RU2422790C1 - Способ измерения коэффициента пропускания объективов - Google Patents

Способ измерения коэффициента пропускания объективов Download PDF

Info

Publication number
RU2422790C1
RU2422790C1 RU2009148837/28A RU2009148837A RU2422790C1 RU 2422790 C1 RU2422790 C1 RU 2422790C1 RU 2009148837/28 A RU2009148837/28 A RU 2009148837/28A RU 2009148837 A RU2009148837 A RU 2009148837A RU 2422790 C1 RU2422790 C1 RU 2422790C1
Authority
RU
Russia
Prior art keywords
lens
lenses
radiation flux
mirror
transmittance
Prior art date
Application number
RU2009148837/28A
Other languages
English (en)
Inventor
Виктор Иванович Курт (RU)
Виктор Иванович Курт
Анатолий Константинович Павлюков (RU)
Анатолий Константинович Павлюков
Original Assignee
Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО") filed Critical Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО")
Priority to RU2009148837/28A priority Critical patent/RU2422790C1/ru
Application granted granted Critical
Publication of RU2422790C1 publication Critical patent/RU2422790C1/ru

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Способ заключается в регистрации потоков излучения на входе в объективы и прошедшего через объективы и вычислении коэффициента пропускания. Используют два контролируемых объектива. Освещают первый объектив параллельным потоком излучения, совмещают фокусы объективов и регистрируют параллельный поток излучения из второго объектива фотоприемной системой. Направляют плоскими зеркалами параллельный поток излучения на объектив фотоприемной системы и регистрируют поток излучения на входе в объективы. Устанавливают вместо второго объектива зеркало со сферической или параболической поверхностью, совмещают фокусы зеркала и первого объектива и регистрируют параллельный поток излучения, отраженный зеркалом. Вместо первого объектива устанавливают второй, совмещают его фокус с фокусом зеркала и аналогично регистрируют соответствующий поток излучения. Коэффициент пропускания объективов рассчитывают по формулам, приведенным в формуле изобретения. Технический результат - упрощение определения коэффициента пропускания по результатам фотометрирования только двух объективов и повышение точности измерения путем исключения погрешностей, связанных с влиянием внешних факторов на результат регистрации потоков излучения и вносимых переустановками фотоприемника. 1 ил.

