can intensify the processes of clogging and slagging of the furnace. The deposition of slag on the walls of the furnace reduces heat transfer, which leads to an increase in the temperature of the flue gases at the outlet of the furnace. Due to the decrease in the rate of coal supply to the furnace due to the fact that the humidity of the fuel is reduced, the amount of ash entering the steam generator is also reduced. As a result, erosion of the steam generator 534 by solid particles is reduced and the amount of its maintenance is reduced (for example, the removal of soot, which is deposited on the internal surfaces of the boiler).

Также при сжигании сухого порошка угля 526 снижается скорость истечения топочных газов 506, выходящих из печи 530, по сравнению со случаем сжигания влажного угольного порошка. В общем случае более низкие скорости истечения топочных газов создают возможности для использования очистного оборудования, имеющего меньшие размеры. Также снижается удельная теплоемкость топочных газов 506 благодаря пониженному содержанию влаги в сухом порошкообразном угле 526. В результате происходит уменьшение тепловой энергии топочных газов 506. Пониженная скорость истечения топочных газов 506 также обусловливает меньшую интенсивность конвективной теплопередачи. Поэтому при использовании высушенного топлива, несмотря на увеличение температуры топочных газов на выходе из печи, меньше тепла будет передаваться рабочему теплоносителю (вода или пар) в конвективном газоходе системы парогенератора.Also, when burning dry coal powder 526, the rate of outflow of flue gases 506 leaving the furnace 530 is reduced compared to the case of burning wet coal powder. In the general case, lower flue gas discharge rates create opportunities for using smaller treatment equipment. The specific heat of the flue gases 506 is also reduced due to the reduced moisture content in the dry powder coal 526. As a result, the thermal energy of the flue gases 506 decreases. The reduced flue gas outflow rate 506 also causes a lower convective heat transfer rate. Therefore, when using dried fuel, despite the increase in the temperature of the flue gases at the outlet of the furnace, less heat will be transferred to the working heat carrier (water or steam) in the convective gas duct of the steam generator system.

По экономическим причинам полное высушивание угля не требуется и не рекомендуется, поскольку удаление из топлива только части влаги является достаточным. Оптимальная величина удаляемой части влаги зависит от условий работы промышленного комплекса, в частности от типа угля и его характеристик, от конструкции парогенератора и экономических соображений (например, продажа высушенного угля другим тепловым электростанциям). Главное, чтобы оставалось достаточно влаги в угле для обеспечения достаточного массового потока для передачи тепла потокам основного и вновь нагретого пара внутри тепловой электростанции. В противном случае пара, производимого парогенератором, может быть недостаточно для вращения турбин. Отработанное тепло производственных процессов предпочтительно, но не исключительно, используется для нагрева и/или создания псевдоожиженного слоя (воздух 582 для высушивания, создания псевдоожиженного слоя) и для использования во внутреннем теплообменнике. Как было показано, это тепло может быть использовано непосредственно или опосредованно в одной или нескольких ступенях.For economic reasons, complete drying of the coal is not required and is not recommended, since removing only part of the moisture from the fuel is sufficient. The optimal amount of moisture to be removed depends on the operating conditions of the industrial complex, in particular on the type of coal and its characteristics, on the design of the steam generator and economic considerations (for example, selling dried coal to other thermal power plants). The main thing is that there is enough moisture in the coal to provide enough mass flow to transfer heat to the streams of the main and newly heated steam inside the thermal power plant. Otherwise, the steam produced by the steam generator may not be enough to rotate the turbines. Waste heat from production processes is preferably, but not exclusively, used for heating and / or creating a fluidized bed (air 582 for drying, creating a fluidized bed) and for use in an internal heat exchanger. As shown, this heat can be used directly or indirectly in one or more steps.

Как было рассмотрено выше, винтовой шнек 194, размещенный в цилиндрическом желобе 190 распределительной пластины 180 первой ступени 254 сушильной установки с псевдоожиженным слоем (см. фигуры 7-8 и 15)в общем случае транспортирует в горизонтальном направлении более плотные частицы угля, не поддающиеся псевдоожижению, которые опускаются в нижнюю часть слоя. Такой материал может быть просто оставлен для накопления на стороне псевдоожиженного слоя сушильной установки до тех пор, пока установка не будет остановлена для регулярного удаления таких отложений, в то время как все-таки происходит улучшение общего процесса транспортировки потока псевдоожиженных частиц угля к стороне разгрузки сушильной установки по сравнению с установками без такого винтового шнека. Однако предпочтительный вариант сушильной установки с псевдоожиженным слоем содержит скруббер для автоматического удаления в процессе работы указанных накапливающихся частиц угля из области псевдоожиженного слоя, для того чтобы снизить необходимость в такой чистке, которая нарушает непрерывность работы установки. Эти автоматически удаляемые частицы угля, не поддающиеся псевдоожижению, составляют отдельный поток угля, который может обрабатываться в зависимости от состава и от потребностей тепловой электростанции, в частности направляться для сжигания в печи парогенератора, или же обрабатываться с целью отделения захваченных мелких частиц, удаления вредных составляющих, таких как элементарная сера, зола или ртуть, или направляться на захоронение.As discussed above, a screw auger 194 located in a cylindrical trough 190 of the distribution plate 180 of the first stage 254 of a fluidized bed dryer (see figures 7-8 and 15) generally conveys in the horizontal direction denser coal particles that are not amenable to fluidization that fall to the bottom of the layer. Such material can simply be left to accumulate on the fluidized bed side of the drying plant until the plant is stopped to regularly remove such deposits, while still improving the overall process of transporting the flow of fluidized coal particles to the discharge side of the drying plant compared to installations without such a screw auger. However, a preferred embodiment of a fluidized bed dryer comprises a scrubber for automatically removing during the process of operation said accumulated coal particles from the fluidized bed region, in order to reduce the need for such cleaning, which disrupts the operation of the plant. These automatically removed coal particles, not amenable to fluidization, constitute a separate stream of coal, which can be processed depending on the composition and needs of a thermal power plant, in particular, sent to be burned in a steam generator furnace, or processed to separate trapped small particles and remove harmful components such as elemental sulfur, ash or mercury, or sent to landfills.

Вариант осуществления скруббера 600 в соответствии с настоящим изобретением представлен на виде с вырезом на фигурах 25а и 25b. Скруббер 600 представляет собой коробчатый корпус с боковыми стенками 602, торцевой стенкой 604, основанием 606 и верхней частью 608 (не показана), который прикреплен к боковой стенке сушильной установки 250 так, чтобы закрывать вырезанный разгрузочный проем 610, через который частично выступает винтовой шнек 194. Необходимо отметить, что вместо винтового шнека может использоваться любое подходящее устройство, которое способно транспортировать в горизонтальном направлении спустившиеся вниз частицы угля, в том числе ленточный конвейер, выталкиватель или скребковая цепь.An embodiment of a scrubber 600 in accordance with the present invention is shown in cutaway in figures 25a and 25b. The scrubber 600 is a box-shaped case with side walls 602, an end wall 604, a base 606 and an upper part 608 (not shown) that is attached to the side wall of the drying unit 250 so as to cover the cut out discharge opening 610 through which the screw screw 194 partially protrudes It should be noted that instead of a screw auger, any suitable device can be used that is capable of transporting coal particles that have descended downward, including a conveyor belt, in a horizontal direction s or drag chain.

Винтовой шнек 194 будет перемещать частицы, лежащие в нижней части псевдоожиженного слоя, и разгружать их через разгрузочный проем 610 в скруббер 600, где они могут накапливаться отдельно от сушильной установки. В этом случае исключается необходимость в остановке сушильной установки для удаления накопленных тяжелых частиц. При достаточном накоплении частиц в скруббере или в любом ином случае может быть открыта дверца 612 в торцевой стенке 604 для разгрузки накопившихся частиц через выходное отверстие в торцевой стенке, причем накопившиеся частицы выталкиваются давлением, создаваемым винтовым шнеком 194, или с помощью любых иных известных средств. Дверца 613 может управляться таймером, чтобы она открывалась для разгрузки накопленных частиц через определенные интервалы времени.The screw auger 194 will move the particles lying in the lower part of the fluidized bed and unload them through the discharge opening 610 into a scrubber 600, where they can accumulate separately from the dryer. In this case, the need to stop the drying unit to remove accumulated heavy particles is eliminated. With sufficient accumulation of particles in the scrubber or in any other case, a door 612 can be opened in the end wall 604 to discharge accumulated particles through an outlet in the end wall, the accumulated particles being pushed out by the pressure generated by the screw screw 194, or by any other known means. Door 613 may be controlled by a timer so that it opens to discharge accumulated particles at regular intervals.

