RU2411088C2 - Универсальный аэрогидродинамический насадок - Google Patents

Универсальный аэрогидродинамический насадок Download PDF

Info

Publication number
RU2411088C2
RU2411088C2 RU2008144841/05A RU2008144841A RU2411088C2 RU 2411088 C2 RU2411088 C2 RU 2411088C2 RU 2008144841/05 A RU2008144841/05 A RU 2008144841/05A RU 2008144841 A RU2008144841 A RU 2008144841A RU 2411088 C2 RU2411088 C2 RU 2411088C2
Authority
RU
Russia
Prior art keywords
gas
nozzle
fluid
channel
liquid
Prior art date
Application number
RU2008144841/05A
Other languages
English (en)
Other versions
RU2008144841A (ru
Inventor
Анатолий Николаевич Хомяков (RU)
Анатолий Николаевич Хомяков
Владимир Степанович Бондаренко (RU)
Владимир Степанович Бондаренко
Original Assignee
Государственное учреждение Научно-исследовательский Институт механики Московского государственного университета имени М.В. Ломоносова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное учреждение Научно-исследовательский Институт механики Московского государственного университета имени М.В. Ломоносова filed Critical Государственное учреждение Научно-исследовательский Институт механики Московского государственного университета имени М.В. Ломоносова
Priority to RU2008144841/05A priority Critical patent/RU2411088C2/ru
Publication of RU2008144841A publication Critical patent/RU2008144841A/ru
Application granted granted Critical
Publication of RU2411088C2 publication Critical patent/RU2411088C2/ru

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

Устройство может быть использовано в промышленности (форсунки печей, двигателей внутреннего сгорания, камер сгорания, форсунки многофазных химических реакторов, аэраторы для насыщения воды воздухом в рыбных питомниках и рыбоводческих хозяйствах, аэраторы в системах флотации и биологической очистки воды) и в здравоохранении (очистка воздуха от пыли, его увлажнение и насыщение парами лекарственных препаратов и т.п.). Задачей изобретения является создание конструкции для получения газожидкостных мелкодисперсионных и гомогенных смесей при работе как в газовой, так и в жидкой среде. Для этого универсальный аэрогидродинамический насадок содержит центральный канал принудительной подачи газа, ось которого совпадает с осью центрального тела, и периферийный кольцевой канал подачи жидкости, образованный внутренней стенкой трубы подвода жидкости и поверхностью центрального тела. Кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом. Ось щелевого канала сопла образует с осевой линией канала подвода газа угол α, лежащий в диапазоне 10°<α≤90° Выходное сечение сопла охватывает выходное сечение канала подачи газа. Техническим результатом изобретения является обеспечение возможности получения однородного мелкодисперсного облака газожидкостной смеси и удерживания длительное время в жидкой среде почти 100% подаваемого газа. 5 ил.

