RU2421258C1 - Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом - Google Patents

Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом Download PDF

Info

Publication number
RU2421258C1
RU2421258C1 RU2009141766/05A RU2009141766A RU2421258C1 RU 2421258 C1 RU2421258 C1 RU 2421258C1 RU 2009141766/05 A RU2009141766/05 A RU 2009141766/05A RU 2009141766 A RU2009141766 A RU 2009141766A RU 2421258 C1 RU2421258 C1 RU 2421258C1
Authority
RU
Russia
Prior art keywords
filtration
air flow
flow rate
absorption
passing
Prior art date
Application number
RU2009141766/05A
Other languages
English (en)
Inventor
Эдуард Викторович Шаталов (RU)
Эдуард Викторович Шаталов
Олег Николаевич Алимов (RU)
Олег Николаевич Алимов
Михаил Борисович Павлов (RU)
Михаил Борисович Павлов
Сергей Вячеславович Солошин (RU)
Сергей Вячеславович Солошин
Андрей Александрович Севостьянов (RU)
Андрей Александрович Севостьянов
Андрей Сергеевич Романов (RU)
Андрей Сергеевич Романов
Original Assignee
Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации filed Critical Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации
Priority to RU2009141766/05A priority Critical patent/RU2421258C1/ru
Application granted granted Critical
Publication of RU2421258C1 publication Critical patent/RU2421258C1/ru

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Изобретение относится к области исследований показателей качества материалов и изделий, а именно к созданию способа определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом. Определение скоростей потоков воздуха производится в следующей последовательности: - градуировка датчика (построение графика зависимости времени прерывания тока от линейной скорости потока воздуха); - обозначение зон на поверхности фильтрующе-сорбирующей лицевой части, в которых будут производиться измерения; - измерение времени прерывания тока непосредственно для каждой зоны поверхности фильтрующе-сорбирующей лицевой части; - нахождение скоростей потоков воздуха по градуировочному графику. К преимуществу заявляемого способа целесообразно отнести возможность устанавливать скорость воздушного потока непосредственно для любой точки поверхности фильтрующе-сорбирующей лицевой части без разрушения фильтрующе-сорбирующего материала. 3 ил., 3 табл.

