RU2424335C1 - Способ электрошлакового переплава - Google Patents
Способ электрошлакового переплава Download PDFInfo
- Publication number
- RU2424335C1 RU2424335C1 RU2009139827/02A RU2009139827A RU2424335C1 RU 2424335 C1 RU2424335 C1 RU 2424335C1 RU 2009139827/02 A RU2009139827/02 A RU 2009139827/02A RU 2009139827 A RU2009139827 A RU 2009139827A RU 2424335 C1 RU2424335 C1 RU 2424335C1
- Authority
- RU
- Russia
- Prior art keywords
- slag bath
- flux
- level
- slag
- bath
- Prior art date
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к спецэлектрометаллургии и может быть использовано для электрошлаковой выплавки слитков сплошного или полого сечения. В способе осуществляют контроль уровня поверхности шлаковой ванны и подачу флюса с понижением ее уровня до восстановления прежнего уровня. Контролируют величину понижения уровня поверхности шлаковой ванны относительно первоначально установленной величины и при понижении ее уровня на 10-17% от заданного подают флюс на поверхность расходуемого электрода вблизи поверхности шлаковой ванны со скоростью 1,7-2,3 кг/мин. Изобретение позволяет улучшить качество металла выплавляемого слитка за счет стабилизации теплового баланса шлаковой ванны. 1 з.п. ф-лы, 1 ил.
Description
Изобретение относится к спецэлектрометаллургии и может быть использовано для электрошлаковой выплавки слитков сплошного или полого сечения.
Известен способ электрошлаковой выплавки полого слитка с подачей в процессе выплавки флюса в центральную часть шлаковой ванны (см. выложенную заявку Японии № 54-115634, B22D 27/02, C22D 9/00, F27D 11/08, 1978 г.).
Более холодные слои шлака в центральной части шлаковой ванны опускаются в направлении кольцевой зоны формирования слитка, а затем, нагреваясь, поднимаются вдоль стенок наружного кристаллизатора, создавая направленные конвективные потоки, при этом излишки шлака сливаются.
В известном решении требуемый уровень шлаковой ванны поддерживается путем слива шлака через отверстия в стенке кристаллизатора, а флюс досыпается из бункера, при этом момент его подачи не взаимосвязан с величиной уменьшения уровня поверхности шлаковой ванны, что может привести к нарушению ее теплового баланса с изменением скорости расплавления расходуемого электрода и ухудшением качества металла выплавляемого слитка.
Известен способ электрошлаковой выплавки слитков с заливкой предварительно расплавленного шлака в кристаллизатор, при этом в процессе переплава в кристаллизатор вводят добавки перегретого шлака при одновременном удалении из кристаллизатора охлажденного шлака (см. авт. свид. СССР № 440073, МКИ C21C 5/56, 1972 г.).
Способ замены шлака в процессе переплава расходуемого электрода нарушает стабильность электрических параметров и величину вводимой мощности, что является причиной ухудшения качества металла выплавляемого слитка.
Ближайшим аналогом, принятым за протопит, является известное техническое решение, в котором в процессе электрошлакового переплава контролируют уровень поверхности шлаковой ванны контактным устройством и при опускании поверхности шлаковой ванны с размыканием контактов устройства с ее поверхностью подают команду на дозатор и осуществляют досыпку флюса в шлаковую ванну (см. выложенную заявку Японии № 53-22103, C22B 9/00, B22D 27/02, F27D 11/08, 1976 г.).
Досыпка твердого флюса в шлаковую ванну осуществляется только из условия контроля за уровнем поверхности шлаковой ванны, при этом не учитывается величина уменьшения ее поверхности, в результате чего может подаваться разное количество досыпаемого флюса, в том числе и чрезмерное количество, что не обеспечивает стабильность теплового баланса шлаковой ванны, ведет к изменению электрических параметров переплава и, тем самым, к ухудшению качества металла выплавляемого слитка.
Технический результат, обеспечиваемый предлагаемым техническим решением, - улучшение качества металла выплавляемого слитка.
