RU2419578C1 - Устройство воздухозаборника для транспортного средства, в частности для летательного аппарата - Google Patents

Устройство воздухозаборника для транспортного средства, в частности для летательного аппарата Download PDF

Info

Publication number
RU2419578C1
RU2419578C1 RU2009143347/11A RU2009143347A RU2419578C1 RU 2419578 C1 RU2419578 C1 RU 2419578C1 RU 2009143347/11 A RU2009143347/11 A RU 2009143347/11A RU 2009143347 A RU2009143347 A RU 2009143347A RU 2419578 C1 RU2419578 C1 RU 2419578C1
Authority
RU
Russia
Prior art keywords
air
channel
section
passage
air intake
Prior art date
Application number
RU2009143347/11A
Other languages
English (en)
Inventor
Франк АЛЬВАРЕ (FR)
Франк АЛЬВАРЕ
Эмерик ШАНСЕРЕЛЛЬ (FR)
Эмерик ШАНСЕРЕЛЛЬ
Ален ПОРТ (FR)
Ален ПОРТ
Дамьен ПРА (FR)
Дамьен ПРА
Original Assignee
Эрбюс Операсьон
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбюс Операсьон filed Critical Эрбюс Операсьон
Application granted granted Critical
Publication of RU2419578C1 publication Critical patent/RU2419578C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0286Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for turbofan engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Body Structure For Vehicles (AREA)
  • Ventilation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Изобретение относится к области авиастроения, более конкретно, к устройству воздухозаборника летательного аппарата. Устройство (1) воздухозаборника содержит канал (10) прохождения воздуха с отверстием (11) воздухозаборника для отбора потока (F) наружного воздуха. Устройство также содержит средства перекрытия с управляемым подвижным элементом, которые связаны с каналом, и средства управления управляемого подвижного элемента для изменения поперечного сечения канала в зависимости от скорости летательного аппарата. Средства управления образованы аэродинамической поверхностью, размещенной в канале прохождения воздуха, и способны создавать подъемную силу (Р) под действием потока (F) наружного воздуха, проходящего через канал прохождения воздуха. Технический результат заключается в уменьшении лобового сопротивления и уменьшении веса конструкции воздухозаборника летательного аппарата. 8 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение относится к устройству воздухозаборника для транспортного средства, в частности для летательного аппарата, содержащему канал прохождения воздуха с отверстием воздухозаборника.
Известно, что такие устройства воздухозаборника широко используются в области аэронавтики, в частности, хотя и не только, с целью обновления воздуха в ограниченной зоне, содержащей оборудование, чувствительное к температуре, и/или опасную среду воспламеняемого или взрывчатого типа, которые требуют, чтобы зона постоянно проветривалась, с целью избежать любого риска нарушения работы оборудования или возникновения происшествия в окружающей среде.
В частности, это относится к многочисленным механическим и/или электрическим устройствам, выполненным в ограниченной кольцевой зоне между гондолой и наружным корпусом вентилятора и кожухом компрессора турбореактивного двигателя летательного аппарата. Такие устройства, как фадек (автономная электронно-цифровая система управления двигателем), коробка реле агрегатов (коробка приводов), топливный бак двигателя, гидравлические составные элементы и т.д., например, которые обычно закреплены вокруг наружного кожуха и таким образом лежат в ограниченной зоне, при этом вентилируются с помощью наружного воздуха, который входит в устройство через отверстие воздухозаборника, чтобы пройти по каналу, образованному в гондоле, и быть рассеянным в ограниченной зоне после выхода из канала. Устройства, а также любой масляный или другой пар, исходящий из этой зоны, вентилируются с помощью наружного свежего воздуха, рассеянного с помощью канала прохождения воздуха, способствуя обеспечению их правильной работы.
С целью соответствовать положениям существующего законодательства, которое требует, чтобы соответствующая ограниченная зона содержала соответствующее количество воздуха, обновляемого за единицу времени, канал прохождения воздуха устройства имеет заданное поперечное сечение, которое позволяет, чтобы достаточное количество воздуха проходило через канал и чтобы после выхода из канала в ограниченной зоне, содержащей устройства, которым необходима вентиляция, имелся обновленный воздух.