Description

Изобретение относится к фотометрии и спектрофотометрии и может быть использовано для определения коэффициента пропускания объективов и линз преимущественно в инфракрасной области спектра.
Известен способ измерения оптических параметров оптических элементов и систем (Авторское свидетельство №1767376, МКИ G01М 11/02, опубликовано 1992 г. Бюл. №37). Способ заключается в том, что в качестве контролируемых берут два объектива, которые
Figure 00000001
устанавливают на одной оптической оси. Освещают первый контролируемый объектив расходящимся пучком лучей и формируют параллельный пучок лучей между ними. Регистрируют сигнал фотоприемника а на входе в объективы и сигнал b после прохождения потока излучения через объективы. Вводят между объективами в параллельный пучок лучей плоское зеркало, а фотоприемник устанавливают перед первым контролируемым объективом в ходе отраженного зеркалом излучения, прошедшего через первый объектив, и измеряют сигнал с, заменяют первый объектив вторым и регистрируют сигнал d. Коэффициент пропускания объективов определяют по формулам
Figure 00000002
Figure 00000003
Рассматриваемому способу присущи следующие недостатки. Геометрия освещения контролируемых объективов приводит к тому, что их рабочие апертуры ограничиваются и ход лучей неодинаков через последовательно установленные объективы, а также через первый (по ходу пучка) объектив, и лучей, проходящих через него после отражения от плоского зеркала. Наклон главного луча расходящегося пучка лучей относительно оптической оси контролируемых объективов приводит к увеличению поглощения наклонных пучков линзовыми компонентами каждого контролируемого объектива в связи с увеличением длины оптического пути через них. Поэтому измеренные данным способом коэффициенты пропускания объективов являются заниженными. Переустановка фотоприемника может приводить к погрешностям, значительно превышающим погрешность регистрации сигналов, тем более что в данном способе фотоприемник устанавливают в трех различных положениях. Помимо этого для реализации способа измерений необходим малоразмерный фотоприемник, габариты которого позволяют вписать его в измерительную схему. В действительности, для регистрации монохроматических потоков излучения, как это имеет место при измерении спектрального коэффициента пропускания объективов в инфракрасной области спектра, применяют высокочувствительные приемники излучения, такие как охлаждаемые жидким азотом фотосопротивления и фотодиоды, глубокоохлаждаемые болометры и оптико-акустические приемники излучения, габаритные размеры которых (диаметр, длина) сопоставимы с размерами контролируемых объективов. В связи с изложенным рассматриваемый способ обладает малой точностью и его технические возможности ограничены.
Наиболее близким к изобретению по технической сущности является способ измерения коэффициента пропускания объективов (Авторское свидетельство №1435980, МКИ G01М 11/02, опубл. 1988 г. Бюл. №41). Способ заключается в том, что берут в качестве контролируемых не менее трех объективов, вводят в поток излучения поочередно их сочетания по два последовательно установленных объектива, регистрируют потоки излучения на входе и выходе контролируемых объективов и определяют по формулам коэффициент пропускания объективов.
Основными недостатками способа являются сложность его реализации, связанная с необходимостью формирования и фотометрирования трех пар объективов, влияние внешних факторов на результат регистрации потоков излучения и погрешностей, вызываемых переустановками фотоприемника. С учетом этого рассматриваемый способ обладает малой точностью.
Технический результат изобретения заключается в упрощении способа, позволяющего определять коэффициент пропускания по результатам фотометрирования только двух объективов, и в повышении точности измерения путем исключения погрешностей, связанных с влиянием внешних факторов на результат регистрации потоков излучения и вносимых переустановками фотоприемника.
Технический результат достигается тем, что в способе измерения коэффициента пропускания объективов, заключающемся в регистрации потока излучения на входе в объективы, регистрации потока излучения, прошедшего через два последовательно установленных объектива, и вычислении коэффициента пропускания объективов из отношения зарегистрированных величин, в качестве контролируемых берут два объектива, освещают первый контролируемый объектив параллельным потоком излучения, совмещают фокусы контролируемых объективов, параллельный поток излучения из второго объектива направляют плоским зеркалом на объектив фотоприемной системы и регистрируют соответствующий поток излучения, направляют плоскими зеркалами параллельный поток излучения на объектив фотоприемной системы и регистрируют поток излучения на входе в объективы, устанавливают вместо второго контролируемого объектива зеркало со сферической или параболической поверхностью, совмещают фокусы зеркала и первого контролируемого объектива, параллельный поток излучения, отраженный зеркалом, направляют плоскими зеркалами на объектив фотоприемной системы и регистрируют соответствующий поток излучения, вместо первого контролируемого объектива устанавливают второй, совмещают его фокус с фокусом зеркала и аналогично регистрируют соответствующий поток излучения, а коэффициент пропускания объективов рассчитывают по формулам