Description

Устройство может быть использовано в промышленности (форсунки печей, двигателей внутреннего сгорания, камер сгорания, форсунки многофазных химических реакторов, аэраторы для насыщения воды воздухом в рыбных питомниках и рыбоводческих хозяйствах, аэраторы в системах флотации и биологической очистки воды и т.п.) и в здравоохранении (очистка воздуха от пыли, его увлажнение и насыщение парами лекарственных препаратов и т.п.).
Известна конструкция форсунки для распыления жидкости в газовой среде, патент РФ №2135892 [1]. Форсунка состоит из корпуса с цилиндрическим каналом, имеющего на входе шайбу-втулку с калиброванным отверстием. За втулкой соосно расположен эжекторный элемент в виде трубки Вентури (конфузор, цилиндрический канал, диффузор). По периметру конфузора параллельно его оси расположены сквозные цилиндрические каналы. Снаружи диффузора установлен полый цилиндр - направляющий аппарат коаксильно его наружной поверхности. Недостатком данного устройства является его конструктивная и технологическая сложность и, как следствие этого, - высокая цена изделия.
Известна конструкция паровой форсунки типа Э-ФП, предназначенной для распыливания жидких топлив и сжигания их в топках любых котлов, патент РФ №2118205 [2]. Распылительная головка этой форсунки состоит из эжекторного элемента, центрального канала подачи пара и периферийного кольцевого канала подачи топлива. Недостатком данного устройства также является его конструктивная и технологическая сложность и, как следствие, - этого высокая цена изделия.
Известна конструкция аэратора, предназначенного для мелкопузырчатой аэрации сточных вод, патент РФ №2181111 [3]. Каркас выполнен в виде полимерной перфорированной трубы с двухслойным диспергирующим покрытием из волокнистого материала. Основной недостаток этого устройства - засорение волокнистого материала, необходимость чистки аэратора.
Известен аэратор, предназначенный для насыщения жидкости газом, патент РФ №2048459 [4]. Аэратор содержит корпус и размещенный в нем импульсный источник выброса газа, имеющий прикрепленные к корпусу патрубки подачи и выброса газа. Импульсный источник выброса газа выполнен в виде соосно соединенного с патрубком подачи газа сегнетова колеса, выходные концы трубок которого имеют щелевые сопла. Патрубки выброса газа прикреплены к корпусу равномерно вокруг сегнетова колеса и тангенциально ему по направлению вращения. Выходные концы патрубков выброса газа выполнены изогнутыми и шарнирно связаны с этими патрубками. Аэратор еще снабжен трубкой для эжекции жидкости в проточную часть аэратора, один конец которой размещен в канале патрубки подачи газа и изогнут в направлении движения газа, а другой его конец расположен снаружи аэратора. Основными недостатками данного аэратора являются конструктивная и технологическая сложность, и жидкость насыщяется достаточно крупными пузырьками газа, которые быстро всплывают на поверхность. В жидкости растворяется не более 5% подаваемого газа.
Наиболее близким к предлагаемому устройству (прототипом) является струйный аппарат, патент РФ №1526791 [5].
Струйный аппарат предназначен для смешения различных сред и насыщения жидкости газами. Он состоит из приемной камеры, камеры смешения, диффузора, канала подачи рабочей жидкости и расположенного внутри него канала подачи газа. Канал подачи газа на своем конце имеет кавитатор с острой кромкой. При обтекании кавитатора рабочей жидкостью в газожидкостной среде возникают автоколебания, которые приводят к интенсивному перемешиванию жидкостей и насыщению жидкой среды газовыми пузырями. Основным недостатком струйного аппарата является невозможность получить однородную газожидкостную среду, насыщенную очень мелкими пузырьками газа, кроме того, он предназначен для работы только в жидкой среде.
Заявляемое изобретение направлено на простое конструктивное решение задач получения газожидкостных мелкодисперсионных и гомогенных смесей при работе как в газовой, так и в жидкой среде. Указанный результат достигается с помощью универсального аэрогидродинамического насадка, состоящего из центрального цилиндрического канала принудительной подачи газа, помещенного внутри кольцевого канала принудительной подачи жидкости, образованного центральным телом и внутренней стенкой подводящей трубы. Оси этих каналов совпадают. Кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом, охватывающим выходное отверстие центрального канала подачи газа.
Отличительным признаком настоящего изобретения является наличие кольцевого сходящегося конического сопла, охватывающего выходное отверстие центрального канала подачи газа.
Сущность настоящего изобретения поясняется чертежами, представленными на фиг.1 и 2, и описанием конструкции универсального насадка.
Фиг.1. Универсальный аэрогидродинамический насадок. Вариант 1.
Фиг. 1.2. Универсальный аэрогидродинамический насадок. Вариант 2.
На фигурах цифрами обозначены:
1. Кольцо, с помощью которого регулируется ширина выходного сечения кольцевого конического сопла выпуска жидкости.
2. Осевая линия кольцевого конического сопла.
3. Центральное тело, коническая хвостовая часть которого образует внутреннюю стенку конического сопла.
4. Внешний корпус насадка, концевая часть которого образует внешнюю стенку конического сопла.
5. Пилоны, которые крепят и центрируют центральное тело 3 в корпусе подводящей жидкость трубе.
6. Канал подачи жидкости, образованный подводящей трубой.
