RU2425295C1 - Теплоэлектрический генератор - Google Patents
Теплоэлектрический генератор Download PDFInfo
- Publication number
- RU2425295C1 RU2425295C1 RU2010104325/06A RU2010104325A RU2425295C1 RU 2425295 C1 RU2425295 C1 RU 2425295C1 RU 2010104325/06 A RU2010104325/06 A RU 2010104325/06A RU 2010104325 A RU2010104325 A RU 2010104325A RU 2425295 C1 RU2425295 C1 RU 2425295C1
- Authority
- RU
- Russia
- Prior art keywords
- thermionic
- metal
- rings
- layer
- converters
- Prior art date
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к теплоэлектроэнергетике и может использоваться в водогрейных котлах для одновременного получения тепловой и электрической энергии в одном аппарате. Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора. Результат достигается тем, что генератор содержит корпус, соединенный с отводящим газоходом и камерой сгорания, внутри которого помещены ряды соединенных между собой теплоэлектрических звеньев, представляющих собой трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, из диэлектрического материала с высокой и низкой теплопроводностью, при этом в массиве всех трех кольцевых изоляционных слоев помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого горячего двухслойного и малого однослойного холодного кольца, причем термоэмиссионные преобразователи соединены между собой радиальными и продольными перемычками, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя. 6 ил.
Description
Предлагаемое изобретение относится к теплоэлектроэнергетике, а именно для повышения КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате.
Известен водогрейный котел (теплогенератор), содержащий размещенные в вертикальном корпусе топку, выполненные из труб экономайзер, боковые и потолочные экраны, соединенные с подводящим и отводящим коллекторами (патрубками) [Патент РФ №2150052, Мкл. F24H 1/34, 1998].
Недостатками известного теплогенератора являются невозможность одновременного получения в нем тепловой и электрической энергии.
Более близкой по технической сущности к предлагаемому изобретению является термоэмиссионная надстройка к тепловьм электростанциям с топкой котла (камерой сгорания) и парогенерирующими (трубами теплоносителя), содержащая термоэмиссионные преобразователи с анодными теплотоковыводами и узлы крепления указанных преобразователей к парогенерирущим трубам (трубами теплоносителя) [А.с. РФ №966791, Мкл. F24J 45/00, 1982].
Основными недостатками известного устройства являются сложная конструкций термоэмиссионного преобразователя (ТЭП), системы теплоотвода и узлов крепления его к трубам теплоносителя, что снижает его надежность и эффективность.
Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора (ТЭГ).
Технический результат достигается тем, что в теплоэлектрическом генераторе, содержащем вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно, последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователи большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
На фиг.1 и 2 представлены общий вид и разрез теплоэлектрического генератора (ТЭГ), на фиг.3-6 - основные узлы ТЭГ.
Предлагаемый ТЭГ содержит вертикальный корпус 1, состоящий из прямоугольного короба 2, выполненного из диэлектрического материала с низкой теплопроводностью, соединенного сверху с отводящим газоходом (дымовой трубой) 3, снизу - с камерой сгорания 4, внутри которого помещены ряды теплоэлектрических звеньев (ТЭЗ) 5, торцы которых снаружи соединены между собой по теплоносителю по горизонтали и вертикали калачами 6 и 7, соответственно, причем каждое ТЭЗ 5 представляет собой металлическую трубу теплоносителя 8, покрытую поочередно кольцевыми изоляционными слоями, выполненными из диэлектрического материала с высокой теплопроводностью 9, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью 10, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью 11, образуя зону нагрева, соответственно, в свою очередь, последняя покрыта металлической обечайкой 12, при этом в массиве слоев 9-11 вокруг металлической трубы 8 по ее длине помещены по очередности термоэмиссионные преобразователи (ТЭП) 13 большего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 14, слои которого плотно прижаты друг к другу и выполнены из разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 15, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 14, выполненный из металла M1, и холодное кольцо 15 ТЭП 13 соединены между собой радиальными перемычками 16, выполненными из металла M1 и