Предпочтительный вариант осуществления скруббера 600 представлен на фигуре 26, где вместо сплошной панели основания 606 (см. фигуру 25) используется распределительная пластина 620. В этом случае ответвляющаяся часть потока воздуха 206, создающего псевдоожиженный слой, проходит вверх через отверстия 622 в распределительной пластине 620 для псевдоожижения частиц, находящихся в скруббере. Конечно основная масса частиц будет оставаться в нижней части псевдоожиженного слоя из-за их повышенного удельного веса, однако некоторые вынесенные мелкие частицы поднимутся в верхнюю часть слоя и будут втянуты в сушильную установку 250 через впускное отверстие 624 (через это отверстие на фигуре 26 видны трубки теплообменника 280). Таким образом, поток частиц, выгруженных в скруббер, показанный на фигуре 26, проходит дополнительную обработку с целью отделения вынесенных мелких частиц и может быть направлен на дальнейшую обработку, продуктивное использование или на захоронение.A preferred embodiment of the scrubber 600 is shown in FIG. 26, where a distribution plate 620 is used instead of a solid panel of the base 606 (see FIG. 25). In this case, the branch portion of the air stream 206 creating the fluidized bed passes upward through the openings 622 in the distribution plate 620 for fluidization of particles in the scrubber. Of course, the bulk of the particles will remain in the lower part of the fluidized bed due to their increased specific gravity, however, some of the fine particles removed will rise into the upper part of the layer and be pulled into the drying unit 250 through the inlet 624 (through this hole in figure 26 heat exchanger tubes are visible 280). Thus, the stream of particles discharged into the scrubber shown in FIG. 26 undergoes additional processing to separate the removed small particles and can be sent for further processing, productive use or disposal.

Еще один вариант 630 скруббера, представленный на фигурах 27-29, содержит две секции 632 и 634 для обработки большего количества частиц, не поддающихся псевдоожижению, выгруженных из сушильной установки 250. На фигуре 28 отчетливо видно, что винтовой шнек 194 проходит через переднюю камеру 636. Опустившиеся вниз частицы угля подаются винтовым шнеком в эту переднюю камеру 636 и затем в накопительные камеры 638 и 640, закрытые затворами 642 и 644, соответственно, или другими подходящими средствами управления потоком. Как только в накопительных камерах 638 и 640 накапливается заданный объем тяжелых частиц или пройдет заданный интервал времени, затворы 642 и 644 открываются для выгрузки накопленного угля в разгрузочные каналы 646 и 648, соответственно. Частицы угля под действием силы тяжести падают через выходные части 650 и 652 в нижние части разгрузочных каналов 646 и 648 и далее в какой-либо накопительный резервуар или на средства транспортировки для дальнейшей обработки или для захоронения.Another embodiment 630 of the scrubber, shown in figures 27-29, contains two sections 632 and 634 for processing more particles that are not amenable to fluidization, discharged from the drying unit 250. In figure 28 it is clearly seen that the screw auger 194 passes through the front chamber 636 Coal particles that have fallen down are fed by a screw screw into this front chamber 636 and then into the storage chambers 638 and 640, closed by shutters 642 and 644, respectively, or other suitable flow control means. As soon as a predetermined volume of heavy particles accumulates in the accumulation chambers 638 and 640 or a predetermined time interval elapses, the gates 642 and 644 open to discharge the accumulated coal into the discharge channels 646 and 648, respectively. The particles of coal under the action of gravity fall through the outlet parts 650 and 652 to the lower parts of the discharge channels 646 and 648 and then to some storage tank or transportation means for further processing or disposal.

Как было указано выше, внутри накопительных камер 638 и 640 могут быть размещены распределительные пластины 654 таким образом, чтобы поток воздуха, предназначенный для псевдоожижения, проходил через отверстия и 660 в распределительных пластинах для отделения мелких частиц угля, захваченных потоком более плотных частиц. Как только затворы 642 и 644 открываются, вынесенные мелкие частицы поднимаются в верхние части разгрузочных каналов 646 и 648 для подачи с помощью подходящих механических средств обратно в сушильную установку 250 с псевдоожиженным слоем. Более тяжелые частицы угля падают вниз через нижние части разгрузочных каналов 646 и 648, как описано выше.As indicated above, distribution plates 654 can be placed inside the accumulation chambers 638 and 640 so that the air stream intended for fluidization passes through the openings and 660 in the distribution plates to separate small particles of coal trapped in the stream of denser particles. Once the gates 642 and 644 open, the discharged fines are lifted to the top of the discharge channels 646 and 648 to be fed by suitable mechanical means back to the fluidized bed dryer 250. Heavier coal particles fall down through the lower portions of discharge channels 646 and 648, as described above.

Затворы 642 и 644 могут быть соединены с накопительными камерами 638 и 640 с возможностью поворота, хотя они могут быть также выполнены открывающимися со скольжением, поворачивающимися вверх, поворачивающимися вниз или вбок, или иметь любую другую подходящую конструкцию соединения. Кроме того, с накопительными камерами может быть соединено несколько затворов для увеличения скорости разгрузки из камер тяжелых частиц угля.The shutters 642 and 644 can be rotatably connected to the storage chambers 638 and 640, although they can also be made sliding-opening, rotating upward, turning downward or sideways, or have any other suitable connection design. In addition, several gates can be connected to the storage chambers to increase the rate of discharge of heavy coal particles from the chambers.

Использование тяжелых частиц, выделенных из сушильной установки 250 с помощью скруббера 600, будет зависеть от их состава. Если они содержат приемлемые уровни серы, золы, ртути и других вредных компонентов, то их можно направить в печь парогенератора для сжигания, так как они обладают нужной теплотворной способностью. Если же уровни содержания в тяжелых частицах вредных составляющих неприемлемо высоки, то эти частицы могут подвергаться дальнейшей обработке для удаления этих вредных составляющих частично или полностью, как это описано более подробно в патентных заявках США № 11/107,152 и № 11/107,153, поданных 15.04.2005, в которых указан тот же соавтор и совладелец, что и в настоящей заявке, и которые вводятся ссылкой в настоящую заявку. Только если уровни вредных составляющих, содержащихся в тяжелых частицах, настолько высоки, что экономически нецелесообразно проводить их дальнейшую обработку для снижения этих уровней, то этот материал направляется на захоронение. Таким образом, скруббер 600 в соответствии с настоящим изобретением не только обеспечивает автоматическое удаление из псевдоожиженного слоя сушильной установки частиц, не поддающихся псевдоожижению, для повышения эффективности ее работы, но также обеспечивает возможность дальнейшей обработки этих частиц и их продуктивного использования на тепловой электростанции или другом промышленном предприятии.The use of heavy particles separated from the dryer 250 using a scrubber 600 will depend on their composition. If they contain acceptable levels of sulfur, ash, mercury and other harmful components, they can be sent to a steam generator furnace for burning, since they have the required calorific value. If the levels of harmful particles in heavy particles are unacceptably high, then these particles can be further processed to remove these harmful components partially or completely, as described in more detail in US patent applications No. 11 / 107.152 and No. 11 / 107.153, filed 15.04. 2005, which indicate the same co-author and co-owner as in this application, and which are incorporated by reference into this application. Only if the levels of harmful constituents contained in heavy particles are so high that it is not economically feasible to further process them to reduce these levels, then this material is sent for disposal. Thus, the scrubber 600 in accordance with the present invention not only provides automatic removal of particles that are not amenable to fluidization from the fluidized bed of the drying plant to increase its efficiency, but also provides the possibility of further processing of these particles and their productive use in a thermal power station or other industrial enterprise.

Нижеприведенные примеры являются иллюстрациями низкотемпературной сушильной установки, которая является частью настоящего изобретения.The following examples are illustrations of a low temperature dryer, which is part of the present invention.

ПРИМЕР I - ВЛИЯНИЕ СНИЖЕНИЯ ВЛАЖНОСТИ НА ПОВЫШЕНИЕ ТЕПЛОТЫ СГОРАНИЯ БУРОГО УГЛЯEXAMPLE I - INFLUENCE OF REDUCED HUMIDITY ON INCREASING THE HEAT OF COMBUSTION OF Lignite COAL

Испытательное сжигание угля проводилось на энергетическом блоке 2 электростанции Coal Creek компании Great River Energy в штате Северная Дакота для определения влияния влажности на работу блока. Бурый уголь высушивался для этих испытаний в системе сушки угля на открытом воздухе. Полученные результаты приведены на фигуре 30.Coal burning tests were performed at Power Unit 2 of the Great River Energy Coal Creek Power Station in North Dakota to determine the effect of humidity on the unit's operation. Brown coal was dried for these tests in an open-air coal drying system. The results are shown in figure 30.