Description

Изобретение относится к области исследований показателей качества материалов и изделий средств индивидуальной защиты.
Анализ современного состояния научно-исследовательских и опытно-конструкторских работ по разработке технических средств защиты для обеспечения защищенности населения Российской Федерации от опасных биологических и химических факторов показывает, что данное направление остается актуальным и постоянно развивается [1].
Одним из основных направлений обеспечения химической и биологической безопасности является создание средств индивидуальной защиты облегченного типа различного назначения. Средства защиты органов дыхания выполняют одну из главных функций в системе технических средств защиты указанного типа, так как к ним предъявляются более жесткие требования в соответствии с назначением, направленные на обеспечение безопасности труда, снижение производственного травматизма и профессиональной заболеваемости.
Важным фактором при контроле качества средств индивидуальной защиты органов дыхания облегченного типа (СИЗОД-О) является скорость подачи газовоздушного потока на исследуемый образец, которая соответствует скорости потока воздуха, проходящего через пакет фильтрующе-сорбирующих материалов (ФСМ) при дыхании человека [2].
Существующий аппаратурно-методический комплекс оценки защитных показателей СИЗОД-О [2, 3] позволяет определять скорость подачи газовоздушного потока на образец как отношение общего расхода воздуха к его площади. Указанный подход не в полной мере удовлетворяет современным требованиям к оценке характеристик СИЗОД-О ввиду отсутствия возможности определения скорости потока воздуха в любой точке поверхности фильтрующе-сорбирующего материала лицевой части. Данные требования обусловлены необходимостью учета неравномерности скоростных режимов потоков воздуха, проходящих через поверхность СИЗОД-О, где зоны с повышенной скоростью пропускания воздуха будут являться определяющими при оценке образца в целом.
В настоящее время подобные методики, позволяющие определять действительные скорости воздушных потоков через фильтрующе-сорбирующие материалы СИЗОД-O, отсутствуют. Это приводит к тому, что при исследовании защитных характеристик СИЗОД-O используется средневзвешенная скорость потоков воздуха, что в свою очередь снижает достоверность и практическую значимость получаемых результатов.
Задачей, которую ставили авторы в настоящем изобретении, являлась разработка способа определения скоростей удельных потоков воздуха, проходящих через пакет материалов СИЗОД-O, электроимпульсным методом.
Сущность разработанного способа заключается в следующем. Муляж головы с надетым исследуемым образцом СИЗОД-O подсоединяли через ротаметр к вакуумной линии. Расход воздуха, отбираемого вакуумом из подмасочного пространства образца, устанавливали в зависимости от требуемой физической нагрузки в интервале значений от 30 до 120 л·мин-1. Лицевая часть СИЗОД-O условно делилась на зоны, площадью Sn, составляющей не менее 1/10 от общей площади образца. Определение скоростей проводили в каждой зоне при помощи сконструированного электрического устройства (фиг.1). Устройство состоит из датчика с двумя контактами (28, 29), между которыми помещен пористый материал, пропитанный токопроводящей жидкостью. Через указанные контакты в импульсном режиме, обеспечиваемом элементами (1-17), течет ток регистрирующего устройства (18-29). В момент высыхания токопроводящей жидкости контакты (28, 29) оказываются разомкнутыми, что фиксируется лампой (18). Это достигается следующим образом. На транзисторах (3, 6) собран мультивибратор, который через резистор (14) выдает на составной транзистор (11, 15) импульсы напряжения с частотой 2-3 Гц. Соответственно, с данной частотой срабатывает реле (16), включенное в эмиттерную цепь составного транзистора (11, 15). Срабатывая, реле замыкает-размыкает один из контактов высокочувствительного датчика, собранного на микросхеме (22). При наличии между контактами (28, 29) токопроводящей жидкости датчик, в соответствии с частотой срабатывания реле (16), также будет срабатывать, включая или выключая сигнальную лампу (18). По секундомеру определяли время прерывания тока в цепи датчика (τ), которое находится в линейной зависимости от скорости потока (Q). В ходе исследований нарушения целостности фильтрующе-сорбирующего материала не происходило.
Предварительно в начале эксперимента устройство градуировали при известных скоростях воздушного потока и строили график зависимости от времени прерывания тока в цепи: τ=f(Q). Этот график строго индивидуален для каждой рабочей температуры, формы электродов, пористого материала и токопроводящей жидкости. После градуировки датчика проводили измерения скоростей потоков с использованием лабораторной установки (фиг.2), состоящей из лампы (18); ротаметра (30); воздуховода (31); муляжа головы человека (32); респиратора (33); пористого материала (34); устройства для точечного измерения линейной скорости воздушных потоков сложной конфигурации (35); датчика (36); соединительных проводов (37); элемента питания (38).
