RU2425295C1 - Теплоэлектрический генератор - Google Patents

Теплоэлектрический генератор Download PDF

Info

Publication number
RU2425295C1
RU2425295C1 RU2010104325/06A RU2010104325A RU2425295C1 RU 2425295 C1 RU2425295 C1 RU 2425295C1 RU 2010104325/06 A RU2010104325/06 A RU 2010104325/06A RU 2010104325 A RU2010104325 A RU 2010104325A RU 2425295 C1 RU2425295 C1 RU 2425295C1
Authority
RU
Russia
Prior art keywords
thermionic
metal
rings
layer
converters
Prior art date
Application number
RU2010104325/06A
Other languages
English (en)
Inventor
Владимир Сергеевич Ежов (RU)
Владимир Сергеевич Ежов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ)
Priority to RU2010104325/06A priority Critical patent/RU2425295C1/ru
Application granted granted Critical
Publication of RU2425295C1 publication Critical patent/RU2425295C1/ru

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к теплоэлектроэнергетике и может использоваться в водогрейных котлах для одновременного получения тепловой и электрической энергии в одном аппарате. Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора. Результат достигается тем, что генератор содержит корпус, соединенный с отводящим газоходом и камерой сгорания, внутри которого помещены ряды соединенных между собой теплоэлектрических звеньев, представляющих собой трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, из диэлектрического материала с высокой и низкой теплопроводностью, при этом в массиве всех трех кольцевых изоляционных слоев помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого горячего двухслойного и малого однослойного холодного кольца, причем термоэмиссионные преобразователи соединены между собой радиальными и продольными перемычками, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя. 6 ил.