Как можно видеть, в среднем влажность угля снижалась на 6,1%: от 37,5% до 31,4%. График, представленный на фигуре 30, показывает, что полученные результаты достаточно близки с теоретическими расчетами. Что более важно, снижение уровня влажности бурого угля на 6% привело к улучшению удельного расхода тепла энергетического блока примерно на 2,8%, а снижение влажности на 8% улучшило эту величину примерно на 3,6%. Эти результаты подтверждают, что высушивание угля действительно приводит к увеличению его теплотворной способности.As you can see, the average moisture content of coal decreased by 6.1%: from 37.5% to 31.4%. The graph shown in figure 30 shows that the results are fairly close to theoretical calculations. More importantly, a 6% decrease in brown coal moisture level led to an improvement in the specific heat consumption of the energy block by approximately 2.8%, and a 8% decrease in humidity improved this value by approximately 3.6%. These results confirm that coal drying does indeed increase its calorific value.

ПРИМЕР II - ВЛИЯНИЕ СНИЖЕНИЯ ВЛАЖНОСТИ НА СОСТАВ УГЛЯEXAMPLE II - EFFECT OF REDUCING HUMIDITY ON CARBON COMPOSITION

Образцы бурого угля (лигнита) и угля бассейна Паудер Ривер (Powder River Basin) подвергались химическому анализу, и определялось содержание в них влаги. Полученные результаты приведены ниже в Таблице 1. Как можно видеть, образцы бурого угля содержали в среднем 34,03 вес.% углерода, 10,97 вес.% кислорода, 12,30 вес.% зольной пыли, 0,51 вес.% серы и 38,50 вес.% влаги. Образцы полубитуминозного угля PRB содержали в среднем 49,22 вес.% углерода, 10,91 вес % кислорода, 5,28 вес.% зольной пыли, 0,35 вес.% серы и 30,00 вес.% влаги.Samples of brown coal (lignite) and coal from the Powder River Basin were subjected to chemical analysis and their moisture content was determined. The results are shown below in Table 1. As you can see, the samples of brown coal contained on average 34.03 wt.% Carbon, 10.97 wt.% Oxygen, 12.30 wt.% Fly ash, 0.51 wt.% Sulfur and 38.50 wt.% moisture. Samples of semi-bituminous coal PRB contained an average of 49.22 wt.% Carbon, 10.91 wt.% Oxygen, 5.28 wt.% Fly ash, 0.35 wt.% Sulfur and 30.00 wt.% Moisture.

"Окончательный анализ" проводился с использованием полученных значений для этих образцов бурого угля и угля PRB путем вычисления содержания этих составляющих компонентов для влажности 0% и золы 0%, и для уровня влажности 20%, как также показано в Таблице 1. Как видно из Таблицы 1, химический состав и уровни влажности образцов угля существенно изменяются. Более конкретно, для влажности 20% образцы бурого угля и угля PRB демонстрируют большое увеличение содержания углерода, а именно до 44,27 вес.% и 56,25 вес.%, соответственно, при этом увеличение содержания кислорода было меньше, а именно до 14,27 вес.% и 12,47 вес.%, соответственно. Содержание серы и зольной пыли также слегка увеличилось (увеличения абсолютного содержания не происходило). Важно, что высшая теплотворность (HHV) для бурого угля увеличилось с 6,406 БТЕ/фунт до 8,333 БТЕ/фунт, в то время как величина HHV для угля PBR увеличилась с 8,348 БТЕ/фунт до 9,541 БТЕ/фунт.The "final analysis" was carried out using the obtained values for these samples of brown coal and PRB coal by calculating the content of these constituent components for humidity 0% and ash 0%, and for a moisture level of 20%, as also shown in Table 1. As can be seen from Table 1, the chemical composition and moisture levels of coal samples vary significantly. More specifically, for a moisture content of 20%, samples of brown coal and PRB coal show a large increase in carbon content, namely up to 44.27 wt.% And 56.25 wt.%, Respectively, while the increase in oxygen content was less, namely up to 14 , 27 wt.% And 12.47 wt.%, Respectively. The sulfur and fly ash levels also increased slightly (no increase in absolute content). Importantly, the higher calorific value (HHV) for brown coal increased from 6.406 BTU / lb to 8.333 BTU / lb, while the HHV value for PBR coal increased from 8.348 BTU / lb to 9.541 BTU / lb.

Таблица 1Table 1 ЕдиницыUnits Результаты анализаAnalysis results Влаги и золы нетMoisture and no ash Влажность топлива 20%Fuel Humidity 20% ЛигнитLignite PRBPRB ЛигнитLignite PRBPRB ЛигнитLignite PRBPRB УглеродCarbon вес, %the weight, % 34,0334.03 49,2249.22 69,1769.17 76,0576.05 44,2744.27 56,2556.25 ВодородHydrogen вес, %the weight, % 2,972.97 3,493.49 6,046.04 5,395.39 3,873.87 3,993.99 СераSulfur вес, %the weight, % 0,510.51 0.350.35 1,041,04 0,540.54 0,670.67 0,400.40 КислородOxygen вес, %the weight, % 10,9710.97 10,9110.91 22,2922.29 16,8616.86 14,2714.27 12,4712.47 АзотNitrogen вес, %the weight, % 0,720.72 0,750.75 1,461.46 1,161.16 0,920.92 0,860.86 ВлажностьHumidity вес, %the weight, % 38,5038.50 30,0030.00 0,000.00 0,000.00 20,0020.00 20.0020.00 ЗолаAsh вес, %the weight, % 12,3012.30 5,285.28 0,000.00 0,000.00 16,0016.00 6,306.30 ВСЕГОTOTAL вес, %the weight, % 100,00100.00 100.00100.00 100,00100.00 100,00100.00 100,00100.00 100,00100.00 HHVHhv БТЕ/фунтBTU / lb 6,4066,406 8,3488,348 13,02113,021 12,89912,899 8,3338,333 9,5419,541 HH БТЕ/фунтBTU / lb -2,879-2.879 2,8072,807 -1,664-1.664 -2,217-2,217

ПРИМЕР III - ВЛИЯНИЕ УРОВНЯ ВЛАЖНОСТИ НА ТЕПЛОТВОРНОСТЬ УГЛЯEXAMPLE III - THE INFLUENCE OF THE HUMIDITY LEVEL ON THE COAL HEATSET

Используя значения по составу, приведенные в таблице 1, и принимая мощность электростанции, равной 570 МВт с температурой выходящих топочных газов 825°F, выполняли расчет теплотворности для этих образцов угля при различных уровнях содержания влаги: от 5% до 40%. Полученные результаты приведены на фигуре 31. Как можно видеть, между величиной HHV и уровнем влажности существует линейная зависимость, причем меньшим уровням влажности соответствуют более высокие значения теплотворности. Более конкретно, для образцов угля PRB были получены следующие значения HHV: 11,300 БТЕ/фунт при влажности 5%, 9,541 БТЕ/фунт при влажности 20% и только 8,400 БТЕ/фунт при влажности 30%. Что касается образцов бурого угля, то для них были получены следующие значения HHV: 9,400 БТЕ/фунт при влажности 10%, 8,333 БТЕ/фунт при влажности 20% и только 6,200 БТЕ/фунт при влажности 40%. Это означает, что эффективность работы парогенератора может быть повышена за счет высушивания угля перед его сжиганием в печи парогенератора. Кроме того, для получения одного и того же количества тепла требуется меньше угля.Using the compositional values given in Table 1 and assuming a power plant capacity of 570 MW with an exhaust gas temperature of 825 ° F, the calorific value was calculated for these coal samples at various moisture levels: from 5% to 40%. The results are shown in figure 31. As you can see, between the value of HHV and the level of humidity there is a linear relationship, and lower levels of humidity correspond to higher values of calorific value. More specifically, the following HHV values were obtained for PRB coal samples: 11,300 BTU / lb at 5% moisture, 9,541 BTU / lb at 20% moisture and only 8,400 BTU / lb at 30% humidity. As for brown coal samples, the following HHV values were obtained for them: 9,400 BTU / lb at a moisture content of 10%, 8.333 BTU / lb at a humidity of 20% and only 6,200 BTU / lb at a humidity of 40%. This means that the efficiency of the steam generator can be improved by drying the coal before burning it in the furnace of the steam generator. In addition, less coal is required to produce the same amount of heat.