Однако, поскольку количество наружного воздуха, входящего в воздушный канал с заданным поперечным сечением, зависит, в частности, от параметров, связанных со скоростью летательного аппарата и высотой его полета, сложно для устройств, которые должны быть охлаждены, и для пара, который должен быть выпущен, быть оптимально провентилированными.
Проблема заключается в том, что, хотя наружный воздух, входящий в канал с заданным поперечным сечением устройства через отверстие воздухозаборника выше по потоку и выходящий ниже по потоку из этого канала, является достаточным по количеству, чтобы правильно вентилировать устройства, когда летательный аппарат рулит по земле, во время фазы взлета или стоянки и, следовательно, на низкой скорости, то когда летательный аппарат находится в крейсерском полете на максимальной скорости и на максимальной высоте, скорость потока воздуха, покидающего канал устройства по направлению к зоне, которая подлежит вентиляции, является, с другой стороны, слишком большой. Измерения показали, что на этой стадии полета воздух, циркулирующий в ограниченной зоне через канал устройства, обновлялся в два раза чаще, чем это требовалось. Кроме того, воздух, входящий в ограниченную зону, вызывает лобовое сопротивление, результатом которого является потеря скорости летательного аппарата и поэтому увеличение расхода топлива в упомянутом двигателе.
Чтобы устранить эти недостатки, в документах WO 2006/067296 и WO 2006/067299 описаны устройства воздухозаборника, содержащие средства перекрытия с управляемым подвижным элементом, при этом средства связаны с упомянутым каналом прохождения воздуха, и средства управления упомянутым подвижным элементом, которые приводятся в действие либо преднамеренно пилотом упомянутого летательного аппарата, либо, предпочтительно, автоматически. В последнем случае упомянутые средства управления содержат бак с изменяемым объемом - устройство цилиндр-поршень, уплотнительную манжету, гофрированную манжету, - который воспринимает все давление, оказываемое на упомянутый летательный аппарат текучей средой, в которой упомянутый летательный аппарат перемещается, и который соединен с упомянутым управляемым подвижным элементом. Однако, поскольку давление не является локально стабильным, эта система не может быть оптимальной. В дополнение, эти средства управления являются громоздкими по отношению к своему окружению и имеют тенденцию способствовать появлению явлений вибрации и дисбаланса, что требует, чтобы все оборудование было укреплено, таким образом оказывая значительное бремя на упомянутое устройство воздухозаборника. Теперь, чтобы ограничить потребление летательным аппаратом топлива, конструкторы летательных аппаратов предпринимают попытки создать более легкие системы.
Целью настоящего изобретения является предоставление решения этих недостатков, при этом изобретение относится к устройству воздухозаборника такой конструкции, которая позволяет оптимальную вентиляцию ограниченной зоны, подобной той, что описана выше в отношении турбореактивного двигателя, но которая также может быть зоной светосигнального оборудования, или подфюзеляжной зоной самолета (подфюзеляжный обтекатель), или в более общем случае любой в некоторой степени ограниченной и чувствительной к температуре зоной транспортного средства, в которой требуется обновление воздуха.
С этой целью согласно настоящему изобретению устройство воздухозаборника для транспортного средства, в частности для летательного аппарата, содержит, по меньшей мере, один канал прохождения воздуха с отверстием воздухозаборника, который отбирает поток наружного воздуха, который входит в упомянутый канал на этом расположенном выше по потоку конце, через упомянутое отверстие воздухозаборника, причем упомянутое устройство содержит средства перекрытия с управляемым подвижным элементом, которые связаны с упомянутым каналом, и средства управления упомянутого управляемого подвижного элемента, чтобы изменять поперечное сечение упомянутого канала в зависимости от скорости упомянутого транспортного средства между минимальным поперечным сечением, которое разрешает минимальную скорость воздушного потока по направлению к упомянутой зоне, которая подлежит вентиляции, и максимальным поперечным сечением, которое разрешает максимальную скорость воздушного потока по направлению к упомянутой зоне, и отличается тем, что упомянутые средства управления образованы из аэродинамической поверхности, размещенной в упомянутом канале прохождения воздуха, и способно создавать подъемную силу под воздействием упомянутого потока наружного воздуха, проходящего через упомянутый канал прохождения воздуха.