7. Канал подачи газа, образованный подводящей трубкой.
8. Центральное тело.
9. Подводящая труба.
Насадок решает следующие задачи.
1. При погружении в жидкость для перемешивания и насыщения жидкостей газами (аэратор).
2. При погружении в газовую среду для образования газожидкостного мелкодисперсного гомогенного облака.
Оно может применяться для:
1) насыщения диоксидами углерода питьевой и минеральной воды, пива, безалкогольных и слабоалкогольных напитков и других продуктов пищевой промышленности;
2) рекарбонизации воды в системах водоподготовки;
3) насыщения воды воздухом в системах обезжиривания;
4) насыщения воды воздухом в системах напорной флотации;
5) насыщения воды воздухом в системах аэрации сточных вод;
6) насыщения воды воздухом в рыбных питомниках, рыбоводческих хозяйствах;
7) насыщения воды воздухом либо озоном в системах обеззараживания;
8) насыщения воды воздухом в системах биологической очистки воды;
9) насыщения любых жидкостей кислородом, азотом, углекислым газом, аммиаком, метаном, воздухом, инертными и прочими газами;
10) газонасыщения с одновременным дозированием химических добавок и реагентов;
11) гидродинамической стерилизации воды и водных растворов;
12) эмульгирования и гомогенизации двухфазных и многофазных смесей и растворов;
13) в двигателях и пульверизаторах различного типа как форсунка для образования газожидкостного мелкодисперсного облака.
Устройство имеет простую конструкцию и позволяет увеличить производительность при одновременном снижении энергозатрат, повысить качества получаемых смесей и растворов, позволяет получать любые необходимые для выполнения поставленной задачи расходы газа и жидкости, обладает высокими эксплуатационными характеристиками, позволяет задержать в жидкой среде до 100% подаваемой газовой компоненты. При этом диаметры газовых пузырьков меньше 1 мм.
Насадок состоит из центрального канала принудительной подачи газа 7, просверленном в центральном теле 8, периферийного кольцевого канала принудительной подачи жидкой среды 6, образованного поверхностью центрального тела 8 и стенкой подводящей трубы 9. Канал 6 заканчивается кольцевым коническим соплом 2, охватывающим выходное отверстие центрального канала подачи газа 7. Отличительным признаком заявляемого устройства является наличие соплового аппарата у канала подачи жидкой среды, выполненного в виде сходящегося кольцевого конического канала, угол конусности α которого (фиг.1 и 2), т.е. угол между осью кольцевого сходящегося конического канала сопла и осью канала подачи газа, выбирается в зависимости от решаемой задачи и лежит в диапазоне 10°<α≤90°.
Возможны варианты щелевого конического сопла, в которых угол конусности внутренней стенки сопла отличен от угла конусности наружной стенки сопла.
Далее, стенки щелевого конического сопла могут быть выполнены в виде отрезков прямых или в виде отрезков различных гладких кривых. В последнем случае угол конусности конического сопла α определяется как угол между касательной, проведенной к криволинейной стенке в конечной (выходной) точке контура, и осью канала подачи газа.
Проверка достижения заявленных эффектов выполнена опытным путем.
Эксперименты, проведенные с насадками, имеющими угол конусности
α<10°, показали низкое качество распыления (малые частоты перемешивания и, как следствие этого, наличие крупных пузырей или крупных капель жидкости).
Насадок, имеющий угол конусности внутренней стенки сопла 10° и угол конусности внешней стенки сопла 13°, показал уже хорошее качество распыления.
На фиг.3-4 приведены результаты работы насадка с средним углом конусности α=52.5° (угол конусности внутренней стенки сопла 45°, угол конусности внешней стенки сопла 60°).
На фиг.3 а, б представлена работа насадка, размещенного в воздухе.
На фиг.4 представлена работа насадка, погруженного в воду.
Фотосъемка произведена цифровой фотокамерой NICON 40D, длительность фотовспышки ~10-3с. При такой длительности фотовспышки фотография картины течения газоводяной смеси получается несколько размазанной, отдельные пузырьки воздуха из-за большой скорости движения изображаются в виде белых хлопьев, а в целом газоводяная пузырьковая и капельная смесь изображается в виде сплошного белого облака.
Такие же хорошие результаты распыления показал и насадок, имеющий кольцевое сопло с углом «конусности» α=90°, с параллельными плоскими стенками.
Описанный выше универсальный аэрогидродинамический насадок отличается простотой конструкции, может использоваться как в газовой, так и в жидкостной среде, позволяет получать однородные мелкодисперсные облака газожидкосной смеси, длительное время удерживать в жидкой среде почти 100% подаваемого газа. На основе этого насадка можно разработать конструкции высокоэффективных форсунок и аэраторов.
Список источников информации
1. Аверкин А.Г., Панов Е.А., Федин С.В., Орлова Н.А. Форсунка для распыления жидкости в газовой среде. // Патент РФ №2135892. Кл. F23D 11/24. 27.08.1999 г.
2. Полиградов Б.Г. Форсунка «ЭДИПОЛ» // Патент РФ №2118205. Кл. В05В 1/34, 7/10. 27/08/1998 г.
3. Кожушко А.Ю., Илюшин В.А. Аэратор. // Патент РФ №2181111. Кл. C02F 003/20. 14.08.2008 г.
4. Мистюрин Ю.Н. Аэратор. // Патент РФ №2048459. Кл. 6 С02Р 7/00, С12М 1/04. 11.20.1995 г.
5. Карликов В.П., Резниченко Н.Т., Хомяков А.Н., Чернявский Ф.Н., Шоломович Г.И. Струйный аппарат. // Патент РФ №1526791. Кл. B01F 5/04, 5/00. 07.12.1989 г. Прототип.