ПРИМЕР IV - РЕЗУЛЬТАТЫ СУШКИ УГЛЯ В ЭКСПЕРИМЕНТАЛЬНОЙ СУШИЛЬНОЙ УСТАНОВКЕEXAMPLE IV - RESULTS OF CARBON DRYING IN AN EXPERIMENTAL DRYING UNIT

Осенью 2003 г. и летом 2004 г. более 200 тонн бурого угля было высушено на экспериментальной сушильной установке с псевдоожиженным слоем, изготовленной компанией Great River Energy в г.Андервуд, штат Северная Дакота. Сушильная установка, мощность которой составляла 2 т/час, была разработана для оценки рентабельности сушки бурого угля Северной Дакоты с использованием низкотемпературного отработанного тепла и определения эффективности концентрирования таких примесей, как ртуть, зола и сера, с использованием возможности псевдоожиженного слоя по гравитационному разделению компонентов.In the fall of 2003 and the summer of 2004, more than 200 tons of brown coal were dried in a Great River Energy pilot bed drying plant in Underwood, North Dakota. The dryer, with a capacity of 2 t / h, was developed to evaluate the profitability of drying North Dakota brown coal using low-temperature waste heat and determine the concentration efficiency of impurities such as mercury, ash and sulfur, using the possibility of a fluidized bed for gravitational separation of components.

В сушильной установке различались следующие потоки угля: поток исходного загружаемого угля, поток обработанного угля, поток выносимых мелких частиц и поток тяжелых частиц, оседающих в нижней части слоя. В процессе испытаний из этих потоков брались пробы для анализа на содержание влаги, серы, золы и ртути и на теплотворность. Некоторые из проб подвергались сортировке и последующий анализ проводился в отношении разных фракций частиц с одинаковыми размерами.The following coal streams were distinguished in the drying installation: the stream of the initial feed coal, the stream of treated coal, the stream of fine particles carried away, and the stream of heavy particles settling in the lower part of the layer. In the process of testing, samples were taken from these flows for analysis on the moisture, sulfur, ash and mercury content and on calorific value. Some of the samples were sorted and the subsequent analysis was carried out for different fractions of particles with the same size.

Экспериментальная сушильная установка была оснащена контрольно-измерительной аппаратурой для определения характеристик сушки для различных рабочих режимов. Система сбора информации позволяла регистрировать данные измерений в сушильной установке с интервалом 1 минута. Установленная контрольно-измерительная аппаратура обеспечивала возможность вычисления баланса массы и энергии в системе.The experimental drying unit was equipped with instrumentation to determine the drying characteristics for various operating conditions. An information collection system made it possible to register measurement data in a drying unit with an interval of 1 minute. Installed instrumentation provided the ability to calculate the balance of mass and energy in the system.

Основными компонентами экспериментальной сушильной установки были: оборудование подачи угля, загрузочный угольный бункер, сушильная установка с псевдоожиженным слоем, система подачи и подогрева воздуха, внутренний теплообменник, очистные устройства (пылеулавливатель), контрольно-измерительная аппаратура и система управления и сбора данных (см. фигуру 32). Для загрузки исходного угля в сушильную установку и для выгрузки из нее продуктов использовались винтовые шнеки. Для регулирования скорости подачи и обеспечения воздушного шлюза в системе подачи и выгрузки угля использовались лопаточные устройства. Дозаторы угольного бункера обеспечивали необходимую интенсивность и общее количество угля, подаваемого в сушильную установку. Тяжелые частицы и выносимая пыль накапливались в сборниках, которые взвешивались перед испытаниями и после них. Поток выходного продукта выгружался под действием силы тяжести в контейнер, снабженный весами. Система загрузки угля обеспечивала подачу до 8000 фунт/час угля в сушильную установку, причем размер частиц угля не превышал 1/4 дюйма. Система подачи воздуха обеспечивала подачу 6000 станд. куб. футов в минуту при давлении 40 дюймов водяного столба. Тепловая мощность теплообменника подогрева воздуха составляла 438000 БТЕ/час, а тепловая мощность внутреннего теплообменника составляла 250000 БТЕ/час. Это тепло и количество подаваемого воздуха были достаточны для удаления около 655 фунтов воды в час.The main components of the experimental drying plant were: coal supply equipment, coal loading hopper, fluidized bed dryer, air supply and heating system, internal heat exchanger, purification devices (dust collector), instrumentation and control and data acquisition system (see figure 32). Screw augers were used to load raw coal into a drying unit and to unload products from it. To control the feed rate and provide an air lock in the coal supply and discharge system, blade devices were used. The coal hopper dispensers provided the necessary intensity and total amount of coal supplied to the drying unit. Heavy particles and dust were accumulated in collectors, which were weighed before and after the tests. The output stream was unloaded by gravity into a container equipped with weights. Coal charging system provides up to 8000 lb / hr of coal drying installation, the coal particle size of less than 1/4 inch. The air supply system provided 6000 std. cube feet per minute at a pressure of 40 inches of water. The heat capacity of the air preheater heat exchanger was 438,000 BTU / hour, and the heat capacity of the internal heat exchanger was 250,000 BTU / hour. This heat and the amount of air supplied were sufficient to remove about 655 pounds of water per hour.

В типовых испытаниях в бункер загружалось 18000 фунтов угля, размеры частиц которого не превышали 1/4 дюйма. Перед проведением испытания сборники разгружались, и показания весов контейнера записывались. Образцы угля, подаваемого в сушильную установку, брались либо при загрузке бункера, либо в процессе испытания одновременно с образцами пыли из пылеулавливателя, выгружаемых тяжелых частиц и продукта из контейнера (обычно каждые 30 минут после выхода установки на устойчивый режим). Затем включался пылеулавливатель, шнеки и воздушные шлюзы для всех потоков угля. Запускался вентилятор подачи воздуха, и его производительность устанавливалась на уровне 5000 станд. куб. футов в минуту. Затем на полную скорость включалась система подачи угля для загрузки сушильной установки. После установления в сушильной установке псевдоожиженного слоя повышалась температура воздуха, причем подогрев соответствовал температуре внутреннего теплообменника, и величина воздушного потока устанавливалась на необходимом уровне. Затем испытания продолжались в течение 2-3 часов. Одно испытание проводилось в течение восьми часов. По окончании испытания взвешивались сборники, и записывались показания весов контейнера. Результаты измерений переносились в таблицу формата Excel, а взятые образцы угля передавались для анализа в лабораторию. Затем сборники и контейнер разгружались для подготовки к следующему испытанию.In typical tests of the hopper was charged with 18,000 pounds of coal having a particle size not greater than 1/4 inch. Before the test, the collectors were unloaded, and the container weights were recorded. Samples of coal supplied to the drying unit were taken either when loading the hopper, or during testing simultaneously with samples of dust from the dust collector, unloaded heavy particles and product from the container (usually every 30 minutes after the unit reaches steady state). Then included a dust collector, augers and air locks for all coal flows. The air supply fan was started, and its performance was set at 5000 std. cube feet per minute. Then, at full speed, the coal supply system was turned on to load the drying unit. After the fluidized bed was established in the dryer, the air temperature increased, and the heating corresponded to the temperature of the internal heat exchanger, and the air flow was set at the required level. Then the tests continued for 2-3 hours. One test was conducted for eight hours. At the end of the test, the collectors were weighed and the container weights were recorded. The measurement results were transferred to an Excel format table, and the taken coal samples were transferred for analysis to the laboratory. Then the collectors and container were unloaded to prepare for the next test.

В течение осени 2003 г. в одноступенчатой экспериментальной сушильной установке с площадью поверхности распределения материала, равной 23,5 фут2, было обработано 150 тонн бурого угля. Скорость подачи угля в псевдоожиженный слой составляла от 3000 фунт/час до 5000 фунт/час. Скорость подачи воздуха варьировалась в диапазоне 4400-5400 станд. куб. футов в минуту (3,1-3,8 фут/сек). Степень снижения уровня влажности угля является функцией скорости подачи и количества тепла, подаваемого в сушильную установку. Первый экспериментальный модуль обеспечивал удаление порядка 655 фунтов воды в час при расчетной температуре воды порядка 200°F. При скорости подачи угля, равной 83,3 фунт/мин, можно определить, что степень удаления воды составляет 0,13 фунт воды/фунт угля.During the fall of 2003, 150 tons of brown coal were processed in a single-stage experimental drying plant with a material distribution surface area of 23.5 ft 2 . The feed rate of coal into the fluidized bed ranged from 3,000 lbs / hour to 5,000 lbs / hour. The air flow rate ranged from 4400-5400 std. cube feet per minute (3.1-3.8 feet / second). The degree of coal moisture reduction is a function of the feed rate and the amount of heat supplied to the dryer. The first experimental module removed about 655 pounds of water per hour at a design water temperature of about 200 ° F. With a coal feed rate of 83.3 lb / min, it can be determined that the degree of water removal is 0.13 lb of water / lb of coal.