Таким образом, поскольку подъемная сила пропорциональна скорости упомянутого потока наружного воздуха, проходящего через упомянутый канал (и поэтому скорости упомянутого транспортного средства), изобретение позволяет получить средства перекрытия, которые являются автоматическими в зависимости от скорости транспортного средства и способны изменять поперечное сечение упомянутого канала и изменять в зависимости от стадии полета летательного аппарата скорость потока воздуха, входящего в ограниченную зону, и поэтому осуществить лучшую вентиляцию рассматриваемых устройств.
Например, когда летательный аппарат совершает крейсерский полет (на максимальной скорости и на максимальной высоте), поперечное сечение упомянутого канала предпочтительно и автоматически уменьшается, чтобы создать разумную степень вентиляции устройств и таким образом ограничить величину лобового сопротивления, создаваемого на гондоле в целом воздухом, поглощаемым в ограниченной зоне. В отличие от этого, когда летательный аппарат рулит по земле или находится на стадии взлета (при низкой скорости), поперечное сечение канала автоматически открывается до его максимального значения за счет втягивания подвижного элемента упомянутых средств перекрытия таким образом, что максимальное количество воздуха может циркулировать через канал, и устройства, расположенные в ограниченной зоне, соответственно могут быть провентилированы.
Таким образом, в дополнение, благодаря изобретению количество воздуха, отбираемого устройством воздухозаборника, соразмеряется с каждой стадией полета, таким образом снижая ухудшение летно-технических характеристик летательного аппарата, вызываемое вентиляцией.
Предпочтительно, упомянутая аэродинамическая поверхность образована профильной деталью, расположенной поперек упомянутого канала. Деталь аэродинамического профиля, такая как эта, может содержать переднюю кромку, направленную в сторону упомянутого отверстия воздухозаборника, и заднюю кромку, направленную в сторону упомянутой ограниченной зоны.
Конечно, внутри упомянутого канала прохождения воздуха упомянутая аэродинамическая поверхность расположена в месте, в котором ее работа является лучшей. Таким образом, в зависимости от различных параметров, включая форму и размеры упомянутого отверстия воздухозаборника и упомянутого канала прохождения воздуха, упомянутая аэродинамическая поверхность может быть расположена рядом с упомянутым отверстием воздухозаборника или, альтернативно, может быть расположена на некоторой большей или меньшей глубине внутри упомянутого канала прохождения воздуха.
Кроме того, чтобы быть способным соразмерять характеристики упомянутой аэродинамической поверхности с целью соответствия обстоятельствам, является предпочтительным, чтобы кривизна профиля упомянутой аэродинамической поверхности была бы автоматически регулируемой таким образом, чтобы усилить действие упомянутых средств управления. Например, задняя кромка упомянутой аэродинамической поверхности может быть выполнена из двух материалов с различными коэффициентами термического расширения таким образом, чтобы создать вид биметаллической полоски. Таким образом, становится возможным, в случае летательного аппарата, увеличить кривизну профиля упомянутой аэродинамической поверхности и, следовательно, за счет этого увеличить подъемную силу, когда температура потока воздуха падает, то есть когда летательный аппарат набирает высоту. Максимальная кривизна и максимальная подъемная сила могут быть, таким образом, достигнуты, когда летательный аппарат находится в крейсерском полете.
Кроме того, упомянутый управляемый подвижный элемент может быть образован из упругой пластины, спонтанно давящей на стенку упомянутого канала прохождения воздуха, причем упомянутая пластина прикреплена одним из своих концов к упомянутому каналу, тогда как упомянутая аэродинамическая поверхность прикреплена к другому концу упомянутой упругой пластины.