Description

Предлагаемое изобретение относится к теплоэлектроэнергетике, а именно для повышения КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате.
Известен водогрейный котел (теплогенератор), содержащий размещенные в вертикальном корпусе топку, выполненные из труб экономайзер, боковые и потолочные экраны, соединенные с подводящим и отводящим коллекторами (патрубками) [Патент РФ №2150052, Мкл. F24H 1/34, 1998].
Недостатками известного теплогенератора являются невозможность одновременного получения в нем тепловой и электрической энергии.
Более близкой по технической сущности к предлагаемому изобретению является термоэмиссионная надстройка к тепловьм электростанциям с топкой котла (камерой сгорания) и парогенерирующими (трубами теплоносителя), содержащая термоэмиссионные преобразователи с анодными теплотоковыводами и узлы крепления указанных преобразователей к парогенерирущим трубам (трубами теплоносителя) [А.с. РФ №966791, Мкл. F24J 45/00, 1982].
Основными недостатками известного устройства являются сложная конструкций термоэмиссионного преобразователя (ТЭП), системы теплоотвода и узлов крепления его к трубам теплоносителя, что снижает его надежность и эффективность.
Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора (ТЭГ).
Технический результат достигается тем, что в теплоэлектрическом генераторе, содержащем вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно, последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователи большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
На фиг.1 и 2 представлены общий вид и разрез теплоэлектрического генератора (ТЭГ), на фиг.3-6 - основные узлы ТЭГ.
Предлагаемый ТЭГ содержит вертикальный корпус 1, состоящий из прямоугольного короба 2, выполненного из диэлектрического материала с низкой теплопроводностью, соединенного сверху с отводящим газоходом (дымовой трубой) 3, снизу - с камерой сгорания 4, внутри которого помещены ряды теплоэлектрических звеньев (ТЭЗ) 5, торцы которых снаружи соединены между собой по теплоносителю по горизонтали и вертикали калачами 6 и 7, соответственно, причем каждое ТЭЗ 5 представляет собой металлическую трубу теплоносителя 8, покрытую поочередно кольцевыми изоляционными слоями, выполненными из диэлектрического материала с высокой теплопроводностью 9, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью 10, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью 11, образуя зону нагрева, соответственно, в свою очередь, последняя покрыта металлической обечайкой 12, при этом в массиве слоев 9-11 вокруг металлической трубы 8 по ее длине помещены по очередности термоэмиссионные преобразователи (ТЭП) 13 большего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 14, слои которого плотно прижаты друг к другу и выполнены из разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 15, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 14, выполненный из металла M1, и холодное кольцо 15 ТЭП 13 соединены между собой радиальными перемычками 16, выполненными из металла M1 и ТЭП 17 меньшего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 18, слои которого плотно прижаты друг к другу и выполнены из вышеупомянутых металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 19, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 18, выполненный из металла M1, и холодное кольцо 19 ТЭП 17 соединены между собой радиальными перемычками 20, выполненными из металла M1, причем ТЭП 13 и ТЭП 17 установлены таким образом, что их горячие и холодные кольца 14, 15 и 18, 19 не касаются внутренней поверхности обечайки 12 и наружной поверхности трубы 8, горячие кольца 14 и 18 каждого ТЭП 13 и ТЭП 19 соединены с холодными кольцами 15 и 19 следующего ТЭП 13 или ТЭП 17 продольными перемычками 21, выполненными из металла М2, последние по счету ТЭП 13 или ТЭП 17 каждого ТЭЗ 5 соединены с первыми по счету ТЭП 13 или ТЭП 17 последующего ТЭЗ 5 электропроводкой (на фиг.1-6 не показана), свободные концы ТЭП 13 или ТЭП 17 крайних верхнего и крайнего нижнего ТЭЗ 5 соединены с токовыводами 22 и 23, а свободные торцы их труб теплоносителя 8 соединены с входным и выходным патрубками 24 и 25, соответственно.
Предлагаемый ТЭГ, представленный на фиг.1-6, работает следующим образом.
После заполнения труб теплоносителя 8 водой, создания в них ее циркуляции и начала горения топлива из камеры сгорания 4 ТЭГ дымовые газы поступают в межтрубное пространство короба 2 с начальной температурой tГН, двигаясь снизу вверх, омывают наружную поверхность ТЭЗ 5, отдавая им свое тепло, охлаждаются до заданной температуры tГК и выбрасываются из дымовой трубы 3 в атмосферу. При этом в результате теплообмена между дымовыми газами через поверхность ограждений ТЭЗ 5 и водой, движущейся через патрубок 24 сверху вниз, по трубам теплоносителя 8 ТЭЗ 5, соединенными последовательно калачами 6 и 7, вода нагревается от температуры tВН до температуры tВК и через патрубок 25 подается потребителю (на фиг.1-6 не показан). Одновременно в результате процесса конвективной теплопередачи от дымовых газов через стенку обечайки 12 нагревается зона нагрева, состоящая из слоя диэлектрического материала с высокой теплопроводностью 11, от которого основной поток тепла передается за счет теплопроводности большим двухслойным горячим кольцам 14 и 18 ТЭП 13 и ТЭП 17, двухслойная конструкция и ступенчатое расположение относительно друг друга которых позволяет увеличить количество воспринимаемого тепла за счет повышенной площади контакта колец 14 и 18 с зоной нагрева и высокой площади контакта слоев металлов M1 и М2, соединенных между собой и перемычками 21 (например, спайкой), которые нагреваются при этом. Кроме того, процесс теплообмена от материала 11 к кольцам 14 и 18 ТЭП 13 и ТЭП 17 интенсифицируется за счет передачи его теплопроводностью, скорость которой при высоком значении коэффициента теплопроводности значительно выше, чем скорость передачи тепла за счет конвекции [И.Н.Сушкин. Теплотехника. - М.: «Металлургия», 1973, с.195-198]. Так как кольцевой слой изоляционного материала 10 обладает малой теплопроводностью, то основной поток тепла от слоя материала 11 и горячих колец 14 и 18 передается за счет теплопроводности по радиальным перемычкам 16 и 20, выполненных из металла M1, количество которых определяется из условий передачи всего потока тепла из зоны нагрева к малым однослойным холодным кольцам 15 и 19 ТЭП 13 и ТЭП 17, расположенным в зоне охлаждения. Одновременно осуществляется охлаждение однослойных холодных колец 15 и 19 за счет передачи тепла теплопроводностью через слой материала 9, обладающего высокой теплопроводностью, к стенкам труб теплоносителя 8, откуда тепло передается конвекцией к циркулирующей воде. Нагрев двухслойных горячих колец 14 и 18 ТЭП 13 и ТЭП 17 ТЭЗ 5, состоящих из плотно соединенных между собой слоев металлов M1 и М2, расположенных в зоне нагрева - массиве нагреваемого горячего материала 11, и охлаждение однослойных холодных колец 15 и 19, выполненных из металла M1 и соединенных с горячими кольцами 14 и 18 радиальными перемычками 16 и 20, выполненными из металла M1, ТЭП 13 и ТЭП 17, расположенных в зоне охлаждения - массиве охлаждаемого холодного материала 9, соединенных между собой продольными перемычками 21, выполненными из металла М2, создает эмиссию электронов во всех ТЭП 13 и ТЭП 17 всех ТЭЗ 5 ТЭГ и, соответственно, возникновение в ТЭГ термоэлектричества [С.Г.Калашников. Электричество. - М.: «Наука», 1970, с.502-506], которое через тоководы 22 и 23 подается потребителю.
Величина начальной температуры дымовых газов tГН определяется видом топлива и конструкцией камеры сгорания (топки), их конечная температура tГК - составом дымовых газов и требуемым температурным напором. Значения начальной и конечной температур нагреваемой воды tВН и tВК определяются технологическим регламентом и требованиями потребителя тепла.
Величина разности электрического потенциала на токовыводах 22 и 23 зависит от характеристик пары металлов M1 и М2, из которых изготовлены двухслойные кольца 14 и 18 и однослойные кольца 15 и 19, перемычки 16, 20, 21 каждого ТЭП 13 и 17, а также числа ТЭП 13 и ТЭП 17 в ТЭЗ 5 и числа рядов ТЭЗ 5 в отдельном ТЭГ. Требуемые напряжение U и силу тока I получают путем установки соответствующего числа ТЭЗ 5 в отдельно взятом ТЭГ и путем компоновки группы ТЭГ, соединенных последовательно и параллельно, комплект которых обеспечивает требуемую мощность.
Таким образом, конструкция предлагаемого ТЭГ позволяет повысить КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате, что повышает его надежность и эффективность.