ТЭП 17 меньшего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 18, слои которого плотно прижаты друг к другу и выполнены из вышеупомянутых металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 19, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 18, выполненный из металла M1, и холодное кольцо 19 ТЭП 17 соединены между собой радиальными перемычками 20, выполненными из металла M1, причем ТЭП 13 и ТЭП 17 установлены таким образом, что их горячие и холодные кольца 14, 15 и 18, 19 не касаются внутренней поверхности обечайки 12 и наружной поверхности трубы 8, горячие кольца 14 и 18 каждого ТЭП 13 и ТЭП 19 соединены с холодными кольцами 15 и 19 следующего ТЭП 13 или ТЭП 17 продольными перемычками 21, выполненными из металла М2, последние по счету ТЭП 13 или ТЭП 17 каждого ТЭЗ 5 соединены с первыми по счету ТЭП 13 или ТЭП 17 последующего ТЭЗ 5 электропроводкой (на фиг.1-6 не показана), свободные концы ТЭП 13 или ТЭП 17 крайних верхнего и крайнего нижнего ТЭЗ 5 соединены с токовыводами 22 и 23, а свободные торцы их труб теплоносителя 8 соединены с входным и выходным патрубками 24 и 25, соответственно.
Предлагаемый ТЭГ, представленный на фиг.1-6, работает следующим образом.
После заполнения труб теплоносителя 8 водой, создания в них ее циркуляции и начала горения топлива из камеры сгорания 4 ТЭГ дымовые газы поступают в межтрубное пространство короба 2 с начальной температурой tГН, двигаясь снизу вверх, омывают наружную поверхность ТЭЗ 5, отдавая им свое тепло, охлаждаются до заданной температуры tГК и выбрасываются из дымовой трубы 3 в атмосферу. При этом в результате теплообмена между дымовыми газами через поверхность ограждений ТЭЗ 5 и водой, движущейся через патрубок 24 сверху вниз, по трубам теплоносителя 8 ТЭЗ 5, соединенными последовательно калачами 6 и 7, вода нагревается от температуры tВН до температуры tВК и через патрубок 25 подается потребителю (на фиг.1-6 не показан). Одновременно в результате процесса конвективной теплопередачи от дымовых газов через стенку обечайки 12 нагревается зона нагрева, состоящая из слоя диэлектрического материала с высокой теплопроводностью 11, от которого основной поток тепла передается за счет теплопроводности большим двухслойным горячим кольцам 14 и 18 ТЭП 13 и ТЭП 17, двухслойная конструкция и ступенчатое расположение относительно друг друга которых позволяет увеличить количество воспринимаемого тепла за счет повышенной площади контакта колец 14 и 18 с зоной нагрева и высокой площади контакта слоев металлов M1 и М2, соединенных между собой и перемычками 21 (например, спайкой), которые нагреваются при этом. Кроме того, процесс теплообмена от материала 11 к кольцам 14 и 18 ТЭП 13 и ТЭП 17 интенсифицируется за счет передачи его теплопроводностью, скорость которой при высоком значении коэффициента теплопроводности значительно выше, чем скорость передачи тепла за счет конвекции [И.Н.Сушкин. Теплотехника. - М.: «Металлургия», 1973, с.195-198]. Так как кольцевой слой изоляционного материала 10 обладает малой теплопроводностью, то основной поток тепла от слоя материала 11 и горячих колец 14 и 18 передается за счет теплопроводности по радиальным перемычкам 16 и 20, выполненных из металла M1, количество которых определяется из условий передачи всего потока тепла из зоны нагрева к малым однослойным холодным кольцам 15 и 19 ТЭП 13 и ТЭП 17, расположенным в зоне охлаждения. Одновременно осуществляется охлаждение однослойных холодных колец 15 и 19 за счет передачи тепла теплопроводностью через слой материала 9, обладающего высокой теплопроводностью, к стенкам труб теплоносителя 8, откуда тепло передается конвекцией к циркулирующей воде. Нагрев двухслойных горячих колец 14 и 18 ТЭП 13 и ТЭП 17 ТЭЗ 5, состоящих из плотно соединенных между собой слоев металлов M1 и М2, расположенных в зоне нагрева - массиве нагреваемого горячего материала 11, и охлаждение однослойных холодных колец 15 и 19, выполненных из металла M1 и соединенных с горячими кольцами 14 и 18 радиальными перемычками 16 и 20, выполненными из металла M1, ТЭП 13 и ТЭП 17, расположенных в зоне охлаждения - массиве охлаждаемого холодного материала 9, соединенных между собой продольными перемычками 21, выполненными из металла М2, создает эмиссию электронов во всех ТЭП 13 и ТЭП 17 всех ТЭЗ 5 ТЭГ и, соответственно, возникновение в ТЭГ термоэлектричества [С.Г.Калашников. Электричество. - М.: «Наука», 1970, с.502-506], которое через тоководы 22 и 23 подается потребителю.