Таким образом, когда упомянутая упругая пластина упругим образом отделена от стенки упомянутого канала, на которую она давит под действием подъемной силы, создаваемой упомянутой аэродинамической поверхностью, поперечное сечение канала уменьшается, создавая сокращенный поток вентиляционного воздуха по направлению к ограниченной кольцевой зоне, тогда как, когда пластина давит на стенку канала, поперечное сечение канала равно тогда своему максимальному значению, создавая максимальный поток вентиляционного воздуха по направлению к упомянутой зоне.
Конечно, подобное уменьшение поперечного сечения упомянутого канала зависит от скорости транспортного средства и может быть таким, что упомянутое сечение становится минимальным, разрешая минимальный поток вентиляционного воздуха. Предпочтительно, существует упор для отметки положения упомянутой упругой пластины, которое соответствует упомянутому минимальному поперечному сечению.
Предпочтительно, конец упомянутой упругой пластины, прикрепленной к упомянутому каналу, размещен рядом с упомянутым отверстием воздухозаборника.
Упомянутый канал прохождения воздуха, предпочтительно, может иметь прямоугольное поперечное сечение, при этом ширина упомянутой упругой пластины тогда соответствует ширине упомянутого прямоугольного поперечного сечения.
Чертежи позволяют легко понять, как изобретение может быть осуществлено. На фигурах одними и теми же ссылочными позициями обозначены элементы, которые являются подобными.
На фиг.1 схематично и частично в разрезе показана гондола турбореактивного двигателя с устройством воздухозаборника, обозначенного как А, согласно изобретению.
Фиг.2 представляет собой вид сзади в разрезе по II-II на фиг.1 упомянутой гондолы турбореактивного двигателя, демонстрирующий различные устройства, которым необходима вентиляция.
Фиг.3 представляет собой увеличенный продольный разрез одного, приведенного в качестве примера, варианта осуществления средств перекрытия согласно настоящему изобретению.
Фиг.4 представляет собой вид в направлении стрелки IV на фиг.3.
На фиг.5 показано на виде, подобном фиг.3, различное размещение аэродинамической поверхности устройства воздухозаборника согласно настоящему изобретению.
Фиг.6а и 6b представляют собой иллюстрацию изменения в кривизне профиля аэродинамической поверхности в зависимости от температуры.
Фиг.7 представляет собой увеличенный продольный разрез альтернативной формы варианта осуществления средств перекрытия согласно настоящему изобретению.
Устройство 1 воздухозаборника, согласно настоящему изобретению обозначенное прямоугольником А на фиг.1, выполнено в гондоле 2 двигателя, установленного на самолете (не показано). Как схематично показано на фиг.1 и 2, гондола 2 содержит, в обычном порядке, фронтальную часть 3 воздухозаборника для снабжения двигателя воздухом, промежуточную часть 4, окружающую наружный корпус 5 вентилятора 6, компрессоры двигателя и камеру сгорания и турбину, из которой выступает наружный кожух реактивного сопла 7 и его конус.
Различные механические и/или электрические устройства или детали оборудования 8 закреплены на наружном кожухе 5 вентилятора и компрессоров, то есть в ограниченной кольцевой зоне 9 между гондолой 2 и наружным кожухом 5 двигателя. На фиг.2 символически изображены некоторые из устройств 8, которые могут находиться в этой зоне 9, а именно автономная электронно-цифровая система 8А управления двигателем, коробка реле агрегатов 8В и топливный бак 8С двигателя.
Воздух в этой ограниченной зоне 9 обновляется, чтобы держать устройства 8 в соответствующем диапазоне температур, и позволяет им работать правильно за счет устройства 1 воздухозаборника, которое расположено над передней частью гондолы 2 и содержит для этой цели канал 10 прохождения воздуха, созданный в конструктивной стенке фронтальной части гондолы 2 и который размещает наружный воздух в сообщении с ограниченной зоной 9. Чтобы сделать это, канал 10 имеет выше по потоку отверстие 11 воздухозаборника и ниже по потоку диффузор 12 в сообщении с упомянутой зоной 9, выходящий в центральную часть 4 гондолы.
Канал 10 прохождения воздуха слегка наклонен по отношению к внешней поверхности фронтальной части гондолы 2 и направлен по направлению вниз по потоку к продольной оси двигателя с целью наилучшим образом отбирать и проводить свежий наружный воздух вдоль канала 10 и затем выгружать его тангенциально через диффузор 12 с двойным выпускным отверстием, как показано стрелкой f на фиг.2, с двух сторон кольцевой ограниченной зоны 9.