В течение лета 2004 г. сушильная установка была переоборудована, так что она содержала две ступени и внутренний теплообменник большей тепловой мощности. В результате переоборудования модуля его тепловая мощность выросла примерно до 750000 БТЕ/час, и скорость удаления воды составила 1100 фунт/час. В новом модуле было высушено еще 50 тонн угля. В модифицированном модуле также обеспечивался сбор потока тяжелых частиц из первой ступени. Тяжелые частицы - это материал, не поддающийся псевдоожижению, который удалялся из нижней части первой ступени. Он состоял прежде всего из частиц более крупных размеров и повышенной плотности и отделялся в первой ступени под действием силы тяжести. Материалы, температура и балансы тепла для разных входных и выходных потоков приведены в Таблицах 2-4. Общая площадь распределительной пластины составляла 22,5 фут2.During the summer of 2004, the dryer was refitted, so that it contained two stages and an internal heat exchanger of greater heat output. As a result of the conversion of the module, its thermal capacity increased to approximately 750,000 BTU / hour, and the water removal rate was 1,100 lb / hour. In the new module, another 50 tons of coal were dried. In the modified module, the collection of a stream of heavy particles from the first stage was also provided. Heavy particles are fluidizable material that has been removed from the bottom of the first stage. It consisted primarily of particles of larger sizes and increased density and separated in the first stage under the influence of gravity. Materials, temperature and heat balances for different input and output streams are shown in Tables 2-4. The total area of the distribution plate was 22.5 ft 2 .

Таблица 2 Схема работы экспериментальной установки, испытание 44Table 2 The experimental setup, test 44

Figure 00000001
Figure 00000001

Таблица 3Table 3 Экспериментальная установка, результаты испытания 44Experimental setup, test results 44 Испытание 44Test 44 Результатыresults ARAARA 14,2214.22 ТочкаPoint ПараметрParameter HHVHhv 71757175 4672,0824672,082 АBUT #/час#/hour 65246524 ARSARS 0,550.55 ТМTM 31,4831.48 2053,82053.8 AR, ртутьAR, mercury 55,3555.35 ARAARA 15,2115.21 Темп, °СTemp, ° С 46,2246.22 воды, FBwater fb HHVHhv 58305830 FF выходexit ARSARS 0,530.53 Поток/часFlow / hour 7918279182 AR, ртутьAR, mercury 68,868.8 Темп, °СTemp, ° С 77,7877.78 Тепло вWarm in Темп, °FTemp ° F 8080 БТЕ/часBTU / hour 1108548011085480 ВAT Вода, FB, наWater, FB, On GG DCDC входеinlet фунт/часpound / hour 363,7363.7 5,6%5.6% Поток фунт/часPound / hour flow 7918279182 ТМTM 21,2221.22 77,277,2 Темп, °FTemp ° F 179,4179.4 ARAARA 30,2630.26 Тепло вWarm in 1167114311671143 HHVHhv 54345434 302,9223302.9223 БТЕ/часBTU / hour ARSARS 0,50.5 СFROM Воздух, FB,Air, FB, AR, ртутьAR, mercury 117,6117.6 на входеat the entrance Темп, °СTemp, ° С 38,8938.89 Поток фунт/часPound / hour flow 2061920619 Темп, FPace, F 152,7152.7 НN Воздух, FB,Air, FB, Тепло вWarm in 679287679287 на выходеat the exit БТЕ/часBTU / hour Поток фунт/часPound / hour flow 2061920619 HWHw Темп, °СTemp, ° С 41,0641.06 #Н20/#Dвозд,# H20 / # D-rail, 0,01370.0137 Тепло вWarm in DD UCUC БТЕ/часBTU / hour 427101427101 #/час, %# / hour,% 856,6856.6 13,13%13.13% HWHw #Н20/# H20 / 0,056060,05606 ТМTM 26,4626.46 226,6226.6 #Dвозд.# D-star. FBFb ARAARA 15,415.4 влажностьhumidity II выходexit Нwвыход-Hw output - HHVHhv 68586858 900,406900,406 Hwвыход·мHw output 873,4873.4 13,39%13.39% ARSARS 0.760.76 балансbalance AR, ртутьAR, mercury 117,6117.6 массыmasses 97,21%97.21% балансbalance Темп, °FTemp ° F 115,2115,2 угля, HHVcoal, hhv 100,8%100.8% балансbalance ЕE GTGT водыwater 108,0%108.0% #/час#/hour 4248,24248.2 65,1%65.1% ТМTM 24,524.5 1040,81040.8

Как можно видеть, влажность снизилась с 31,5% на входе до 24,5% в потоке выходного продукта (GT). Таким образом, экспериментальная установка для сушки угля продемонстрировала, что бурый уголь штата Северная Дакота может быть надежно и экономично высушен с использованием низкотемпературного отработанного тепла тепловой электростанции.As you can see, the humidity decreased from 31.5% at the inlet to 24.5% in the output stream (GT). Thus, an experimental coal drying plant has demonstrated that North Dakota brown coal can be reliably and economically dried using low-temperature waste heat from a thermal power plant.

В Таблице 4 приведены характеристики угля для подаваемого потока, потоков выносимых частиц, тяжелых частиц и выходного продукта. Как можно видеть, поток выносимых частиц характеризуется высоким содержанием ртути и золы, в потоке тяжелых частиц много ртути и серы, а характеристики выходного потока в отношении теплосодержания и содержания ртути, золы и SO2/МБТЕ существенно улучшились.Table 4 shows the characteristics of coal for the feed stream, the flow of the carried particles, heavy particles and the output product. As you can see, the effluent stream is characterized by a high mercury and ash content, the heavy particle stream contains a lot of mercury and sulfur, and the output flow characteristics with respect to the heat content and the content of mercury, ash and SO 2 / MBTU have significantly improved.

Поток выносимых частиц содержал в основном частицы, проходящие через сито 40, а поток тяжелых частиц содержал частицы, не проходящие сито 8.The flow of particles carried out mainly contained particles passing through a sieve 40, and the flow of heavy particles contained particles not passing a sieve 8.

Таблица 4Table 4 Характеристики угля в разных потоках, испытание 44Characteristics of coal in different streams, test 44 УгольCoal ФунтыPounds Ртуть ppbMercury ppb Зола, %Ash% HHV в БТЕ/фунтHHV to BTU / lb Сера, %Sulfur,% #SO2/MBTE#SO 2 / MBTE ПодачаInnings 1490214902 91,2091.20 18,0518.05 5830,005830.00 0,530.53 1,821.82 Тяжелые частицыHeavy particles 27142714 100,61100.61 15,4115.41 6877,006877,00 0,760.76 2,202.20 Выносимые частицыParticles 789789 136,58136.58 30,2630.26 5433,755433.75 0,500.50 1,861.86 Выходной продуктOutput product 76957695 65,8365.83 14,2214.22 7175,257175.25 0,550.55 1,541,54

Таким образом, содержание ртути и серы в выходном продукте в испытании 44 снизилось на 40% и 15%, соответственно.Thus, the mercury and sulfur content in the output in test 44 decreased by 40% and 15%, respectively.

Изменения во времени температуры псевдоожиженного слоя, измеренной в шести точках внутри слоя, и температуры воздуха на выходе, представлены на графиках фигуры 34. Эта информация использовалась вместе с данными о содержании влаги в угле (получено из образцов угля) для сведения баланса массы и энергии для сушильной установки и определения количества влаги, извлеченной из угля.The changes in time of the temperature of the fluidized bed, measured at six points inside the bed, and the air temperature at the outlet, are presented in the graphs of figure 34. This information was used together with the moisture content in coal (obtained from coal samples) to reduce the mass and energy balance for drying unit and determining the amount of moisture extracted from coal.