Технический результат достигается тем, что в известном способе электрошлакового переплава расходуемого электрода в шлаковой ванне с контролем уровня ее поверхности и с уменьшением ее уровня подачей флюса в шлаковую ванну до восстановления прежнего уровня, согласно предложению дополнительно контролируют величину уменьшения уровня поверхности шлаковой ванны и при уменьшении ее уровня на 10-17% от заданного подают флюс в шлаковую ванну.
Технический результат достигается также тем, что флюс подают в шлаковую ванну со скоростью 1,7-2,3 кг/мин.
Технический результат достигается также тем, что в период подачи флюса увеличивают вводимую в шлаковую ванну мощность на 1,5-2,5%, а флюс подают на поверхность расходуемого электрода вблизи поверхности шлаковой ванны.
Совокупность предлагаемых признаков обеспечивает достижение технического результата и находится с ним в причинно-следственной связи следующим образом.
Известно, что даже сравнительно небольшие колебания количества шлака и его химсостава могут значительно повлиять на тепловой баланс процесса переплава, т.к. потери тепла от шлаковой ванны в стенку кристаллизатора являются основными (см. «Электрошлаковый переплав», вып.4. материалы V Международного симпозиума по технологии электрошлакового переплава, г.Питтсбург, США, Киев, «Наукова Думка», 1977 г., стр.245).
Однако в связи с образованием гарнисажа на стенке кристаллизатора требуемая величина шлаковой ванны уменьшается по ходу процесса наплавления слитка.
Поэтому для восстановления рафинирующих способностей шлаковой ванны, ее объема и теплового баланса в нее добавляют флюс.
Дополнительный контроль величины уменьшения уровня поверхности шлаковой ванны позволяет количественно оценить величину ее уменьшения и экспериментальным путем определить пределы величины добавляемой дозы флюса, исходя из условий предотвращения переохлаждения шлаковой ванны, изменения ее теплового баланса и условий плавления расходуемого электрода, тем самым обеспечивая достижение технического результата - улучшение качества металла выплавляемого слитка для изготовления изделий ответственного назначения.
При уменьшении уровня поверхности шлаковой ванны меньше 10% от заданного уровня трудно обеспечить точность подаваемой дозы флюса из-за ее сравнительно небольших величин, частых включений дозирующего устройства и его инерционности, в результате чего образуются очень много передозировок, приводящих к общему увеличению объема шлаковой ванны, что приводит к ее переохлаждению и образованию на поверхности выплавляемого слитка неровностей.
При снижении уровня поверхности шлаковой ванны больше 17% от заданного уровня вводимая в шлаковую ванну доза флюса оказывается чрезмерной, что вызывает увеличение толщины гарнисажа, нарушает тепловой баланс шлаковой ванны с образованием на поверхности выплавляемого слитка неровностей и шлаковых включений.
При проведении опытных плавок по предлагаемому способу было замечено, что при подаче флюса в шлаковую ванну с определенной скоростью качество выплавляемого слитка можно улучшать еще в большей степени.
Так, при подаче флюса в шлаковую ванну со скоростью 1,7-2,3 кг/мин поверхность выплавляемого слитка становится более гладкой, уменьшается толщина гарнисажа. Это происходит за счет уменьшения тепловых затрат на расплавление подаваемой дозы флюса, но требует более точной регулировки и более продолжительно во времени.
Если в период подачи флюса увеличивать вводимую в шлаковую ванну мощность на 1,5-2,5% и при этом подавать флюс на поверхность расходуемого электрода, вблизи поверхности шлаковой ванны было замечено, что гарнисаж на поверхности выплавляемого слитка практически отсутствует, а его поверхность близка к идеальной, т.е. гладкая и ровная. В этом варианте предлагаемый способ имеет меньше всего отклонений от теплового баланса шлаковой ванны, но является более сложным и требует дополнительных энергозатрат.
На чертеже представлена принципиальная схема реализации предложенного способа электрошлакового переплава.
