RU2406979C2 - Устройство компенсации погрешности измерения ультразвукового уровнемера - Google Patents

Устройство компенсации погрешности измерения ультразвукового уровнемера Download PDF

Info

Publication number
RU2406979C2
RU2406979C2 RU2009100594/28A RU2009100594A RU2406979C2 RU 2406979 C2 RU2406979 C2 RU 2406979C2 RU 2009100594/28 A RU2009100594/28 A RU 2009100594/28A RU 2009100594 A RU2009100594 A RU 2009100594A RU 2406979 C2 RU2406979 C2 RU 2406979C2
Authority
RU
Russia
Prior art keywords
unit
output
generation unit
time interval
address generation
Prior art date
Application number
RU2009100594/28A
Other languages
English (en)
Other versions
RU2009100594A (ru
Inventor
Алексей Иванович Солдатов (RU)
Алексей Иванович Солдатов
Сергей Александрович Цухановский (RU)
Сергей Александрович Цухановский
Павел Владимирович Сорокин (RU)
Павел Владимирович Сорокин
Виктор Степанович Макаров (RU)
Виктор Степанович Макаров
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет"
Priority to RU2009100594/28A priority Critical patent/RU2406979C2/ru
Publication of RU2009100594A publication Critical patent/RU2009100594A/ru
Application granted granted Critical
Publication of RU2406979C2 publication Critical patent/RU2406979C2/ru

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства. Устройство содержит генератор ультразвуковых импульсов, подключенный к излучателю, и последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого связан с генератором и входом блока формирования временного интервала. Источник опорного напряжения подключен к пороговому устройству. Кроме того, устройство дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса, оперативное запоминающее устройство, блок задержки и триггер. При этом выход триггера связан с аналого-цифровым преобразователем и блоком формирования адреса. Блок задержки подключен к выходу блока формирования временного интервала и входам триггера и блока управления и индикации. Второй вход триггера соединен с блоком формирования временного интервала. Аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства, а блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства. Технический результат: компенсация погрешности измерения ультразвукового уровнемера, обусловленная наличием неконтролируемого временного интервала между началом эхо-импульса и срабатыванием порогового устройства. 3 ил.