Содержание влаги в псевдоожиженном слое и в потоке выходного продукта определялось из образцов угля и указывалось в фунтах воды, содержащейся в угле, на фунт сухого угля, как указано на фигуре 35. Результаты показывают, что влажность угля на входе изменялась в диапазоне 0,40-0,60 фунтов Н2О/фунт сухого угля (28,5-37,5% от веса влажного угля), в то время как влажность выходного продукта изменялась в диапазоне 0,20-0,40 фунт H2O/фунт сухого угля (16,5-28,5% от веса влажного угля). Иначе говоря, процесс сушки угля с помощью низкотемпературного псевдоожиженного слоя обеспечивал снижение уровня влажности примерно на 10% при времени нахождения частиц угля в псевдоожиженном слое порядка 30 минут. Повышение температуры воздуха, создающего псевдоожиженный слой, или увеличение подачи тепла во внутренний теплообменник приводили к увеличению скорости удаления влаги. Величины теплотворности для нулевой влажности, полученные для потока загружаемого угля и для потока выходного продукта, показали, что при проведении процесса сушки не происходило заметного окисления углерода и выхода летучих соединений.The moisture content in the fluidized bed and in the output stream was determined from coal samples and indicated in pounds of water contained in the coal, per pound of dry coal, as shown in figure 35. The results show that the moisture content of the inlet coal ranged from 0.40- 0.60 pounds of N 2 O / pound of dry coal (28.5-37.5% of the weight of wet coal), while the humidity of the output product varied in the range of 0.20-0.40 pounds of H 2 O / pound of dry coal (16.5-28.5% of the weight of wet coal). In other words, the drying process of coal using a low-temperature fluidized bed provided a moisture level decrease of about 10% with the residence time of coal particles in the fluidized bed of about 30 minutes. An increase in the temperature of the air creating a fluidized bed or an increase in the heat supply to the internal heat exchanger led to an increase in the rate of moisture removal. The values of calorific value for zero humidity obtained for the feed coal stream and for the output product stream showed that during the drying process there was no noticeable oxidation of carbon and the yield of volatile compounds.

Количество влаги, извлеченной из угля при выполнении процесса высушивания, определялось с использованием четырех методов: общего баланса масс для сушильной установки, баланса влажности воздуха, баланса влажности угля и баланс полной энергии для сушильной установки. Метод баланса полной энергии основывался на сведении баланса потоков тепла на входе и на выходе сушильной установки: тепло, подаваемое внутренним теплообменником, и изменения теплоты воздуха и угля внутри сушильной установки при допущении, что разница представляет тепло, необходимое для испарения влаги из угля. Предполагалось, что утечки во внешнюю среду отсутствуют. Метод баланса влаги воздуха основался на измерении скорости воздушного потока и влажности воздуха на входе и выходе. Количество влаги, испаряемой из угля, вычислялось по разнице между влагосодержанием воздушных потоков на входе и выходе и их скорости. Аналогично, баланс влаги угля основывался на влажности, измеренной в потоках подаваемого угля и выходного продукта, и скоростях этих потоков. Метод баланса общей массы основывался на разнице масс потоков подаваемого угля и выходного продукта с учетом массы материала, оставшегося в сушильной установке, взятых образцов и одного процента на потери. Полученная разница считалась массой воды, удаленной из угля.The amount of moisture extracted from coal during the drying process was determined using four methods: the total mass balance for the drying plant, the moisture balance of the air, the coal moisture balance and the total energy balance for the drying plant. The total energy balance method was based on balancing the heat fluxes at the inlet and outlet of the drying plant: the heat supplied by the internal heat exchanger and the changes in the heat of air and coal inside the drying plant, assuming that the difference represents the heat needed to evaporate moisture from the coal. It was assumed that there are no leaks to the external environment. The air moisture balance method was based on measuring the air flow rate and air humidity at the inlet and outlet. The amount of moisture evaporated from coal was calculated by the difference between the moisture content of the air flows at the inlet and outlet and their speed. Similarly, the moisture balance of coal was based on the moisture measured in the feed coal and the product stream and the flow rates. The total mass balance method was based on the difference in the masses of the coal feed stream and the output product, taking into account the mass of material remaining in the dryer, samples taken and one percent loss. The resulting difference was considered the mass of water removed from the coal.

Результаты вычислений, приведенные на фигуре 36, показывают, что была достигнута достаточная близость значений количества влаги, удаленной из угля, которые были получены четырьмя разными методами.The calculation results shown in figure 36 show that there was achieved a sufficient proximity of the values of the amount of moisture removed from coal, which were obtained by four different methods.

На фигуре 37 приведены данные по составу потока тяжелых частиц для семи испытаний при использовании модифицированной экспериментальной сушильной установки. В испытании 41 были получены наилучшие результаты с содержанием 48% серы и ртути и только 23% БТЕ и 25% от веса. Используя результаты испытания с воздушной отсадочной машиной в модуле 4 мы могли бы ожидать удаления 37% из 48% для ртути 18%, 27% из 48% для серы 13% и 7,1% из 23% для потери БТЕ 1,6%.The figure 37 shows data on the composition of the flow of heavy particles for seven tests using a modified experimental drying plant. In Test 41, the best results were obtained with 48% sulfur and mercury and only 23% BTU and 25% by weight. Using the results of the test with the air jigging machine in module 4, we could expect the removal of 37% of 48% for mercury 18%, 27% of 48% for sulfur 13% and 7.1% of 23% for a BTU loss of 1.6%.

Вышеприведенные характеристики и чертежи обеспечивают полное описание структуры и работы установки тепловой обработки в соответствии с настоящим изобретением. Однако изобретение может использоваться и в других сочетаниях, модификациях, вариантах и условиях работы без выхода за пределы его сущности и объема. Например, оно может быть использовано в любых сочетаниях первичных и вторичных источников тепла с использованием псевдоожиженных или других слоев, причем может использоваться как одна, так и несколько ступеней. Кроме того, принцип сушки, описанный в этом изобретении, не ограничивается улучшением качества угля, который должен сжигаться в парогенераторах энергетических установок или промышленных предприятий, но может также применяться для высушивания зернистых материалов для производства стекла, алюминия, целлюлозной массы и в других отраслях. Например, песок, используемый в производстве стекла, может быть высушен и предварительно подогрет в сушильной установке с псевдоожиженным слоем с использованием тепла топочных газов, выходящих из дымовой трубы печи, перед подачей песка в стеклоплавильную печь. Это позволит повысить тепловую эффективность процесса производства стекла. Кроме того, изобретение может быть использовано для регенерации аминовых скрубберов.The above characteristics and drawings provide a complete description of the structure and operation of the heat treatment unit in accordance with the present invention. However, the invention can be used in other combinations, modifications, variants and working conditions without going beyond its essence and scope. For example, it can be used in any combination of primary and secondary heat sources using fluidized or other layers, and can be used as one or several stages. In addition, the drying principle described in this invention is not limited to improving the quality of coal to be burned in steam generators of power plants or industrial enterprises, but can also be used to dry granular materials for the production of glass, aluminum, pulp and other industries. For example, sand used in the manufacture of glass can be dried and preheated in a fluidized bed dryer using the heat of the flue gases exiting the chimney of the furnace before sand is fed to the glass melting furnace. This will increase the thermal efficiency of the glass production process. In addition, the invention can be used to regenerate amine scrubbers.

В качестве другого примера можно привести использование сушильной установки с псевдоожиженным слоем в качестве обжиговой печи для производства алюминия. Для получения алюминия из бокситовой руды ее необходимо раздробить и просеять в случае необходимости удаления крупных включений, например обломков породы. Затем раздробленный боксит перемешивается в растворе горячей каустической соды в автоклавах для выщелачивания. При этом оксид алюминия, имеющийся в руде, растворяется. После удаления красного шлама с помощью слива и фильтрации раствор каустической соды перекачивается в огромные баки-отстойники, где происходит кристаллизация оксида алюминия. Затем оксид алюминия фильтруется и направляется в обжиговые печи для высушивания и при очень высокой температуре превращается в мелкий белый порошок, глинозем. Предлагаемая в изобретении установка могла бы использоваться в качестве обжиговой печи в этом и других аналогичных процессах.Another example is the use of a fluidized bed dryer as a calciner for aluminum production. To obtain aluminum from bauxite ore, it must be crushed and sieved if necessary to remove large inclusions, such as debris. Then crushed bauxite is mixed in a solution of hot caustic soda in autoclaves for leaching. In this case, the alumina present in the ore dissolves. After removing red mud by draining and filtering, the caustic soda solution is pumped into huge settling tanks where crystallization of alumina occurs. Then, the aluminum oxide is filtered and sent to the kilns for drying, and at a very high temperature it turns into a fine white powder, alumina. The apparatus of the invention could be used as a kiln in this and other similar processes.

В качестве еще одного примера для целей иллюстрации можно указать использование источников отработанного тепла в теплицах, в которых выращиваются помидоры и другие сельскохозяйственные культуры. Поэтому описание не должно рассматриваться как ограничивающее изобретение определенной описанной формой.As another example, for illustration purposes, the use of waste heat sources in greenhouses in which tomatoes and other crops are grown can be indicated. Therefore, the description should not be construed as limiting the invention to the specific form described.