При расчете удельной скорости учитывали площадь зоны, в которой проводились измерения.
На следующем этапе исследований нами был апробирован разработанный способ определения скоростей удельных потоков. Перед началом измерений произвели градуировку разработанного устройства при известных скоростях воздушного потока. Результаты измерений представлены в таблице 1. По результатам измерений строили градуировочный график зависимости времени прерывания тока в цепи датчика от линейной скорости потока (фиг.3).
Таблица 1
Результаты градуировки разработанного устройства
Скорость потока, см·с-1 Время прерывания, с Скорость потока, см·с-1 Время прерывания, с
0 197,0±1,0 5,5±0,1 59,0±1,0
0,5±0,1 184,0±1,0 6,0±0,1 51,0±1,0
1,0±0,1 167,0±1,0 6,5±0,1 47,0±1,0
1,5±0,1 139,0±1,0 7,0±0,1 42,0±1,0
2,0±0,1 118,0±1,0 7,5±0,1 37,0±1,0
2,5±0,1 102,0±1,0 8,0±0,1 31,0±1,0
3,0±0,1 85,0±1,0 8,5±0,1 27,0±1,0
3,5±0,1 78,0±1,0 9,0±0,1 21,0±1,0
4,0±0,1 73,0±1,0 9,5±0,1 17,0±1,0
4,5±0,1 69,0±1,0 10,0±0,1 13,0±1,0
5,0±0,1 64,0±1,0 10,5±0,1 9,0±1,0
Примечание - Количество измерений времени прерывания для каждого расхода вакуума (n) равно 6
В качестве объекта исследований выбрали респиратор общевойсковой универсальный РОУ [4]. Участки поверхности респиратора, задействованные в процессах сорбции и фильтрации, условно делили на зоны площадью не менее 1/10 от общей площади образца. В середине каждой зоны определяли время прерывания тока в цепи датчика и по градуировочному графику находили среднюю скорость потока для всех участков при различном расходе воздуха для оценки защитных свойств образца. Результаты исследований представлены в таблице 2.
Таблица 2
Результаты определения скоростей воздушных потоков
Расход воздуха, л·мин-1 Номер зоны Средняя скорость потока, см·с-1 Расход воздуха, л·мин-1 Номер зоны Средняя скорость потока, см·с-1
1 2 3 4 5 6
30 1 2,35±0,30 90 1 13,66±1,20
2 5,05±0,50 2 15,43±1,40
3 2,40±0,30 3 13,29±1,20
4 2,61±0,30 4 15,11±1,50
5 1,21±0,20 5 14,70±1,40
6 1,30±0,20 6 15,60±1,50
7 3,81±0,40 7 14,10±1,40
8 5,50±0,50 8 15,43±1,50
9 3,88±0,35 9 14,,40
Продолжение таблицы 2
1 2 3 4 5 6
60 1 3,67±0,40 120 1 28,17±2,50
2 6,65±0,55 2 38,39±3,50
3 3,70±0,30 3 26,91±2,20
4 3,15±0,30 4 19,47±1,80
5 4,55±0,40 5 21,61±2,00
6 4,58±0,40 6 21,05±2,00
7 5,11±0,50 7 26,43±2,20
8 9,81±0,90 8 34,61±3,20
9 5,12±0,50 9 27,41±2,40
Анализ полученных экспериментальных данных показал, что максимальная скорость воздушных потоков определена во второй и восьмой зонах (между линзами очкового узла и под клапаном выдоха). Результаты расчета удельных скоростей представлены в таблице 3.
Таблица 3
Результаты определения средних удельных скоростей воздушных потоков
Расход воздуха, л·мин-1 Номер зоны Средняя удельная скорость, л·мин-1·см-2
30 1 0,14±0,01
2 0,29±0,02
3 0,14±0,01
4 0,15±0,01
5 0,07±0,01
6 0,08±0,01
7 0,23±0,02
8 0,32±0,03
9 0,22±0,02
60 1 0,22±0,02
2 0,40±0,04
3 0,21±0,02
4 0,18±0,02
5 0,26±0,02
6 0,27±0,02
7 0,31±0,03
8 0,59±0,05
9 о,зо±о,оз
При проведении исследований, согласно существующим методическим подходам, удельная скорость подачи газовоздушного потока на образец для 30 л·мин-1 составляет 0,067 л·мин-1·см-2, для 60 л·мин-1 - 0,134 л·мин-1·см-2. Однако анализ данных, приведенных в таблице 3, показал, что реальные удельные скорости превышают используемые для проведения испытаний в 2-5 раз.
Таким образом, приведенные выше данные свидетельствуют о том, что заявляемый способ может быть использован для оценки скоростей воздушных потоков, проходящих через пакет материалов СИЗОД-O, и имеет явные преимущества, позволяя устанавливать действительные скорости воздушных потоков непосредственно для любой точки поверхности фильтрующе-сорбирующей лицевой части без разрушения фильтрующе-сорбирующего материала.
Литература
1. Концепция федеральной целевой программы "Национальная система химической и биологической безопасности Российской Федерации (2009-2013 г.г.)". Утверждена распоряжением Правительства РФ от 28 января 2008 г. №74-р.
2. Коллективные и индивидуальные средства защиты. Контроль защитных свойств [Текст]. - М.: Деловой экспресс, 2004. - 210 с.
3. Система общих технических требований к видам вооружения и военной техники. Вооружения и средства радиационной, химической и биологической защиты. Средства индивидуальной защиты от OВ, СИЯВ, РП, РВ, КРТ и СДЯВ [Текст]: ОТТ 7.2.301 - 02. - Вольск - 18: 33 ЦНИИИ МО РФ. 2003. - 242 с.
4. Респиратор общевойсковой универсальный РОУ. Технические условия ЕКЦТ 05463.000 ТУ.