Description

Изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.
Известно устройство компенсации погрешностей акустических локационных уровнемеров (патент РФ №2129703, МПК G01F 23/28, опубл. 27.04.1999), включающее в себя акустический датчик с излучателем, подключенным входом к выходу генератора зондирующих импульсов, и приемником, соединенным выходом через усилитель с входом разделителя реперного и измерительного сигналов, реперный отражатель, расположенный на фиксированном расстоянии от акустического датчика, цифровые преобразователи реперного и измерительного временных интервалов, тактирующие входы которых подключены к соответствующим выходам синхронизатора, а информационные входы - к соответствующим выходам разделителя реперных и измерительных сигналов, блок формирования счетных импульсов, тактирующий вход которого соединен с соответствующим выходом синхронизатора, а выход - со счетным входом цифрового преобразователя измерительного интервала, и блок цифровой индикации расстояния от акустического датчика до измеряемого уровня, содержащее блок стабилизации количества счетных импульсов, включенный между выходом цифрового преобразователя реперного интервала и входом блока формирования счетных импульсов, корректирующая матрица переключателей, подключенная к входам загрузки цифрового преобразователя реперного интервала, блок стабилизации количества счетных импульсов, выполненный в виде сумматора-усреднителя кода, подлежащего преобразованию в частоту в блоке формирования счетных импульсов, между выходом цифрового преобразователя измерительного интервала и входом блока цифровой индикации расстояния от акустического датчика до измеряемого уровня включен дополнительный сумматор-усреднитель кода, при этом тактирующие входы обоих сумматоров-усреднителей кода соединены с соответствующими выходами синхронизатора.
Недостатком известного устройства является низкая точность измерения, обусловленная невозможностью учета временного интервала между началом отраженного ультразвукового импульса и моментом срабатывания порогового устройства, которое может изменяться в турбулентной диспергирующей газовой или жидкостной среде, а также в средах с изменяющимся коэффициентом затухания.
Известно устройство для измерения длины труб (заявка РФ №2006109659, МПК (2006.01) G01B 17/00, опубл. 10.10.2007), выбранное в качестве прототипа, включающее генератор ультразвуковых импульсов, соединенный с излучателем, и последовательно соединенные приемник, усилитель, пиковый детектор, пороговое устройство, блок формирования временного интервала и блок управления и индикации, источник опорного напряжения, подключенный к пороговому устройству.
Недостатком известного устройства является высокая погрешность измерения, обусловленная изменением формы отраженных ультразвуковых импульсов за счет распространения в волноводе, к которым относятся трубы.
В изобретении решается задача создания устройства, обеспечивающего компенсацию погрешности измерения ультразвукового уровнемера.
Поставленная задача решена за счет того, что устройство компенсации погрешности измерения ультразвукового уровнемера, также как в прототипе, содержит генератор ультразвуковых импульсов, подключенный к излучателю, последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого соединен с генератором и входом блока формирования временного интервала, источник опорного напряжения, подключенный к пороговому устройству.
Согласно изобретению устройство компенсации погрешности измерения ультразвукового уровнемера дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса и оперативное запоминающее устройство, триггер, выходы которого связаны с аналого-цифровым преобразователем и блоком формирования адреса, блок задержки, подключенный к выходу блока формирования временного интервала и входам и блока управления и индикации и триггера, второй вход которого соединен с блоком формирования временного интервала. Аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства. Блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства.
Использование аналого-цифрового преобразователя, оперативного запоминающего устройства, блока формирования адреса, триггера и блока задержки позволяет определить начало эхо-импульса и соответственно компенсировать погрешность измерения ультразвукового уровнемера. Предложенная схема устройства компенсации погрешности измерения ультразвукового уровнемера, в сравнении с прототипом, не использует второй отраженный эхо-импульс, который может отсутствовать в турбулентной диспергирующей газовой или жидкостной среде, а также в средах с изменяющимся коэффициентом затухания, что повышает стабильность измерения.
На фиг.1 представлена схема устройства.
На фиг.2 представлена диаграмма, иллюстрирующая предлагаемое устройство.
На фиг.3 представлен пример осциллограммы эхо-импульса и двух полученных огибающих.
Устройство содержит блок управления и индикации 1, выход которого соединен с генератором 2 и входом блока формирования временного интервала 3. Генератор 2 подключен к излучателю 4. Приемник 5 соединен с усилителем 6, выход которого подключен к входам порогового устройства 7 и аналого-цифрового преобразователя 8 (АЦП). К другому входу порогового устройства 7 подключен источник опорного напряжения 9 (ИОН). Выход порогового устройства 7 подключен к входу блока формирования временного интервала 3, выход которого подключен к блоку управления и индикации 1, триггеру 10 и блоку задержки 11. Выход блока задержки 11 подключен к другому входу триггера 10 и к блоку управления и индикации 1. Выход триггера 10 подключен к блоку формирования адреса 12 и аналого-цифровому преобразователю 8 (АЦП). Выход аналого-цифрового преобразователя 8 (АЦП) подключен к входу данных оперативного запоминающего устройства 13 (ОЗУ). Второй выход аналого-цифрового преобразователя 8 (АЦП) подключен к блоку формирования адреса 12, выход которого подключен к адресному входу оперативного запоминающего устройства 13 (ОЗУ), выход которого подключен к блоку управления и индикации 1, который связан с блоком формирования адреса 12.