Figure 00000004
Figure 00000005
где τ1 - коэффициент пропускания первого объектива;
τ2 - коэффициент пропускания второго объектива;
а - сигнал фотоприемника, соответствующий потоку излучения на входе в объективы;
b - сигнал фотоприемника, соответствующий потоку излучения с двумя установленными объективами;
с - сигнал фотоприемника, соответствующий потоку излучения с установленным первым объективом;
d - сигнал фотоприемника, соответствующий потоку излучения с установленным вторым объективом.
На чертеже показана оптическая схема устройства, реализующего способ измерения коэффициента пропускания объективов.
Устройство содержит контролируемые объективы 1 и 2, источник излучения в виде выходной щели 3 монохроматора, объектив 4, формирующий параллельный поток излучения, апертурную диафрагму 5, плоские зеркала 6 и 9, снабженные механизмами линейного перемещения вдоль оптической оси потока излучения, перпендикулярной оптической оси контролируемых объективов, параболическое или сферическое зеркало 7, переключающее плоское зеркало 8, установленное с возможностью ввода и вывода из потока излучения, отраженного от зеркала 7, объектив 10 фотоприемной системы, фотоприемник 11, установленный в фокальной плоскости объектива 10, и регистрирующий прибор 12.
Способ измерения осуществляют следующим образом.
Устанавливают контролируемые объективы 1 и 2 в схему измерения между двумя плоскими зеркалами 6 и 9. Освещают контролируемый объектив 1 параллельным потоком излучения, совмещают фокусы контролируемых объективов 1 и 2. Параллельный поток излучения из контролируемого объектива 2 направляют плоским зеркалом 9 на объектив фотоприемной системы 10 и регистрируют сигнал b, соответствующий потоку излучения с двумя установленными объективами. Величина сигнала b=L·τ4·ρ6·τ1·τ2·ρ9·τ10 определяется яркостью источника излучения L, коэффициентом пропускания τ4 объектива 4, коэффициентом отражения ρ6, плоского зеркала 6, коэффициентами пропускания τ1 и τ2 контролируемых объективов 1 и 2, коэффициентом отражения ρ9 плоского зеркала 9 и коэффициентом пропускания τ10 объектива фотоприемной системы 10.
Направляют плоскими зеркалами 6 и 9 параллельный поток излучения на объектив фотоприемной системы 10. Для этого их устанавливают в положения 6(I) и 9(I), при этом плоское зеркало 8 устанавливают в положение 8(1). Регистрируют сигнал a=L·τ4·ρ6·ρ9·τ10, соответствующий потоку излучения на входе в объективы.
Устанавливают вместо контролируемого объектива 2 зеркало параболическое или сферическое 7, совмещают его фокус с фокусом контролируемого объектива 1. Переключающее плоское зеркало 8 вводят в поток излучения, отраженный от зеркала 7, а плоское зеркало 9 устанавливают в положение 9(I). Регистрируют сигнал с=L·τ4·ρ6·τ1·ρ7·ρ8·ρ9·τ10, соответствующий потоку излучения с установленным контролируемым объективом 1, где ρ7 - коэффициент отражения параболического зеркала 7 и ρ8 - коэффициент отражения плоского зеркала 8.
Устанавливают вместо контролируемого объектива 1 контролируемый объектив 2, совмещают его фокус с фокусом зеркала 7 и регистрируют сигнал d=L·τ4·ρ6·τ2·ρ7·ρ8·ρ9·τ10, соответствующий потоку излучения с установленным контролируемым объективом 2.
По результатам измерений получают два независимых уравнения:
Figure 00000006
и
Figure 00000007
,
из которых определяют коэффициенты пропускания:
Figure 00000008
Figure 00000009
где τ1 - коэффициент пропускания первого объектива;
τ2 - коэффициент пропускания второго объектива;
а - сигнал фотоприемника, соответствующий потоку излучения на входе в объективы;
b - сигнал фотоприемника, соответствующий потоку излучения с двумя установленными объективами;
с - сигнал фотоприемника, соответствующий потоку излучения с установленным первым объективом;
d - сигнал фотоприемника, соответствующий потоку излучения с установленным вторым объективом.
Для исключения дрейфа измеряемых сигналов, вызванного влиянием внешних факторов и нестабильностью источника излучения, измерение сигналов а и b выполняют поочередно, а измерение сигналов c и d сопровождают контрольными измерениями сигналов а; постоянство соответствующих сигналов а поддерживают, регулируя электрический режим питания источника излучения.
В соответствии со способом измерены спектральные коэффициенты пропускания двух однотипных объективов с фокусным расстоянием f=250 мм и относительной светосилой 1:5. Каждый из объективов состоял из трех линзовых компонентов, на поверхности которых были нанесены просветляющие покрытия. Измерения выполнены с монохроматором МДР-12. В качестве источника излучения использовался глобар, приемником излучения служил оптико-акустический приемник ОАП-7-1. Регистрация сигналов осуществлялась мультиметром Agilent 3458A с погрешностью, не превышающей 0,3%. В схеме измерений использовалось внеосевое параболическое зеркало (уравнение параболы у2=1080 х, световой диаметр dсв=62 мм). Максимальное значение спектрального коэффициента пропускания составило 0,770. Различие в значениях коэффициента пропускания объективов не превышало 5% и объяснялось влиянием технологических факторов, приводящих к неидентичности нанесенных просветляющих покрытий.
Общая расчетная погрешность измерения спектрального коэффициента пропускания не превышала 1,6%.