Claims (20)

1. Установка тепловой обработки продукта на промышленном предприятии, производящая по меньшей мере два различных вида отработанного тепла, содержащая:
(a) резервуар для приема продукта;
(b) первый источник тепла, которое должно быть приложено к продукту;
(c) первый теплообменник, функционально соединенный с резервуаром, с указанным первым источником тепла, подаваемым на указанный первый теплообменник;
(d) второй источник тепла с теплом другого типа из первого источника тепла, которое должно быть приложено к продукту;
(e) второй теплообменник, функционально соединенный с резервуаром указанным вторым источником тепла, подаваемым на указанный второй теплообменник;
(f) в котором продукт выдерживается в резервуаре под действием совместного первого источника тепла и второго источника тепла при достаточной температуре и в течение достаточного времени для достижения необходимой степени обработки; и
(g) в котором «источник тепла» означает газообразную или жидкую среду с повышенным теплосодержанием, получаемым от воздействия процесса или единицы оборудования, отдельной от установки для тепловой обработки, и данная газовая или жидкая среда используется для вторичной задачи поставки теплосодержания в теплообменник вместо сброса в качестве отходов.
1. Installation of heat treatment of a product at an industrial enterprise, producing at least two different types of waste heat, containing:
(a) a reservoir for receiving the product;
(b) the first heat source to be applied to the product;
(c) a first heat exchanger operably connected to the reservoir, with said first heat source supplied to said first heat exchanger;
(d) a second heat source with heat of a different type from the first heat source to be applied to the product;
(e) a second heat exchanger operably connected to the reservoir by said second heat source supplied to said second heat exchanger;
(f) in which the product is kept in the tank under the action of a joint first heat source and a second heat source at a sufficient temperature and for a sufficient time to achieve the required degree of processing; and
(g) in which “heat source” means a gaseous or liquid medium with an increased heat content obtained from the influence of a process or unit of equipment separate from the heat treatment plant, and this gas or liquid medium is used for the secondary task of supplying heat content to the heat exchanger instead of dumping it into quality of waste.
2. Установка тепловой обработки по п.1, в которой источник отработанного тепла выбирается из группы, состоящей из потоков воды охлаждения, горячей воды охлаждения конденсатора, горячих дымовых газов, горячих топочных газов, отработанного производственного пара и тепла, выбрасываемого работающим оборудованием.2. The heat treatment installation according to claim 1, in which the source of waste heat is selected from the group consisting of flows of cooling water, hot condenser cooling water, hot flue gases, hot flue gases, spent production steam and heat emitted by operating equipment. 3. Установка тепловой обработки по п.1, в которой в качестве резервуара используется сушильная установка с псевдоожиженным слоем.3. The heat treatment unit according to claim 1, wherein the fluidized bed dryer is used as a reservoir. 4. Установка тепловой обработки по п.1, в которой в качестве резервуара используется сушильная установка с неподвижным слоем.4. The heat treatment installation according to claim 1, in which a fixed-bed dryer is used as a reservoir. 5. Установка тепловой обработки по п.1, в которой в качестве продукта используются зернистые материалы.5. The heat treatment installation according to claim 1, in which granular materials are used as the product. 6. Установка тепловой обработки по п.1, в которой промышленным предприятием является электростанция.6. The heat treatment installation according to claim 1, in which the industrial enterprise is a power plant. 7. Установка тепловой обработки по п.1, в которой температура, создаваемая в резервуаре источником тепла, составляет около 93-149°С.7. The heat treatment installation according to claim 1, in which the temperature created in the tank by the heat source is about 93-149 ° C. 8. Установка тепловой обработки по п.1, которая содержит дополнительно по меньшей мере один дополнительный источник тепла в виде источника использованного тепла, поступающего в резервуар с помощью соответствующего теплообменника, и дополнительный источник тепла или источник основного тепла, поступающего в связанный источник тепла, причем «основной источник тепла» означает количество тепла, производимого для основной цели подачи теплосодержания в связанный теплообменник.8. The heat treatment installation according to claim 1, which further comprises at least one additional heat source in the form of a source of used heat supplied to the tank by means of an appropriate heat exchanger, and an additional heat source or source of main heat supplied to the associated heat source, “Primary heat source” means the amount of heat produced for the primary purpose of supplying heat content to a coupled heat exchanger. 9. Установка тепловой обработки по п.1, которая содержит дополнительно рассеивающую трубу, функционально соединенную с резервуаром, для подачи в резервуар флюидизированного газообразного потока при осуществлении процесса тепловой обработки для уменьшения конденсации внутри резервуара.9. The heat treatment unit according to claim 1, which further comprises a diffusion pipe operatively connected to the tank for supplying a fluidized gaseous stream to the tank during the heat treatment process to reduce condensation inside the tank. 10. Установка тепловой обработки по п.1, которая содержит дополнительно внутри резервуара транспортирующее устройство для перемещения части продукта, имеющего более высокий удельный вес, чем относительный удельный вес другого продукта, содержащегося в резервуаре, при осуществлении процесса тепловой обработки в дальнюю зону резервуара для улучшения тепловой обработки внутри него остального продукта с низким удельным весом.10. The heat treatment installation according to claim 1, which further comprises a conveying device inside the tank for moving part of the product having a higher specific gravity than the relative specific gravity of the other product contained in the tank during the heat treatment process in the far zone of the tank to improve heat treating the rest of the product with a low specific gravity inside it. 11. Установка тепловой обработки по п.10, в которой в качестве транспортирующего устройства используется винтовой шнек.11. The heat treatment unit of claim 10, wherein a screw auger is used as the conveying device. 12. Установка тепловой обработки по п.10, которая содержит дополнительно скруббер, функционально соединенный с резервуаром, причем транспортирующее устройство в процессе тепловой обработки перемещает часть продукта, имеющего повышенный удельный вес, полностью за пределы резервуара в скруббер для дальнейшей обработки, использования или захоронения.12. The heat treatment installation of claim 10, which further comprises a scrubber functionally connected to the reservoir, the conveying device during the heat treatment moving part of the product having an increased specific gravity completely outside the reservoir into the scrubber for further processing, use or disposal. 13. Установка тепловой обработки по п.12, в которой скруббер дополнительно содержит:
(a) сборник для приема части продукта, имеющего более высокий удельный вес, выходящий из установки тепловой обработки, причем указанный сборник включает средство для направления флюидизированного потока через продукт, имеющий более высокий удельный вес, содержащийся в сборнике, чтобы отделить продукт, имеющий более низкий удельный вес, захваченный в нем; и
(b) источник флюидизированного потока, функционально соединенный со сборником; и
(c) в котором продукт, имеющий более низкий удельный вес, который отделен от продукта, имеющего более высокий удельный вес, возвращается в резервуар для дальнейшей тепловой обработки.
13. The heat treatment installation according to item 12, in which the scrubber further comprises:
(a) a collection container for receiving a portion of a product having a higher specific gravity exiting the heat treatment unit, said collection including means for directing fluidized flow through a product having a higher specific gravity contained in the collection to separate a product having a lower specific gravity captured in it; and
(b) a fluidized flow source operatively coupled to the collection vessel; and
(c) in which a product having a lower specific gravity, which is separated from a product having a higher specific gravity, is returned to the tank for further heat treatment.
14. Установка тепловой обработки по п.12, в которой скруббер дополнительно содержит:
(a) сборник, используемый для приема части продукта, имеющего более высокий удельный вес и выходящий из установки тепловой обработки, при этом такой продукт, имеющий более высокий удельный вес, содержит более высокую концентрацию по меньшей мере одного экологически нежелательного элемента по сравнению с концентрацией этого нежелательного элемента в продукте, который поступает в установку тепловой обработки; и
(b) средства для обработки нежелательных элементов, содержащихся в продукте, имеющем более высокий удельный вес, чтобы повторно очистить его экологически.
14. The heat treatment installation according to item 12, in which the scrubber further comprises:
(a) a collector used to receive a portion of a product having a higher specific gravity and exiting the heat treatment plant, wherein such a product having a higher specific gravity contains a higher concentration of at least one environmentally undesirable element compared to the concentration of this an undesirable element in the product that enters the heat treatment unit; and
(b) means for treating unwanted elements contained in a product having a higher specific gravity to recycle it ecologically.
15. Установка тепловой обработки по п.14, в которой экологически нежелательные элементы выбраны из группы, состоящей из серы, пепла и ртути.15. The heat treatment installation according to 14, in which the environmentally undesirable elements are selected from the group consisting of sulfur, ash and mercury. 16. Установка теплосодержания по п.1, в которой тепловая обработка продукта включает уменьшение содержания влаги в продукте.16. The heat setting according to claim 1, in which the heat treatment of the product includes reducing the moisture content in the product. 17. Установка тепловой обработки по п.5, в которой зернистый материал содержит уголь.17. The heat treatment installation according to claim 5, in which the granular material contains coal. 18. Установка для сушки угля, используемого на электростанции, имеющей источник отработанного тепла, содержащая:
(a) сушилку с псевдоожиженным слоем, имеющую внутреннюю часть для приема угля, в которой уголь, расположенный в сушилке, в процессе сушки перемещается от одного конца сушилки к другому концу;
(b) сжижающий поток для сжижения частиц угля, содержащихся в сушилке;
(c) первый теплообменник для передачи тепла от источника отработанного тепла в сжижающий поток для повышения его температуры до того, как он будет течь через сушилку;
(d) второй теплообменник для передачи тепла от источника отработанного тепла к третьему теплообменнику, встроенному в сушилку для повышения внутренней температуры сушилки до температуры, равной или ниже 93°С с целью уменьшения влажности угля; и
(e) в которой «источник отработанного тепла» означает газообразный или жидкий поток, имеющий повышенное теплосодержание, вытекающее из осуществления процесса или от части оборудования, отдельного от установки тепловой обработки, например, газообразный или жидкий поток, используемый для вторичной цели увеличения теплосодержания теплообменника вместо сброса этого потока.
18. Installation for drying coal used in a power plant having a source of waste heat, containing:
(a) a fluidized bed dryer having an interior for receiving coal, in which the coal located in the dryer is moved from one end of the dryer to the other end during drying;
(b) a fluidizing stream for liquefying the coal particles contained in the dryer;
(c) a first heat exchanger for transferring heat from a source of waste heat to a fluidizing stream to raise its temperature before it flows through the dryer;
(d) a second heat exchanger for transferring heat from the source of waste heat to a third heat exchanger integrated in the dryer to increase the internal temperature of the dryer to a temperature equal to or lower than 93 ° C in order to reduce coal moisture; and
(e) in which "source of waste heat" means a gaseous or liquid stream having an increased heat content resulting from the process or from a piece of equipment separate from the heat treatment unit, for example, a gaseous or liquid stream used for the secondary purpose of increasing the heat content of the heat exchanger instead dumping this thread.
19. Установка для сушки угля по п.18, дополнительно содержащая второй источник отработанного тепла, тип которого отличается от типа первого источника отработанного тепла, в котором тепло, содержащееся в двух источниках отработанного тепла, поступает через соответствующие теплообменники в первый теплообменник, оперативно связанный с сжижающим потоком, или во второй теплообменник, оперативно связанный с третьим теплообменником, встроенным в сушилку.19. The coal drying apparatus according to claim 18, further comprising a second source of waste heat, the type of which is different from the type of the first source of waste heat, in which the heat contained in the two sources of waste heat enters through the corresponding heat exchangers into a first heat exchanger operatively associated with a fluidizing stream, or into a second heat exchanger operatively connected to a third heat exchanger integrated in the dryer. 20. Установка для сушки угля, работающая на промышленном предприятии, имеющем по меньшей мере два источника отработанного тепла различного типа, указанная установка содержит:
(a) сушилку с псевдоожиженным слоем, имеющую внутреннюю часть для приема угля, в которой уголь, размещенный в сушилке, перемещается в процессе сушки от одного конца сушилки к другому концу;
(b) предварительный воздушный подогреватель, расположенный между сушилкой и двумя различными источниками отработанного тепла, чтобы передать тепло из каждого из источников отработанного тепла в воздушный поток, проходящий через предварительный воздушный подогреватель до того, как этот поток попадет и будет течь через сушилку, в которой воздушный поток ожижает частицы угля, содержащиеся в сушилке;
(c) теплообменник, оперативно связанный с сушилкой, для передачи тепла по меньшей мере от одного из источников отработанного тепла в сушилку для того, чтобы повысить внутреннюю температуру сушилки с тем, чтобы уменьшить влажность угля; и
(d) в которой «источник отработанного тепла» означает газообразный или жидкий поток, имеющий повышенное теплосодержание, вытекающее из осуществления процесса или от части оборудования, отдельного от установки тепловой обработки, например, газообразный или жидкий поток, используемый для вторичной цели обеспечения теплосодержания теплообменника вместо сброса этого потока.
20. Installation for drying coal, operating in an industrial enterprise having at least two sources of waste heat of various types, this installation contains:
(a) a fluidized bed dryer having an interior for receiving coal in which coal placed in the dryer is moved during the drying process from one end of the dryer to the other end;
(b) an air pre-heater located between the dryer and two different sources of waste heat to transfer heat from each of the sources of waste heat to the air stream passing through the air pre-heater before this stream enters and flows through the dryer, in which the air stream liquefies the coal particles contained in the dryer;
(c) a heat exchanger operatively connected to the dryer, for transferring heat from at least one of the waste heat sources to the dryer in order to increase the internal temperature of the dryer in order to reduce coal moisture; and
(d) in which "source of waste heat" means a gaseous or liquid stream having an increased heat content resulting from the implementation of a process or from a piece of equipment separate from a heat treatment plant, for example, a gaseous or liquid stream used for the secondary purpose of providing heat content to a heat exchanger instead dumping this thread.
RU2007116727/05A 2004-10-12 2005-10-11 Granular material thermal treatment plant RU2427417C2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US61837904P 2004-10-12 2004-10-12
US60/618,379 2004-10-12
US11/107,152 US8579999B2 (en) 2004-10-12 2005-04-15 Method of enhancing the quality of high-moisture materials using system heat sources
US11/107,153 2005-04-15
US11/107,152 2005-04-15
US11/199,838 2005-08-08
US11/199,743 US7540384B2 (en) 2004-10-12 2005-08-08 Apparatus and method of separating and concentrating organic and/or non-organic material
US11/199,743 2005-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2011113179/05A Division RU2011113179A (en) 2004-10-12 2011-04-06 INSTALLATION FOR HEAT PROCESSING OF GRAIN MATERIALS