Она включает расходуемый электрод 1, подаваемый в шлаковую ванну 2 по мере расплавления. Упомянутая шлаковая ванна 2 размещена в пределах внутреннего пространства кристаллизатора 3, в котором также размещена металлическая ванна 4, образующаяся при расплавлавлении расходуемого электрода 1. Упомянутая металлическая ванна 4 кристаллизуется в слиток 5, неподвижно размещенный на поддоне 6. Кристаллизатор 3 выполнен коротким и перемещаемым навстречу расходуемому электроду 1. Кристаллизатор 3 снабжен патрубками 7 и 8 для подвода и отвода охлаждающей воды. В стенке кристаллизатора 3 размещены бесконтактные датчики уровня, включающие излучатель 9 для контроля уровня поверхности металлической ванны 4, излучатель 10 для контроля уровня поверхности шлаковой ванны 2 и излучатель 11 для контроля величины уменьшения уровня поверхности шлаковой ванны 2. Соответственно, напротив упомянутых излучателей 9, 10 и 11 размещены приемники сигналов 12. 13 и 14. Кроме того, на представленной схеме показаны бункера-дозаторы 15 и 16 для подачи флюса 17 на поверхность шлаковой ванны 2. На чертеже представлен вариант подачи флюса 17 на поверхность расходуемого электрода 1.
Реализация предложенного технического решения была осуществлена в рамках научно-исследовательской работы: «Разработка технологии электрошлакового переплава для получения заготовок сплошных и полых слитков ответственного назначения тяжелого и энергетического машиностроения».
Выплавлялись слитки сплошного сечения диаметром 550 мм, весом 2300 кг из стали 15Х1М1Ф.
Оптимальные электрические режимы плавки, весовую и линейную скорости наплавления, требуемое количество флюса, высоту шлаковой ванны и мощность, выделяемую в шлаковой ванне, определяли по методике расчета режима электрошлакового переплава для получения крупных слитков (см. «Труды ЦНИИТМАШ», № 152, М., 1980 г., стр.5-9).
Полученные данные были скорректированы при экспериментальных плавках, в результате чего получили следующее: вес флюса 92 кг, высота шлаковой ванны 13,5 см, линейная скорость наплавления слитка 98,5 см/час, весовая скорость плавки 678 кг/час, мощность, выделяемая в шлаковой ванне, 1577,5 кВт.
В зоне плавления собрали плавильную оснастку, при этом расходуемый электрод 1 ввели во внутреннее пространство кристаллизатора 3, установленного на неподвижном поддоне 6.
Залили во внутреннее пространство упомянутого кристаллизатора 3 жидкий шлак 2 и проконтролировали уровень его поверхности датчиком уровня, включающим излучатель 10 и приемник 13.
С включением источника тока в цепи расходуемый электрод 1 - шлаковая ванна 2 и поддон 6 начал протекать электрический ток с выделением тепла в шлаковой ванне 2 и с расплавлением расходуемого электрода 1, который, расплавляясь, образует жидкую металлическую ванну 4, нижняя часть которой постепенно кристаллизуется в слиток 5, располагаемый на неподвижном поддоне 6.
В процессе переплава расходуемого электрода 1 кристаллизатор 3 перемещается вверх навстречу расходуемому электроду 1, двигающемуся вниз.
Перемещение кристаллизатора 3 осуществлялось с контролем уровня поверхности металлической ванны 4, датчиком уровня, включающим излучатель 9 и приемник 12.
Перемещение расходуемого электрода 1 осуществлялось автоматическим регулятором в соответствии с заданными электрическими параметрами.
В процессе переплава расходуемого электрода 1 и кристаллизации слитка 5 происходит расход шлаковой ванны 2 на образование гарнисажа 18, при этом уровень ее поверхности понижается, о чем свидетельствует упомянутый датчик уровня ее поверхности, включающий излучатель 10 и приемник 13.
С понижением уровня поверхности шлаковой ванны 2 до ее размещения напротив датчика уровня, включающего излучатель 11 и приемник 14, подается сигнал на бункера-дозаторы 15 и 16 для подачи флюса 17 в шлаковую ванну 2.
Упомянутый датчик уровня, включающий излучатель 11 и приемник 14, фиксирует заданную величину понижения уровня поверхности шлаковой ванны 2 относительно первоначально установленной величины, фиксируемой датчиком уровня с излучателем 10 и приемником 13.