Claims (1)

  1. Теплоэлектрический генератор, содержащий вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, отличающийся тем, что корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователя большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
RU2010104325/06A 2010-02-08 2010-02-08 Теплоэлектрический генератор RU2425295C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010104325/06A RU2425295C1 (ru) 2010-02-08 2010-02-08 Теплоэлектрический генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010104325/06A RU2425295C1 (ru) 2010-02-08 2010-02-08 Теплоэлектрический генератор

Publications (1)

Publication Number Publication Date
RU2425295C1 true RU2425295C1 (ru) 2011-07-27

Family

ID=44753634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010104325/06A RU2425295C1 (ru) 2010-02-08 2010-02-08 Теплоэлектрический генератор

Country Status (1)

Country Link
RU (1) RU2425295C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490563C2 (ru) * 2011-10-27 2013-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Теплоэлектрический генератор
RU2493504C1 (ru) * 2012-01-17 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования " Юго-Западный государственный университет" (ЮЗ ГУ) Теплоэлектрический генератор для автономного энергоснабжения
RU2499107C1 (ru) * 2012-05-03 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Термоэмиссионная система электроснабжения здания
RU2509266C1 (ru) * 2012-09-26 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Термоэлектрическое звено для трубы
RU2510434C2 (ru) * 2012-02-28 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Устройство термоэлектрической защиты трубопровода от коррозии
RU2550073C2 (ru) * 2013-07-02 2015-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Устройство для термоэлектрической защиты трубопровода от коррозии
RU2597327C1 (ru) * 2015-09-29 2016-09-10 Акционерное общество "Газпром газораспределение Курск" (АО "Газпром газораспределение Курск") Обогреватель-электрогенератор для газораспределительного пункта
RU2599087C1 (ru) * 2015-04-02 2016-10-10 Владимир Сергеевич Ежов Теплоэлектрогенератор для автономного энергоснабжения
CN106225234A (zh) * 2016-08-23 2016-12-14 田应官 一种空气热能交换储能单元
RU2701883C1 (ru) * 2019-01-30 2019-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Слоевой пластинчатый термоэлектрогенератор