Блок управления и индикации 1 может быть выполнен на микроконтроллере ATMEGA16 и семисегментных индикаторах типа DA56-11SRWA, для подсчета временного интервала используется внутренний таймер-счетчик. Блок формирования временного интервала 3 выполнен на стандартной микросхеме К1554ТМ2. В качестве порогового устройства 7 использован компаратор К521САЗ. Генератор 2 может быть выполнен по схеме с разрядом накопительной емкости на тиристорах типа КУ104Г. Приемник 5 и излучатель 4 могут быть изготовлены из любой пьезокерамики, например ЦТС-19. Усилитель 6 может быть выполнен на операционном усилителе, например К544УД2. Источник опорного напряжения 9 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении, аналого-цифровой преобразователь 8 (АЦП) выбран типовым из условия, что время преобразования например К544УД2. Источник опорного напряжения 9 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении, аналого-цифровой преобразователь 8 (АЦП) выбирается типовым из условия, что время преобразования должно быть не менее чем в десять раз меньше периода входного аналогового сигнала, например для входного сигнала частотой 1 мГц можно применить микросхему AD9057BRS40, оперативное запоминающее устройство 13 (ОЗУ) выбирается из требования максимального времени записи данных, которое должно быть меньше времени преобразования аналого-цифрового преобразователя 8 (АЦП), и объема хранимых данных, которое должно быть больше чем 10·(Tc/tАЦП), например для частоты 1 мГц можно применить микросхему К565РУ5, триггер 10 может быть выполнен на типовой микросхеме, например К1554ТМ2, блок задержки может быть выполнен на микросхеме К1554АГ1 в типовом включении, время задержки должно быть больше или равно пяти периодам входного сигнала, блок формирования адреса 12 может быть выполнен на типовых двоичных реверсивных счетчиках с задержкой переключения меньшей, чем время преобразования аналого-цифрового преобразователя 8 (АЦП), например К1554ИЕ7.
Устройство работает следующим образом.
Блок управления и индикации 1 выдает разрешение на автономную работу блока формирования адреса 12 и вырабатывает импульс запуска для ультразвукового генератора 2, этим же импульсом блок формирования временного интервала 3 устанавливается в состояние логической единицы. Генератор 2 возбуждает излучатель 4. Излученный ультразвуковой импульс распространяется по контролируемой среде и принимается приемником 5, усиливается усилителем 6 и поступает на вход аналого-цифрового преобразователя 8 (АЦП). Одновременно сигнал с выхода усилителя 6 поступает на вход порогового устройства 7. На второй вход порогового устройства 7 подается напряжение с источника опорного напряжения 9 (ИОН) U1. Как только напряжение на выходе усилителя 6 превысит напряжение U1, выход порогового устройства 7 переключится в состояние логической 1 и сбросит блок формирования временного интервала 3 в состояние логического нуля (точка t1 фиг.2). Этот сигнал подается на вход блока управления и индикации 1, сигнализируя об окончании формирования временного интервала, а также на вход триггера 10 и вход блока задержки 11, на выходе триггера 10 появляется логическая единица, которая разрешает работу блока формирования адреса 12 и аналого-цифрового преобразователя 8 (АЦП), который преобразует аналоговый сигнал в цифровой вид с частотой, в десять раз превышающей частоту входного сигнала. С выхода аналого-цифрового преобразователя 8 (АЦП) данные поступают на вход данных оперативного запоминающего устройства 13 (ОЗУ) и записываются по адресу, сформированному блоком формирования адреса 12. Одновременно аналого-цифровой преобразователь 8 (АЦП) выдает импульс на блок формирования адреса 12 для формирования следующего адреса и за время преобразования аналого-цифрового преобразователя 8 (АЦП) на выходе блока формирования адреса 12 сформируется следующий адрес. После срабатывания блока задержки 11 на его выходе появляется импульс, который поступает на блок управления и индикации 1, сигнализируя об окончании процесса записи данных, и сбрасывает триггер 10 в состояние логического нуля. Нулевой уровень на выходе триггера запрещает работу блока формирования адреса 12 и аналого-цифрового преобразователя 8 (АЦП). После этого блок управления и индикации 1 в соответствии с программой осуществляет последовательную выборку данных из оперативного запоминающего устройства 13 (ОЗУ) для определения трех точек максимума и трех точек минимума. По этим точкам составляет систему трех квадратных уравнений с тремя неизвестными:
Figure 00000001
где y1 и х1, y2 и х2, y3 и x3 - координаты трех точек А, В и С соответственно.
Решает эту систему уравнений и находит коэффициенты а1, b1 и с1 для уравнения первой огибающей:
Figure 00000002
Аналогично находит коэффициенты для уравнения второй огибающей, но при этом использует координаты точек D, Е и F:
Figure 00000003
Затем находит точку пересечения этих огибающих путем приравнивания уравнений и его решения:
Figure 00000004
Временную координату этой точки принимает за начало эхо-импульса и использует в расчетах расстояния до отражающей поверхности.
В качестве примера рассмотрим определение расстояния предлагаемым способом. В воде, на расстоянии 250 см от излучателя 4 был установлен приемник 5. Частота ультразвуковых сигналов составляла 600 кГц, соответственно длина волны λ равнялась 2,5 мм. В качестве аналого-цифрового преобразователя 8 применялась микросхема AD9057BRS40 с частотой преобразования 40 МГц. Излучение и прием ультразвуковых сигналов производили с помощью предлагаемого устройства и для сравнения наблюдали с помощью осциллографа GDS820G на выходе усилителя 6 этого устройства. Полученные точки максимумов имели координаты А (0,71; 1701), В (0,89; 1702,6), С (1,02; 1704,5). Точки минимумов имели координаты D (-0,59; 1700,2), Е (-0,79; 1701,9), F (-0,98; 1703,7).
Используя координаты этих точек, блок управления и индикации 1 определил коэффициенты a1, b1, c1 и а2, b2, c2. Временная координата точки пересечения, определенная по этим коэффициентам равна:
х=1696,64 мкс
Для сравнения на фиг.3 показана осциллограмма принятого сигнала и двух полученных огибающих, из которой видно, что расчетная временная координата точки пересечения двух огибающих не совпадает с началом сигнала. Измеренное осциллографом GDS 820G время tp составило 1697 мкс.
Ошибка измерения уровня Δh составила:
Δh=С·(1697-1696,64)=(1,5·106)(0,36·10-6)=0,54 мм,
где С - скорость распространения ультразвука в воде.
Таким образом, экспериментально установлено, что погрешность измерения уровня не превышает λ/2.