Величина понижения уровня поверхности шлаковой ванны 2 выбрана экспериментально и составляет 10-17% от всей высоты шлаковой ванны 2.
Таким образом, при высоте шлаковой ванны 2, равной 13,5 см, допустимая величина уменьшения уровня поверхности шлаковой ванны 2 лежит в пределах 1,3-2,3 см.
При отклонениях за пределы допустимой величины уменьшения уровня поверхности шлаковой ванны 2, как уже упоминалось, качество металла выплавляемого слитка не соответствует техническому результату из-за плохого качества поверхности: наличие неровностей и шлаковых включений.
При проведении экспериментальных плавок отрабатывались такие приемы изменения скорости подачи флюса в шлаковую ванну 2. При этом было установлено, что в сравнении с пунктом 1 предлагаемой формулы, когда весь вводимый флюс вводится единовременно, подача флюса со скоростью в пределах 1,7-2,3 кг/мин усваивается шлаковой ванной 2 более благоприятно, т.к. процесс введения флюса растянут во времени и в меньшей степени переохлаждает шлаковую ванну. Это уменьшает толщину гарнисажа 18, более равномерно прогревается шлаковая ванна 2 а поверхность слитка имеет меньше неровностей и шлаковых включений. Однако этот прием более сложен в осуществлении, т.к. требует более сложного дозирующего устройства для регулирования скорости подачи.
В случае выхода за пределы регулириуемой подачи 1,7-2,3 кг/мин требуется регулировка и скорости наплавления слитка, т.к. при скорости меньше 1,7 кг/мин скорость наплавления слитка обгоняет скорость подачи флюса и ко времени срабатывания излучателя 10 и приемника 13, сигнализирующих о том, что уровень поверхности шлаковой ванны 2 достиг первоначальной величины, не вся доза флюса оказывается поданной, что уменьшает рафирирующие способности флюса и ухудшает химсостав выплавляемого слитка.
При скорости подачи флюса больше, чем 2,3 кг/мин, приращение качества металла выплавляемого слитка в сравнении с предлагемой формулой по п.1 отсутствует.
В процессе экспериментальных плавок было также проверено влияние увеличения мощности с подачей флюса на поверхность расходуемого электрода 1 вблизи поверхности шлаковой ванны 2.
Увеличение мощности в пределах 1,5-2,5% от заданной величины в период подачи флюса обеспечивает ввод в шлаковую ванну 2 дополнительного тепла, что исключает ее переохлаждение, а флюс, подаваемый на поверхность расходуемого электрода 1, быстрее прогревается. Это объясняет самое высокое качество металла у выплавляемых слитков.
Однако при подаче флюса на поверхность расходуемого электрода 1 очень быстро разрушается та часть подающего устройства, которая находится вблизи его поверхности, при этом подача становится некотролируемой, вплоть до полного прекращения.
Увеличение вводимой мощности в заявляемых пределах без подогрева флюса от поверхности расходуемого электрода 1 неэффективно, т.к. в связи с инерционностью системы регулирования и относительно коротким периодом ввода флюса изменение электрических параметров, регулирующих вводимую мощность, не успевают в достаточной степени прогреть шлаковую ванну 2.
А увеличение вводимой в шлаковую ванну 2 мощности больше, чем на 2,5%, вызывает изменение электрических параметров, заложенных в систему автоматического регулирования, что искажает систему регулирования, увеличивает скорость наплавления и рост глубины металлической ванны 4, что ухудшает качество выплавляемого металла.
Увеличение вводимой мощности меньше 1,5% от заданной величины не способствует улучшению качества металла выплавляемого слитка в сравнении с п.1 формулы.
При проведении плавок в качестве датчиков уровня использовались уровнемеры позиционные БПУ-1КМ для бесконтактной регистрации наличия и отсутствия жидкого или сыпучего материала за стенкой внутри контролируемой емкости в зоне установки уровнемера путем определения в этой зоне изменения мощности дозы гамма-излучения.
Как уже было отмечено, способ позволяет получать слитки с высоким качеством металла для изготовления изделий ответственного назначения.