В примерах, показанных на фиг.3, 5 и 7, весь профиль канала 10 устройства 1 слегка развернут, это означает, что, сужаясь ниже по потоку от его тангенциального отверстия 11 воздухозаборника, он расширяется до некоторой степени в направлении диффузора 12, при этом его поперечное сечение становится прямоугольным. Канал 10 ограничен нижней стенкой 14, верхней стенкой 15 и двумя боковыми стенками 16 и 17.
Согласно настоящему изобретению поперечное сечение канала 10 становится регулируемым благодаря управляемым аэродинамическим способом средствам перекрытия, способным регулировать скорость потока вентиляционного воздуха, протекающего через канал 10 по направлению к ограниченной зоне 9, в зависимости от скорости самолета.
В варианте осуществления изобретения, показанном на фиг.3 и 4, упомянутые средства перекрытия содержат упругую пластину18 прямоугольной формы, один конец которой закреплен около отверстия 11 воздухозаборника, например, с использованием винтов 19 и при этом ширина которой слегка меньше, чем ширина L канала 10. Упругая пластина 18 размещена в упомянутом канале 10 и спонтанно давит на нижнюю стенку 14 канала.
На своем внутреннем конце, противоположном винтам 19, упругая пластина 18 несет деталь 20 аэродинамического профиля с помощью опор 21, которые удерживают упомянутую профильную деталь на расстоянии от упругой пластины 18.
Упомянутая деталь 20 аэродинамического профиля находится внутри упомянутого канала 10 и проходит поперек по отношению к нему. Она имеет переднюю кромку 22, направленную в сторону отверстия 11 воздухозаборника, заднюю кромку 23, направленную в сторону диффузора 12, верхнюю поверхность 24, обращенную к верхней стенке 15, и нижнюю поверхность 25, обращенную к нижней стенке 14.
Таким образом, когда самолет, несущий гондолу 2, движется вдоль, поток воздуха (обозначенный стрелкой F) входит в канал 10 через отверстие 11 воздухозаборника. Результатом этого является то, что этот воздушный поток F создает подъемную силу Р, приложенную к упомянутой детали 20 аэродинамического профиля, при этом эта подъемная сила Р старается, вопреки присущей упругой пластине 18 упругости, перемещать эту пластину от нижней стенки 14 ближе к верхней стенке 15.
Упругая пластина 18, следовательно, работает как заслонка.
Очевидно, деформация упругой пластины 18 в направлении перекрытия становится тем больше, чем больше подъемная сила Р, это означает, чем больше скорость самолета.
Максимальная степень, до которой канал 10 может быть перекрыт упругой пластиной 18, задана упором 26, например, состоящим из крюка, проходящего через нижнюю стенку 14 и способного взаимодействовать с ее стороной, противоположной каналу 10.
Таким образом, проходное сечение для воздушного потока F через канал 10 может изменяться в зависимости от скорости самолета между максимальным значением, при котором упругая пластина 18 прижата к нижней стенке 14, и минимальным значением, определенным упором 26.
Вариант осуществления изобретения по фиг.5 является во всех отношениях похожим на варианты осуществления изобретения по фиг.3 и 4 за исключением того, что касается места расположения детали 20 аэродинамического профиля. Конкретно в этом случае упомянутая деталь аэродинамического профиля, будучи расположенной в упомянутом канале 10, расположена скорее обращенной к отверстию 11 воздухозаборника, чем будучи расположенной относительно глубоко внутри канала 10, как показано на фиг.3. На фиг.3 и 5 показано, что положение детали 20 аэродинамического профиля в канале 10 может быть оптимизировано, чтобы соответствовать характеристикам воздушного потока F и, следовательно, в зависимости от отверстия 11 воздухозаборника и канала 10.
На фиг.6А и 6B показана деталь 20 аэродинамического профиля, задняя кромка 23 которой состоит из двух скрепленных пластин 23А и 23B, которые имеют различные коэффициенты термического расширения. Таким образом, как показано на фиг.6B, кривизна детали 20 аэродинамического профиля может увеличиваться, как только температура потока F наружного воздуха падает, причем возможно, чтобы эта кривизна была максимальной, когда летательный аппарат совершает крейсерский полет.
На фиг.7 показана альтернативная форма варианта осуществления изобретения, в котором упругая пластина 18 прикреплена к верхней стенке 15, при этом верхняя поверхность профильной детали 20 направлена в сторону нижней стенки 14. В этом варианте осуществления изобретения канал 10 перекрывается вниз, тогда как в примере на фиг.3 и 5 он перекрывается вверх.