Claims (1)

  1. Способ измерения коэффициента пропускания объективов, заключающийся в регистрации потока излучения на входе в объективы, регистрации потока излучения, прошедшего через два последовательно установленных объектива, и вычислении коэффициента пропускания объективов из отношения зарегистрированных величин, отличающийся тем, что в качестве контролируемых берут два объектива, освещают первый контролируемый объектив параллельным потоком излучения, совмещают фокусы контролируемых объективов, параллельный поток излучения из второго объектива направляют плоским зеркалом на объектив фотоприемной системы и регистрируют соответствующий поток излучения, направляют плоскими зеркалами параллельный поток излучения на объектив фотоприемной системы и регистрируют поток излучения на входе в объективы, устанавливают вместо второго контролируемого объектива зеркало со сферической или параболической поверхностью, совмещают фокусы зеркала и первого контролируемого объектива, параллельный поток излучения, отраженный зеркалом, направляют плоскими зеркалами на объектив фотоприемной системы и регистрируют соответствующий поток излучения, вместо первого контролируемого объектива устанавливают второй, совмещают его фокус с фокусом зеркала и аналогично регистрируют соответствующий поток излучения, а коэффициент пропускания объективов рассчитывают по формулам:
    Figure 00000010

    Figure 00000005

    где τ1 - коэффициент пропускания первого объектива;
    τ2 - коэффициент пропускания второго объектива;
    а - сигнал фотоприемника, соответствующий потоку излучения на входе в объективы;
    b - сигнал фотоприемника, соответствующий потоку излучения с двумя установленными объективами;
    с - сигнал фотоприемника, соответствующий потоку излучения с установленным первым объективом;
    d - сигнал фотоприемника, соответствующий потоку излучения с установленным вторым объективом.
RU2009148837/28A 2009-12-28 2009-12-28 Способ измерения коэффициента пропускания объективов RU2422790C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009148837/28A RU2422790C1 (ru) 2009-12-28 2009-12-28 Способ измерения коэффициента пропускания объективов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009148837/28A RU2422790C1 (ru) 2009-12-28 2009-12-28 Способ измерения коэффициента пропускания объективов

Publications (1)

Publication Number Publication Date
RU2422790C1 true RU2422790C1 (ru) 2011-06-27

Family

ID=44739334

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009148837/28A RU2422790C1 (ru) 2009-12-28 2009-12-28 Способ измерения коэффициента пропускания объективов

Country Status (1)

Country Link
RU (1) RU2422790C1 (ru)

Similar Documents

Publication Publication Date Title
KR101478476B1 (ko) 결함 검사 방법, 미약광 검출 방법 및 미약광 검출기
JP2019095799A5 (ru)
TW200846638A (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
CN107356914B (zh) 一种星载激光雷达探测器校准系统
US20100321686A1 (en) Device for optical spectroscopy and mechanical switch for such a device
JP2014186035A (ja) 欠陥検査方法および欠陥検査装置
CN101922968B (zh) 一种距离误差自动校正亮度计
US9719922B2 (en) Optical system and optical quality measuring apparatus
JP6117305B2 (ja) 欠陥検査方法、微弱光検出方法および微弱光検出器
JPWO2019220640A1 (ja) 波面計測装置、波面計測方法及び移動体観測装置、移動体観測方法
RU2422790C1 (ru) Способ измерения коэффициента пропускания объективов
US20090173891A1 (en) Fluorescence detection system
US9612112B2 (en) Optical system and optical quality measuring apparatus
KR101239573B1 (ko) 측광 장치
KR20160052992A (ko) 다기능 분광장치
RU2467309C1 (ru) Способ измерения коэффициентов отражения зеркал
RU2427814C1 (ru) Способ измерения коэффициента пропускания объективов
KR102022836B1 (ko) 광 측정 장치, 시스템 및 방법
JPH04283683A (ja) 光波測距装置
RU2622239C1 (ru) Устройство для бесконтактного измерения температуры объекта
RU2424503C1 (ru) Способ измерения абсолютного значения коэффициента отражения зеркал
US12104953B2 (en) Spectrometer
Kuvaldin et al. Light source for measurement of threshold power and energy of optical radiation
SU1668922A1 (ru) Способ определени коэффициента пропускани объектива
CN201748974U (zh) 一种距离误差自动校正亮度计