Claims (1)

  1. Устройство, предназначенное для распыления газовой струи в жидкости и для распыления жидкой струи в газе, содержащее центральный канал подачи газа, ось которого совпадает с осью центрального тела, и периферийный кольцевой канал подачи жидкости, образованный внутренней стенкой трубы подвода жидкости и поверхностью центрального тела, отличающееся тем, что кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом, ось щелевого канала которого образует с осевой линией канала подвода газа угол α, лежащий в диапазоне 10°<α≤90°, при этом выходное сечение сопла охватывает выходное сечение канала подачи газа.
RU2008144841/05A 2008-11-14 2008-11-14 Универсальный аэрогидродинамический насадок RU2411088C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008144841/05A RU2411088C2 (ru) 2008-11-14 2008-11-14 Универсальный аэрогидродинамический насадок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008144841/05A RU2411088C2 (ru) 2008-11-14 2008-11-14 Универсальный аэрогидродинамический насадок

Publications (2)

Publication Number Publication Date
RU2008144841A RU2008144841A (ru) 2010-05-20
RU2411088C2 true RU2411088C2 (ru) 2011-02-10

Family

ID=42675726

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008144841/05A RU2411088C2 (ru) 2008-11-14 2008-11-14 Универсальный аэрогидродинамический насадок

Country Status (1)

Country Link
RU (1) RU2411088C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533958C1 (ru) * 2013-08-29 2014-11-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Струйный насадок водометного движителя
RU2694494C2 (ru) * 2017-09-11 2019-07-15 Закрытое Акционерное Общество "Ленпродмаш" Сатуратор активизированный

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533958C1 (ru) * 2013-08-29 2014-11-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Струйный насадок водометного движителя
RU2694494C2 (ru) * 2017-09-11 2019-07-15 Закрытое Акционерное Общество "Ленпродмаш" Сатуратор активизированный

Also Published As

Publication number Publication date
RU2008144841A (ru) 2010-05-20

Similar Documents

Publication Publication Date Title
US5322222A (en) Spiral jet fluid mixer
US4162971A (en) Injectors with deflectors for their use in gassing liquids
JP2010075838A (ja) 気泡発生ノズル
JPS5922580B2 (ja) インゼクタ−および液体のガス処理におけるその使用
JP2007278003A (ja) 下水圧送管路系の浄化処理方法および装置
US3968086A (en) Double funnel device for oxygenating sewage
JP2009273966A (ja) 微細気泡発生ノズル及びそれを備えた装置
RU2411088C2 (ru) Универсальный аэрогидродинамический насадок
JP2008036612A (ja) 微細気泡高密度含有気液混合液空中噴出装置
JPH05123555A (ja) 微細気泡発生方法および微細気泡発生装置
JP2002059186A (ja) 水流式微細気泡発生装置
WO2011121631A1 (ja) 気液供給装置
JPS5941780B2 (ja) 流体の複合噴流方法と複合ノズルユニツト
JP6691716B2 (ja) 微細気泡発生方法及び装置
WO2005030377A1 (en) Method and apparatus for mixing of two fluids
JP7150408B2 (ja) ウルトラファインバブル製造器及びウルトラファインバブル水製造装置
JP3747261B2 (ja) 気液混合流体の分散方法及び該方法に使用する分散装置
US5122312A (en) Bubble injection system
US20230102287A1 (en) Volkov cavitational aerator
RU2503488C2 (ru) Способ и устройство для газации жидкостей
JPH08290192A (ja) 曝気装置
JP2000061489A (ja) 曝気装置
JP2001259395A (ja) エアレータ
JP2000300975A (ja) 気液混合ノズル
CN208603849U (zh) 一种用于工业污水处理的射流曝气器

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20161012