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490563C2 (ru) * 2011-10-27 2013-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Теплоэлектрический генератор
RU2493504C1 (ru) * 2012-01-17 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования " Юго-Западный государственный университет" (ЮЗ ГУ) Теплоэлектрический генератор для автономного энергоснабжения
RU2510434C2 (ru) * 2012-02-28 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Устройство термоэлектрической защиты трубопровода от коррозии
RU2499107C1 (ru) * 2012-05-03 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Термоэмиссионная система электроснабжения здания
RU2509266C1 (ru) * 2012-09-26 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Термоэлектрическое звено для трубы
RU2550073C2 (ru) * 2013-07-02 2015-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Устройство для термоэлектрической защиты трубопровода от коррозии
RU2599087C1 (ru) * 2015-04-02 2016-10-10 Владимир Сергеевич Ежов Теплоэлектрогенератор для автономного энергоснабжения
RU2597327C1 (ru) * 2015-09-29 2016-09-10 Акционерное общество "Газпром газораспределение Курск" (АО "Газпром газораспределение Курск") Обогреватель-электрогенератор для газораспределительного пункта
CN106225234A (zh) * 2016-08-23 2016-12-14 田应官 一种空气热能交换储能单元
RU2701883C1 (ru) * 2019-01-30 2019-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Слоевой пластинчатый термоэлектрогенератор

Similar Documents

Publication Publication Date Title
RU2425295C1 (ru) Теплоэлектрический генератор
RU2493504C1 (ru) Теплоэлектрический генератор для автономного энергоснабжения
US20130255742A1 (en) Thermoelectric transducer and heat exchange pipe
JPS5837402A (ja) ボイラ−
RU2523521C2 (ru) Комплексный утилизатор тепла сбросных газов
RU2490563C2 (ru) Теплоэлектрический генератор
JPWO2017170661A1 (ja) 排熱回収ボイラが設けられたストーカ式ごみ焼却炉
RU2599087C1 (ru) Теплоэлектрогенератор для автономного энергоснабжения
RU2541799C1 (ru) Теплоэлектрический генератор для индивидуального энергоснабжения
RU2509266C1 (ru) Термоэлектрическое звено для трубы
CN209537400U (zh) 一种辐射废锅气化炉辐射屏悬挂承载结构
RU2728008C1 (ru) Индивидуальный автономный теплоэлектрогенератор
KR102411715B1 (ko) 폐열을 이용한 고집적 모듈형 열전 발전장치
RU2578736C1 (ru) Термоэлектрический кожух для трубопровода
RU89884U1 (ru) Паровой котел
US20180313530A1 (en) Internally Heated Steam Generation System and Heat Exchanger
RU153776U1 (ru) Термоэлектрический генератор с повышенным кпд
EP3273162B1 (en) Thermal device, its use, and method for heating a heat transfer medium
RU2762930C1 (ru) Мобильный автономный теплоэлектрогенератор
KR101529110B1 (ko) 보일러
FI126903B (fi) Terminen laite, sen käyttö ja menetelmä lämmönsiirtoväliaineen kuumentamiseksi
RU2601783C1 (ru) Прямоточный паровой котёл на твердом топливе с инвертной топочной камерой для паротурбинного энергоблока ультрасверхкритических параметров пара
US20190257515A1 (en) Integrated heat recovery boiler
RU2794747C1 (ru) Универсальная термоэлектрическая приставка
JP2012010459A (ja) 排ガス利用発電装置及び発電システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120209