Claims (9)

1. Устройство (1) воздухозаборника для транспортного средства, в частности для летательного аппарата, содержащее, по меньшей мере, один канал (10) прохождения воздуха с отверстием (11) воздухозаборника, который отбирает поток (F) наружного воздуха, который входит в упомянутый канал на расположенном выше по потоку конце через упомянутое отверстие (11) воздухозаборника, причем упомянутое устройство содержит средства перекрытия с управляемым подвижным элементом, которые связаны с упомянутым каналом (10), и средства управления упомянутого управляемого подвижного элемента, чтобы изменять поперечное сечение упомянутого канала (10) в зависимости от скорости упомянутого транспортного средства между минимальным поперечным сечением, которое позволяет минимальную скорость воздушного потока в сторону упомянутой зоны (9), которая подлежит вентиляции, и максимальным поперечным сечением, которое разрешает максимальную скорость воздушного потока в сторону упомянутой зоны (9), в котором упомянутые средства управления образованы аэродинамической поверхностью, размещенной в упомянутом канале (10) прохождения воздуха и способно создавать подъемную силу (Р) под действием упомянутого потока (F) наружного воздуха, проходящего через упомянутый канал (10) прохождения воздуха.
2. Устройство по п.1, в котором упомянутая аэродинамическая поверхность образована профильной деталью (20), расположенной поперек упомянутого канала (10) прохождения воздуха.
3. Устройство по п.2, в котором упомянутая профильная деталь (20) содержит переднюю кромку (22), направленную к упомянутому отверстию (11) воздухозаборника, и заднюю кромку (23), направленную к упомянутой ограниченной зоне (9).
4. Устройство по п.1, в котором кривизна профиля упомянутой аэродинамической поверхности является автоматически регулируемой таким образом, чтобы усилить действие упомянутых средств управления.
5. Устройство по п.4, в котором упомянутая кривизна может быть отрегулирована в соответствии с температурой таким образом, что упомянутая кривизна увеличивается, когда температура упомянутого потока (F) наружного воздуха падает.
6. Устройство по п.1, в котором упомянутый управляемый подвижный элемент образован упругой пластиной (18), спонтанно давящей на стенку (14, 15) упомянутого канала (10) прохождения воздуха, при этом упомянутая упругая пластина (18) прикреплена одним из своих концов к упомянутому каналу (10), при этом упомянутая аэродинамическая поверхность прикреплена к другому концу упомянутой упругой пластины (18).
7. Устройство по п.6, в котором конец упомянутой упругой пластины (18), прикрепленный к упомянутому каналу (10) прохождения воздуха, размещен рядом с упомянутым отверстием (11) воздухозаборника.
8. Устройство по п.6, в котором упомянутый канал (10) прохождения воздуха имеет прямоугольное поперечное сечение, при этом ширина (l) упомянутой упругой пластины (18) соответствует ширине (L) упомянутого сечения упомянутого канала (10).
9. Устройство по п.1, в котором оно содержит упор (26) для отметки положения упомянутой упругой пластины (18), которое соответствует упомянутому минимальному поперечному сечению упомянутого канала (10) прохождения воздуха.
RU2009143347/11A 2007-04-24 2008-04-14 Устройство воздухозаборника для транспортного средства, в частности для летательного аппарата RU2419578C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702956A FR2915461B1 (fr) 2007-04-24 2007-04-24 Agencement d'entree d'air pour vehicule, notamment un aeronef.
FR0702956 2007-04-24