Величина начальной температуры дымовых газов tГН определяется видом топлива и конструкцией камеры сгорания (топки), их конечная температура tГК - составом дымовых газов и требуемым температурным напором. Значения начальной и конечной температур нагреваемой воды tВН и tВК определяются технологическим регламентом и требованиями потребителя тепла.
Величина разности электрического потенциала на токовыводах 22 и 23 зависит от характеристик пары металлов M1 и М2, из которых изготовлены двухслойные кольца 14 и 18 и однослойные кольца 15 и 19, перемычки 16, 20, 21 каждого ТЭП 13 и 17, а также числа ТЭП 13 и ТЭП 17 в ТЭЗ 5 и числа рядов ТЭЗ 5 в отдельном ТЭГ. Требуемые напряжение U и силу тока I получают путем установки соответствующего числа ТЭЗ 5 в отдельно взятом ТЭГ и путем компоновки группы ТЭГ, соединенных последовательно и параллельно, комплект которых обеспечивает требуемую мощность.
Таким образом, конструкция предлагаемого ТЭГ позволяет повысить КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате, что повышает его надежность и эффективность.
Claims (1)
- Теплоэлектрический генератор, содержащий вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, отличающийся тем, что корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователя большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010104325/06A RU2425295C1 (ru) | 2010-02-08 | 2010-02-08 | Теплоэлектрический генератор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010104325/06A RU2425295C1 (ru) | 2010-02-08 | 2010-02-08 | Теплоэлектрический генератор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2425295C1 true RU2425295C1 (ru) | 2011-07-27 |
Family
ID=44753634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010104325/06A RU2425295C1 (ru) | 2010-02-08 | 2010-02-08 | Теплоэлектрический генератор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2425295C1 (ru) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2490563C2 (ru) * | 2011-10-27 | 2013-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Теплоэлектрический генератор |
RU2493504C1 (ru) * | 2012-01-17 | 2013-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования " Юго-Западный государственный университет" (ЮЗ ГУ) | Теплоэлектрический генератор для автономного энергоснабжения |
RU2499107C1 (ru) * | 2012-05-03 | 2013-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Термоэмиссионная система электроснабжения здания |
RU2509266C1 (ru) * | 2012-09-26 | 2014-03-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Термоэлектрическое звено для трубы |
RU2510434C2 (ru) * | 2012-02-28 | 2014-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Устройство термоэлектрической защиты трубопровода от коррозии |
RU2550073C2 (ru) * | 2013-07-02 | 2015-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Устройство для термоэлектрической защиты трубопровода от коррозии |
RU2597327C1 (ru) * | 2015-09-29 | 2016-09-10 | Акционерное общество "Газпром газораспределение Курск" (АО "Газпром газораспределение Курск") | Обогреватель-электрогенератор для газораспределительного пункта |
RU2599087C1 (ru) * | 2015-04-02 | 2016-10-10 | Владимир Сергеевич Ежов | Теплоэлектрогенератор для автономного энергоснабжения |
CN106225234A (zh) * | 2016-08-23 | 2016-12-14 | 田应官 | 一种空气热能交换储能单元 |
RU2701883C1 (ru) * | 2019-01-30 | 2019-10-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) | Слоевой пластинчатый термоэлектрогенератор |