Claims (1)

  1. Устройство компенсации погрешности измерения ультразвукового уровнемера, содержащее генератор ультразвуковых импульсов, подключенный к излучателю, последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого соединен с генератором и входом блока формирования временного интервала, источник опорного напряжения, подключенный к пороговому устройству, отличающееся тем, что дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса и оперативное запоминающее устройство, триггер, выходы которого связаны с аналого-цифровым преобразователем и блоком формирования адреса, блок задержки, подключенный к выходу блока формирования временного интервала и входам блока управления и индикации и триггера, второй вход которого соединен с блоком формирования временного интервала, причем аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства, а блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства.
RU2009100594/28A 2009-01-11 2009-01-11 Устройство компенсации погрешности измерения ультразвукового уровнемера RU2406979C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009100594/28A RU2406979C2 (ru) 2009-01-11 2009-01-11 Устройство компенсации погрешности измерения ультразвукового уровнемера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009100594/28A RU2406979C2 (ru) 2009-01-11 2009-01-11 Устройство компенсации погрешности измерения ультразвукового уровнемера

Publications (2)

Publication Number Publication Date
RU2009100594A RU2009100594A (ru) 2010-07-20
RU2406979C2 true RU2406979C2 (ru) 2010-12-20

Family

ID=42685564

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009100594/28A RU2406979C2 (ru) 2009-01-11 2009-01-11 Устройство компенсации погрешности измерения ультразвукового уровнемера

Country Status (1)

Country Link
RU (1) RU2406979C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470267C1 (ru) * 2011-07-29 2012-12-20 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство компенсации погрешности измерения ультразвукового уровнемера
RU2754716C1 (ru) * 2021-02-01 2021-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Устройство компенсации погрешности измерения ультразвукового локатора

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470267C1 (ru) * 2011-07-29 2012-12-20 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство компенсации погрешности измерения ультразвукового уровнемера
RU2754716C1 (ru) * 2021-02-01 2021-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Устройство компенсации погрешности измерения ультразвукового локатора

Also Published As

Publication number Publication date
RU2009100594A (ru) 2010-07-20

Similar Documents

Publication Publication Date Title
EP2799820B1 (en) Liquid surface level measurement device, method, and program
RU2389981C1 (ru) Способ компенсации погрешности измерения ультразвукового уровнемера
RU2389982C1 (ru) Способ компенсации погрешности измерения ультразвукового уровнемера
RU2358243C1 (ru) Способ компенсации погрешности измерения ультразвукового уровнемера
CN105283739A (zh) 用于测定水分含量的物位测量仪
CN107407587B (zh) 使用辅助参考信号对之间的相关的液位测量
EP2116819A1 (en) A radar-based method for measuring a level of material in a container
US20130069795A1 (en) Calibration of a level gauge system
RU2380659C1 (ru) Способ компенсации погрешности измерения ультразвукового уровнемера
CA2152102C (en) High resolution measurement of thickness using ultrasound
JP2017536540A (ja) 界面決定のためのパルス形状変化
RU2498344C2 (ru) Корреляционный измеритель высоты и составляющих вектора путевой скорости
RU2406979C2 (ru) Устройство компенсации погрешности измерения ультразвукового уровнемера
US6621763B2 (en) Power saving technique for pulse-echo acoustic ranging systems
RU2544310C1 (ru) Способ компенсации погрешности измерения ультразвукового локатора
CN205785491U (zh) 一种基于tof技术的声速剖面仪
JP3097882B2 (ja) 超音波送受波装置
RU2384822C1 (ru) Устройство компенсации погрешности измерения ультразвукового уровнемера
RU2470267C1 (ru) Устройство компенсации погрешности измерения ультразвукового уровнемера
RU75034U1 (ru) Устройство компенсации погрешности измерения ультразвукового уровнемера
RU2396521C1 (ru) Устройство компенсации погрешности измерения ультразвукового уровнемера
CN105823548A (zh) 一种基于tof技术的声速剖面仪
RU2471158C1 (ru) Способ компенсации погрешности измерения ультразвукового уровнемера
Wang et al. Optional optimization algorithms for time-of-flight system
RU2748137C1 (ru) Способ компенсации погрешности измерения ультразвукового локатора

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120112