Publications (1)

Publication Number Publication Date
RU2419578C1 true RU2419578C1 (ru) 2011-05-27

Family

ID=38617338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009143347/11A RU2419578C1 (ru) 2007-04-24 2008-04-14 Устройство воздухозаборника для транспортного средства, в частности для летательного аппарата

Country Status (11)

Country Link
US (1) US9422062B2 (ru)
EP (1) EP2148815B1 (ru)
JP (1) JP5119321B2 (ru)
CN (1) CN101687552B (ru)
AT (1) ATE499293T1 (ru)
BR (1) BRPI0809712A2 (ru)
CA (1) CA2681931C (ru)
DE (1) DE602008005132D1 (ru)
FR (1) FR2915461B1 (ru)
RU (1) RU2419578C1 (ru)
WO (1) WO2008142289A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806229C2 (ru) * 2019-04-26 2023-10-30 Сафран Насель Воздухозаборник для гондолы турбореактивного двигателя

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915461B1 (fr) * 2007-04-24 2009-06-05 Airbus France Sas Agencement d'entree d'air pour vehicule, notamment un aeronef.
DE102008028799B4 (de) 2008-06-17 2015-07-02 Airbus Operations Gmbh Druckausgleichs-Ventil zum Anordnen an einer Öffnung einer Rumpfschale eines Flugzeugs und Rumpfteil mit einem solchen Druckausgleichs-Ventil
FR2936778B1 (fr) 2008-10-07 2011-06-10 Airbus France Agencement d'entree d'air pour aeronef
FR2971487B1 (fr) * 2011-02-14 2013-11-29 Airbus Operations Sas Dispositif de ventilation d'un compartiment
FR2982588B1 (fr) * 2011-11-10 2013-11-22 Aircelle Sa Panneau composite a ecope de prelevement integree
CN103523235B (zh) * 2012-07-06 2015-12-02 哈尔滨飞机工业集团有限责任公司 飞机发动机舱进气道整流罩
FR3014846B1 (fr) * 2013-12-16 2017-11-17 Snecma Systeme de prelevement de fluide
US10059430B2 (en) 2014-06-25 2018-08-28 Gulfstream Aerospace Corporation Aircraft air scoop systems with passive pneumatic actuators
US9845144B2 (en) * 2014-10-13 2017-12-19 Gulfstream Aerospace Corporation Aircraft and air exchange systems for ventilated cavities of aircraft
CN104534943A (zh) * 2015-01-07 2015-04-22 米向前 箭飞行稳定器
CN106274378B (zh) * 2016-08-18 2018-04-13 博耐尔汽车电气系统有限公司 汽车空调hvac吹风模式的转换方法
CN106314084B (zh) * 2016-08-18 2018-04-13 博耐尔汽车电气系统有限公司 一种汽车空调hvac导风板
US10829228B2 (en) * 2017-01-17 2020-11-10 Itt Manufacturing Enterprises, Llc Fluid straightening connection unit
US11035295B2 (en) 2018-04-18 2021-06-15 Lockheed Martin Corporation Engine nacelle heat exchanger
CN110901926B (zh) * 2019-11-29 2021-10-08 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种冲压进气口空气流量调节装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707881A (en) * 1950-10-12 1954-04-28 Rolls Royce Improvements in or relating to aircraft
US3446223A (en) * 1966-02-04 1969-05-27 Lockheed Aircraft Corp Air intake for gas turbine engines
US3618876A (en) * 1969-12-22 1971-11-09 Boeing Co Aircraft engine leading edge auxiliary air inlet
US3664612A (en) * 1969-12-22 1972-05-23 Boeing Co Aircraft engine variable highlight inlet
US3792584A (en) * 1972-02-16 1974-02-19 Boeing Co Increased or variable bypass ratio engines
GB1545365A (en) * 1977-02-24 1979-05-10 Rolls Royce Gas turbine engines
US4174083A (en) * 1977-04-29 1979-11-13 The Boeing Company Flow deflector for fluid inlet
US4250703A (en) * 1979-03-15 1981-02-17 Avco Corporation Swinging door particle separator and deicing system
CA1116418A (en) * 1979-07-18 1982-01-19 Pratt & Whitney Aircraft Of Canada Limited Vane fairing for inertial separator
US4418879A (en) * 1980-12-29 1983-12-06 The Boeing Company Scoop and inlet for auxiliary power units and method
US4844382A (en) * 1983-10-19 1989-07-04 Raisbeck Engineering, Inc. Dual turning vane air inlet assembly
DE3444822A1 (de) * 1984-12-08 1986-06-12 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Regelbarer diffusor fuer einen lufteinlauf an einem flugzeug
US4674704A (en) * 1985-12-03 1987-06-23 The United States Of America As Represented By The Secretary Of The Air Force Direct air cooling system for airborne electronics
US5088660A (en) * 1989-08-04 1992-02-18 United Technologies Corporation Bleed stability door
GB9025023D0 (en) * 1990-11-16 1991-01-02 Rolls Royce Plc Engine nacelle
FR2763098B1 (fr) * 1997-05-07 1999-06-11 Snecma Systeme d'admission d'air dans une veine de turbomachine
US6050527A (en) * 1997-12-19 2000-04-18 The Boeing Company Flow control device to eliminate cavity resonance
US6851255B2 (en) * 2002-12-18 2005-02-08 Pratt & Whitney Canada Corp. Normally open reverse flow flapper valve
US7014144B2 (en) * 2003-07-22 2006-03-21 Honeywell International, Inc. Dual action inlet door and method for use thereof
FR2861364B1 (fr) * 2003-10-22 2006-02-03 Airbus France Dispositif de montage d'un carenage dispose entre une entree d'air d'un moteur d'aeronef et un mat.
US7448219B2 (en) * 2004-06-21 2008-11-11 Boeing Co Hingeless flapper valve for flow control
FR2879564B1 (fr) * 2004-12-20 2008-05-16 Airbus France Sas Agencement d'entree d'air de ventilation a element d'obturation mobile
FR2879563B1 (fr) * 2004-12-20 2008-07-11 Airbus France Sas Agencement d'entree d'air de ventilation
US7331421B2 (en) * 2005-03-30 2008-02-19 The Boeing Company Flow restrictors for aircraft inlet acoustic treatments, and associated systems and methods
FR2897339B1 (fr) * 2006-02-16 2008-04-11 Aircelle Sa Nacelle de turboreacteur a ouverture laterale des capots
GB2447228B8 (en) * 2007-03-06 2009-03-04 Gkn Aerospace Services Ltd Thermal anti-icing system
FR2915461B1 (fr) * 2007-04-24 2009-06-05 Airbus France Sas Agencement d'entree d'air pour vehicule, notamment un aeronef.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806229C2 (ru) * 2019-04-26 2023-10-30 Сафран Насель Воздухозаборник для гондолы турбореактивного двигателя