-
2010
- 2010-02-08 RU RU2010104325/06A patent/RU2425295C1/ru not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2490563C2 (ru) * | 2011-10-27 | 2013-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Теплоэлектрический генератор |
RU2493504C1 (ru) * | 2012-01-17 | 2013-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования " Юго-Западный государственный университет" (ЮЗ ГУ) | Теплоэлектрический генератор для автономного энергоснабжения |
RU2510434C2 (ru) * | 2012-02-28 | 2014-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Устройство термоэлектрической защиты трубопровода от коррозии |
RU2499107C1 (ru) * | 2012-05-03 | 2013-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Термоэмиссионная система электроснабжения здания |
RU2509266C1 (ru) * | 2012-09-26 | 2014-03-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Термоэлектрическое звено для трубы |
RU2550073C2 (ru) * | 2013-07-02 | 2015-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Устройство для термоэлектрической защиты трубопровода от коррозии |
RU2599087C1 (ru) * | 2015-04-02 | 2016-10-10 | Владимир Сергеевич Ежов | Теплоэлектрогенератор для автономного энергоснабжения |
RU2597327C1 (ru) * | 2015-09-29 | 2016-09-10 | Акционерное общество "Газпром газораспределение Курск" (АО "Газпром газораспределение Курск") | Обогреватель-электрогенератор для газораспределительного пункта |
CN106225234A (zh) * | 2016-08-23 | 2016-12-14 | 田应官 | 一种空气热能交换储能单元 |
RU2701883C1 (ru) * | 2019-01-30 | 2019-10-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) | Слоевой пластинчатый термоэлектрогенератор |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2425295C1 (ru) | Теплоэлектрический генератор | |
RU2493504C1 (ru) | Теплоэлектрический генератор для автономного энергоснабжения | |
US20130255742A1 (en) | Thermoelectric transducer and heat exchange pipe | |
JPS5837402A (ja) | ボイラ− | |
RU2523521C2 (ru) | Комплексный утилизатор тепла сбросных газов | |
RU2490563C2 (ru) | Теплоэлектрический генератор | |
JPWO2017170661A1 (ja) | 排熱回収ボイラが設けられたストーカ式ごみ焼却炉 | |
RU2599087C1 (ru) | Теплоэлектрогенератор для автономного энергоснабжения | |
RU2541799C1 (ru) | Теплоэлектрический генератор для индивидуального энергоснабжения | |
RU2509266C1 (ru) | Термоэлектрическое звено для трубы | |
CN209537400U (zh) | 一种辐射废锅气化炉辐射屏悬挂承载结构 | |
RU2728008C1 (ru) | Индивидуальный автономный теплоэлектрогенератор | |
KR102411715B1 (ko) | 폐열을 이용한 고집적 모듈형 열전 발전장치 | |
RU2578736C1 (ru) | Термоэлектрический кожух для трубопровода | |
RU89884U1 (ru) | Паровой котел | |
US20180313530A1 (en) | Internally Heated Steam Generation System and Heat Exchanger | |
RU153776U1 (ru) | Термоэлектрический генератор с повышенным кпд | |
EP3273162B1 (en) | Thermal device, its use, and method for heating a heat transfer medium | |
RU2762930C1 (ru) | Мобильный автономный теплоэлектрогенератор | |
KR101529110B1 (ko) | 보일러 | |
FI126903B (fi) | Terminen laite, sen käyttö ja menetelmä lämmönsiirtoväliaineen kuumentamiseksi | |
RU2601783C1 (ru) | Прямоточный паровой котёл на твердом топливе с инвертной топочной камерой для паротурбинного энергоблока ультрасверхкритических параметров пара | |
US20190257515A1 (en) | Integrated heat recovery boiler | |
RU2794747C1 (ru) | Универсальная термоэлектрическая приставка | |
JP2012010459A (ja) | 排ガス利用発電装置及び発電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120209 |