Publications (2)

Publication Number Publication Date
RU2007116727A RU2007116727A (en) 2008-11-20
RU2427417C2 true RU2427417C2 (en) 2011-08-27

Family

ID=40240770

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2007116727/05A RU2427417C2 (en) 2004-10-12 2005-10-11 Granular material thermal treatment plant
RU2011113179/05A RU2011113179A (en) 2004-10-12 2011-04-06 INSTALLATION FOR HEAT PROCESSING OF GRAIN MATERIALS

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2011113179/05A RU2011113179A (en) 2004-10-12 2011-04-06 INSTALLATION FOR HEAT PROCESSING OF GRAIN MATERIALS

Country Status (1)

Country Link
RU (2) RU2427417C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542242C1 (en) * 2013-07-30 2015-02-20 Открытое акционерное общество "Сибирский химический комбинат" Counter-flow reactor with boiling layer
RU2630046C1 (en) * 2013-10-30 2017-09-05 Ханкук Текнолоджи Инк. Coal drying system using secondarily superheated steam
RU2655442C2 (en) * 2013-05-07 2018-05-28 Андритц Текнолоджи Энд Эссет Менеджмент Гмбх Method for producing salts with a reduced water of crystallisation content
RU2803372C1 (en) * 2022-12-05 2023-09-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Installation for drying of fine coals based on a heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2655442C2 (en) * 2013-05-07 2018-05-28 Андритц Текнолоджи Энд Эссет Менеджмент Гмбх Method for producing salts with a reduced water of crystallisation content
RU2542242C1 (en) * 2013-07-30 2015-02-20 Открытое акционерное общество "Сибирский химический комбинат" Counter-flow reactor with boiling layer
RU2630046C1 (en) * 2013-10-30 2017-09-05 Ханкук Текнолоджи Инк. Coal drying system using secondarily superheated steam
RU2803372C1 (en) * 2022-12-05 2023-09-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Installation for drying of fine coals based on a heat pump

Also Published As

Publication number Publication date
RU2011113179A (en) 2012-10-20
RU2007116727A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
AU2005296029B2 (en) Apparatus for heat treatment of particulate materials
RU2388555C2 (en) Plant and device to separate granular materials
US8062410B2 (en) Apparatus and method of enhancing the quality of high-moisture materials and separating and concentrating organic and/or non-organic material contained therein
AU2005295110B2 (en) Method of enhancing the quality of high-moisture materials using system heat sources
AU2005295990B2 (en) Apparatus and method of separating and concentrating organic and/or non-organic material
CN102037105B (en) Coal enhancement process
JPH0456202B2 (en)
CN104819470B (en) A kind of biomass class solid waste and dangerous waste processing system
RU2427417C2 (en) Granular material thermal treatment plant
CN204730209U (en) A kind of living beings class solid waste and the useless treatment system of danger
RU2066338C1 (en) Method for thermal decomposition of solid carbon-containing materials with use of solid heat carrier, plant for embodiment of the method, reactor for decomposition of solid carbon-containing materials and heater-gasifier of solid heat carrier

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20101019

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20101118

MM4A The patent is invalid due to non-payment of fees

Effective date: 20121012