Claims (2)
1. Способ электрошлакового переплава расходуемого электрода в шлаковой ванне, включающий контроль уровня поверхности шлаковой ванны и подачу флюса с понижением ее уровня до восстановления прежнего уровня, отличающийся тем, что контролируют величину понижения уровня поверхности шлаковой ванны относительно первоначально установленной величины и при понижении ее уровня на 10-17% от заданного подают флюс на поверхность расходуемого электрода вблизи поверхности шлаковой ванны со скоростью 1,7-2,3 кг/мин.
2. Способ по п.1, отличающийся тем, что в период подачи флюса увеличивают вводимую в шлаковую ванну мощность на 1,5-2,5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009139827/02A RU2424335C1 (ru) | 2009-10-29 | 2009-10-29 | Способ электрошлакового переплава |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009139827/02A RU2424335C1 (ru) | 2009-10-29 | 2009-10-29 | Способ электрошлакового переплава |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009139827A RU2009139827A (ru) | 2011-05-10 |
RU2424335C1 true RU2424335C1 (ru) | 2011-07-20 |
Family
ID=44732151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009139827/02A RU2424335C1 (ru) | 2009-10-29 | 2009-10-29 | Способ электрошлакового переплава |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2424335C1 (ru) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104152709B (zh) * | 2014-08-18 | 2016-03-23 | 洛阳双瑞特种装备有限公司 | 一种厚度小于200mm的耐蚀合金电渣重熔板坯生产工艺及设备 |
-
2009
- 2009-10-29 RU RU2009139827/02A patent/RU2424335C1/ru not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU2009139827A (ru) | 2011-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5957152B1 (ja) | 注湯装置および注湯方法 | |
BR112016013573B1 (pt) | processo para produção de lingotes de metais | |
US10383179B2 (en) | Crucible device with temperature control design and temperature control method therefor | |
RU2424335C1 (ru) | Способ электрошлакового переплава | |
CN106270423B (zh) | 一种导电结晶器电渣重熔控制铸锭凝固组织方向的方法 | |
KR101754510B1 (ko) | 티타늄 또는 티타늄 합금을 포함하는 주괴의 연속 주조 방법 | |
RU2533579C1 (ru) | Электрошлаковая печь для получения полого слитка | |
CN108284213A (zh) | 一种在线动态监测防止抽锭式空心电渣重熔内结晶器抱死装置及其调整方法 | |
CN109047685B (zh) | 一种制备钢锭的方法 | |
KR102283343B1 (ko) | 일렉트로 슬래그 재용융 공정용 슬래그 및 이를 이용한 잉곳의 제조방법 | |
CN208004781U (zh) | 一种在线动态监测防止抽锭式空心电渣重熔内结晶器抱死装置 | |
US9434000B2 (en) | System and method of forming a solid casting | |
JP2013079800A (ja) | 溶融炉 | |
RU2497959C1 (ru) | Способ электрошлакового переплава и устройство для его осуществления | |
CN104827018B (zh) | 中间罐电磁定点靶区加热结构 | |
JP6050173B2 (ja) | プラズマ加熱制御装置とプラズマ加熱制御方法 | |
RU2483831C1 (ru) | Способ непрерывного литья металлических заготовок методом "плавка на плавку" | |
RU2567426C1 (ru) | Дуговая печь для электроплавки стали | |
CN219520431U (zh) | 一种控制熔炼炉中间包液位的装置 | |
KR101441985B1 (ko) | 연속주조법을 이용한 태양전지용 실리콘 박판 제조 장치 및 이를 이용한 실리콘 박판 제조 방법 | |
CN219607685U (zh) | 一种检测熔炼炉中间包钢液加入量的装置 | |
RU2736949C2 (ru) | Способ наплавления слитков в кристаллизаторах электропечей спецэлектрометаллургии | |
RU2532537C1 (ru) | Способ электрошлаковой выплавки стали с получением полого слитка | |
RU2603409C2 (ru) | Печь электрошлакового переплава с полым нерасходуемым электродом | |
RU2456355C1 (ru) | Установка для электрошлаковой выплавки крупных полых и сплошных слитков |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181030 |