Claims (1)

  1. Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом, отличающийся тем, что скорость потоков воздуха определяется с использованием градуировочного графика путем измерения времени прерывания тока в цепи контактного датчика, которое находится в линейной зависимости от времени испарения токопроводящей жидкости с пористого материала, расположенного между электродами датчика, и расхода воздуха, отбираемого вакуумом из подмасочного пространства образца.
RU2009141766/05A 2009-11-11 2009-11-11 Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом RU2421258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009141766/05A RU2421258C1 (ru) 2009-11-11 2009-11-11 Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009141766/05A RU2421258C1 (ru) 2009-11-11 2009-11-11 Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом

Publications (1)

Publication Number Publication Date
RU2421258C1 true RU2421258C1 (ru) 2011-06-20

Family

ID=44737913

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009141766/05A RU2421258C1 (ru) 2009-11-11 2009-11-11 Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом

Country Status (1)

Country Link
RU (1) RU2421258C1 (ru)

Similar Documents

Publication Publication Date Title
US6165347A (en) Method of identifying a gas
US10274457B2 (en) Gas component concentration measurement device and method for gas component concentration measurement
CN102590450B (zh) 基于mems技术的阵列式气味检测元件
US2859617A (en) Thermal flowmeter
BR112014029268A2 (pt) aparelho de medição para determinar um valor medido em um fluxo de gás, e método para determinar um teor de gás medido em um fluxo de gás
CN108680711A (zh) 呼出气体酒精含量探测器的检定校准装置和检定校准方法
RU2421258C1 (ru) Способ определения скоростей потоков воздуха, проходящих через пакет фильтрующе-сорбирующих материалов средств индивидуальной защиты органов дыхания облегченного типа, электроимпульсным методом
US2596992A (en) Apparatus for gas analysis
CN102721726B (zh) 一种测量流体中物质浓度的方法
US2817229A (en) Sorbtion gas analysis apparatus
US3818899A (en) Breath testing system with increased sensitivity
CN207352016U (zh) 酒精检测仪的检测装置
CN202676656U (zh) 一种利用电化学传感器测量气体浓度的装置
BR9800024A (pt) Métodos de condicionamento ambiental e aparelho para ensaios melhorados de material
US3250114A (en) Dewpoint transmitter
Guillemot et al. Development of quartz crystal microbalance based sensor for real-time ozone monitoring
CN205749273U (zh) 一种室内有害气体浓度测量装置
JPS5858024B2 (ja) 二酸化イオウの測定方法および装置
US7487664B1 (en) System and method for sensing a wide range of water vapor levels in an atmosphere
SU781647A1 (ru) Устройство дл контрол герметичности замкнутых изделий
Rizescu et al. Wireless System for Determining Toxic Emissions from Industrial Environments
Gallant et al. Ultra-portable, selective and diffusion-based breathalyzer
SU405042A1 (ru) Способ отбора проб для газового анализа
Khaled et al. Capacitive sensing system for frying oil assessment during heating
EP0478780A4 (en) Method and device for determining field of presure of continuous fluid medium on the surface of an object

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111112