Also Published As

Publication number Publication date
EP2148815A2 (fr) 2010-02-03
WO2008142289A2 (fr) 2008-11-27
FR2915461A1 (fr) 2008-10-31
CA2681931A1 (fr) 2008-11-27
CA2681931C (fr) 2015-09-15
FR2915461B1 (fr) 2009-06-05
ATE499293T1 (de) 2011-03-15
EP2148815B1 (fr) 2011-02-23
JP5119321B2 (ja) 2013-01-16
US20100087132A1 (en) 2010-04-08
US9422062B2 (en) 2016-08-23
WO2008142289A3 (fr) 2009-01-29
CN101687552A (zh) 2010-03-31
DE602008005132D1 (de) 2011-04-07
JP2010525235A (ja) 2010-07-22
BRPI0809712A2 (pt) 2014-10-07
CN101687552B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
RU2419578C1 (ru) Устройство воздухозаборника для транспортного средства, в частности для летательного аппарата
RU2363853C2 (ru) Вентиляционное воздухозаборное устройство с подвижным перекрывающим средством
US8192147B2 (en) Nacelle assembly having inlet bleed
US8425283B2 (en) Ventilating air intake arrangement
US8398016B2 (en) Air intake arrangement for an aircraft
US7810312B2 (en) Heat exchanger arrangement
US8166768B2 (en) Systems and methods for passively directing aircraft engine nozzle flows
EP2060489B1 (en) Nacelle flow assembly
US7469529B2 (en) Chevron-type primary exhaust nozzle for aircraft turbofan engine, and aircraft comprising such a nozzle
EP3092388B1 (en) Cross-stream heat exchanger
CN101297107B (zh) 用于短距起落航空器的涡轮风扇发动机
EP2681111B1 (en) A draining device
US20180265208A1 (en) Air intake structure and airflow control system
US5339622A (en) Gas turbine engine with improved water ingestion prevention
US20150219013A1 (en) Aircraft turbomachine assembly with reduced jet noise
US10408165B2 (en) Device with gratings for ejecting microjets in order to reduce the jet noise of a turbine engine
US2841956A (en) Combination variable area converging-diverging nozzle and thrust destroyer
JP6516450B2 (ja) 航空機
US3002716A (en) Aircraft
US20130092754A1 (en) Nacelle for a power plant with a variable-area fan nozzle

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180415