RU2406017C1 - Способ подачи жидкой среды - Google Patents

Способ подачи жидкой среды Download PDF

Info

Publication number
RU2406017C1
RU2406017C1 RU2009122678A RU2009122678A RU2406017C1 RU 2406017 C1 RU2406017 C1 RU 2406017C1 RU 2009122678 A RU2009122678 A RU 2009122678A RU 2009122678 A RU2009122678 A RU 2009122678A RU 2406017 C1 RU2406017 C1 RU 2406017C1
Authority
RU
Russia
Prior art keywords
liquid medium
channel
pressure
source
mixture
Prior art date
Application number
RU2009122678A
Other languages
English (en)
Inventor
Андрей Вячеславович Неведеев (RU)
Андрей Вячеславович Неведеев
Антон Викторович Данилов-Данильян (RU)
Антон Викторович Данилов-Данильян
Original Assignee
Андрей Вячеславович Неведеев
Антон Викторович Данилов-Данильян
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Вячеславович Неведеев, Антон Викторович Данилов-Данильян filed Critical Андрей Вячеславович Неведеев
Priority to RU2009122678A priority Critical patent/RU2406017C1/ru
Priority to US12/816,272 priority patent/US20100313961A1/en
Application granted granted Critical
Publication of RU2406017C1 publication Critical patent/RU2406017C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid

Abstract

Способ предназначен для подачи жидких сред. Способ осуществляется следующим образом. Жидкая среда подается на вход сопла и при ее прохождении через сопло поток закручивается на элементе, приобретая форму спирали с заданным значением соотношения угловой и поступательной скоростей, а элемент обеспечивает непрерывное зарождение кавитационных пузырьков, которые выстраиваются по ходу движения обрабатываемого потока среды с формированием кавитационной области, которая далее переходит в управляемую зону кавитации. В результате комплексной обработки потока жидкой среды в вихревом и кавитационном полях вязкость ее снижается и отложения на стенках канала уменьшаются. Таким образом, предложенное техническое решение уменьшает вязкость подаваемой жидкой среды, снижает отложения из нее на стенки транспортного канала, повышает пропускную способность самого канала, уменьшает материальные и энергетические затраты на прокачку жидкой среды и повышает технологичность процесса в целом. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к технологиям и оборудованию по обработке и подаче жидких сред и может быть использовано в нефтеперерабатывающей, химической, медицинской и в других отраслях промышленности.
Подача жидких сред к потребителю, как правило, осуществляется по трубопроводной системе и в результате наличия вязкости самих жидких сред и неоднородности их состава сопровождается большими энергетическими затратами. А в случае высоковязких жидких сред с большим количеством примесей и неоднородной структурой, на стенках труб постепенно накапливаются отложения, что приводит к увеличению гидравлического сопротивления трубопроводов и даже к их полной закупорке.
Известен способ подачи жидкой среды от источника к потребителю путем определения физико-химических параметров жидкой среды в источнике, организации транспортного канала и обеспечения требуемого перепада давления вдоль упомянутого канала. Патент России №2003784, МПК Е21В 43/00, опубл. 1992 г.
Согласно указанному способу перепад давления вдоль рабочего канала осуществляют насосом, а в зазоре между насосом и стенками транспортного канала формируют высокоскоростные эжекторные струи для охлаждения электродвигателя насоса.
Недостатками указанного способа являются высокие энергетические затраты, образование постоянно увеличивающихся отложений из жидкой среды на стенках канала, повышение гидравлического сопротивления самого канала, уменьшение расхода прокачиваемой через него жидкой среды и снижение технологичности процесса в целом.
Ближайшим техническим решением является способ подачи высоковязкой нефти при эксплуатации нефтяных месторождений к потребителю путем определения физико-химических параметров нефти в месторождении, организации транспортного канала и обеспечения требуемого перепада давления вдоль упомянутого канала. Патент России №2088749, МПК Е21В 43/00, опубл. 1997 г.
В указанном техническом решении одновременно с подачей высоковязкой нефти по транспортному каналу организуют пленочное течение по стенкам канала маловязкой технологической жидкости, которая препятствует контакту нефти непосредственно со стенками и тем самым снижает трение течения нефти в транспортном канале.
Недостатком указанного технического решения является то, что для его обеспечения требуется дополнительная технологическая оснастка, постоянная подача посторонней технологической жидкости в значительных количествах, увеличение подаваемой через канал общего количества жидкой среды, снижение подачи непосредственно самой нефти и снижение технологичности процесса подачи нефти к потребителю в целом.
Целью изобретения является уменьшение вязкости подаваемой жидкой среды, снижение отложений из нее на стенки транспортного канала, повышение пропускной способности самого канала, уменьшение материальных и энергетических затрат на прокачку жидкой среды и повышение технологичности процесса в целом.
Указанная цель достигается тем, что в известном способе подачи жидкой среды, преимущественно смеси жидких углеводородов, от источника к потребителю путем определения физико-химических параметров жидкой среды в источнике, организации транспортного канала и обеспечения требуемого перепада давления вдоль упомянутого канала по ходу движения жидкой среды устанавливают значения ее давления вдоль транспортного канала, выбирают по ходу ее движения первое и второе заданные значения давления, на первом из которых создают в канале дополнительное сопротивление, преобразуют движение жидкой среды во вращательно-винтовое с приданием ей определенного соотношения угловой и поступательной скоростей и формируют кавитационную область, а второе заданное значение давления принудительно снижают до требуемого уровня и постоянно поддерживают указанный уровень с образованием зоны за дополнительным сопротивлением.
Кроме того, могут вести контроль значения вязкости жидкой среды за управляемой зоной кавитации и осуществлять регулировку зоны кавитации в соответствии с упомянутым значением вязкости, а при использовании смеси жидких углеводородов могут дополнительно определять наноструктуру упомянутой смеси в источнике, в соответствии с которой выбирают значение соотношения угловой и поступательной скоростей смеси.
Описываемый способ подачи жидкой среды от источника к потребителю может быть реализован при использовании любой жидкости, например воды, смеси жидких углеводородов (нефти и нефтепродуктов), эмульсий и т.д., как при транспортировке ее по надземной трубопроводной системе, так и при ее скважинной добыче.
При реализации описываемого способа в каждом конкретном случае, в зависимости от физико-химических параметров подаваемой жидкой среды и от вида самого источника, может быть использовано то или иное конкретное устройство.
На Фиг.1 схематично изображено устройство, реализующее предложенный способ подачи жидкой среды к потребителю по надземной трубопроводной системе,
на Фиг.2 схематично изображено устройство, реализующее предложенный способ подачи жидкой среды к потребителю при ее скважинной добыче,
на Фиг.3 - вариант выполнения системы преобразования потока в виде пульсационного аппарата роторного типа,
на Фиг.4 - вариант выполнения системы преобразования потока в виде динамического сопла.
При подаче жидкой среды 1 от источника 2 к потребителю 3 организуют транспортный канал 4. Если источник 2 обладает необходимым значением давления для подачи среды, например напором скважины, то в качестве движущей силы используют его собственное давление. Если же давление в источнике 2 отсутствует или же его значения недостаточно для подачи среды 1 к потребителю 3, то необходимое значение давления в источнике 2 обеспечивают любым известным образом, например установкой насоса 5. В общем случае определяют физико-химические параметры жидкой среды 1 и расчетным либо опытным путем определяют значения давления среды вдоль всего транспортного канала 4 при возможной прокачке среды под давлением источника 2. Определяют местонахождение в канале 4 первого и второго заранее заданных значений давления и в месте канала с первым заданным значением давления в канале размещают местное сопротивление, а в месте со вторым заданным значением давления в канале устанавливают понижающее устройство 6, позволяющее принудительно снизить второе заданное значение давления до требуемого уровня с образованием управляемой зоны кавитации 7. В качестве местного сопротивления выбирают систему 8 преобразования потока, обеспечивающую вращательно-винтовое движение среды 1 с приданием ей определенного соотношения угловой и поступательной скоростей и одновременно формирующую кавитационную область 9.
Следует отметить, что при использовании предложенного способа существует жесткая зависимость объема и месторасположения управляемой зоны кавитации 7 относительно источника 2, величин задаваемых первого и второго значений давления и значения уровня, до которого снижается второе давление, с физико-химическими параметрами жидкой среды, ее расходом, протяженностью транспортного канала 4 и используемым оборудованием.
В каждом конкретном случае, для каждой конкретной жидкой среды в соответствии с ее физико-химическими параметрами, первое и второе заданные значения давления предварительно вычисляются и задаются из условия создания управляемой зоны кавитации 7 с необходимым объемом в требуемом месте относительно источника 2 и с учетом возможности создания необходимых рабочих условий с используемым оборудованием. Значение первого заданного давления и его местонахождение определяется из необходимости создания оптимального рабочего давления на входе в используемую систему 8 преобразования потока. И при выборе той или иной системы 8 соответственно изменяется и оптимальное рабочее давление на входе в нее и, отсюда, значение и местонахождение первого заданного давления. Значение второго заданного давления определяется, в свою очередь, как техническими характеристиками выбранного понижающего устройства 6, так и необходимостью обеспечения оптимальности работы выбранной системы 8 преобразования потока.
В то же время в своей совокупности первое и второе заданные значения давления должны обеспечить создание управляемой зоны кавитации 7 с требуемым значением объема.
В каждом конкретном случае в качестве системы 8 преобразования потока может быть использовано любое известное устройство, например, пульсационный аппарат роторного типа со статором 10 и ротором 11, динамическое сопло с элементами 12 и 13, формирующими соответственно вихревую и кавитационную области, или же любое другое известное техническое решение.
В качестве понижающего устройства может быть использована, например, разомкнутая полость, или же насос 14, при этом технические характеристики насоса 14 должны быть согласованы с давлением источника, расходом жидкой среды и требуемым уровнем давления, до которого необходимо понизить значение второго заданного давления, или же любое другое известное техническое решение.
Уровень давления, до которого понижают значение второго заданного давления, определяется выбором конкретной системы 8 преобразования потока, ее рабочими характеристиками и должен обеспечивать ее оптимальную работу.
Выбор того или иного оборудования, реализующего описываемый способ, с той или иной технологической оснасткой, оказывает влияние на степень снижения вязкости жидкой среды и оптимальность выбора оборудования обусловлена физико-химическими параметрами подаваемой среды и необходимой степенью снижения ее вязкости.
Реализация предложенного способа подачи жидкой среды описывается при использовании наиболее эффективного оборудования, наиболее эффективно и гарантированно обеспечивающего снижение вязкости жидкой среды. В качестве системы 8 преобразования потока выбирается динамическое сопло, а в качестве понижающего устройства - насос 14.
Предварительно, перед подачей жидкой среды 1, определяют ее физико-химические параметры, а также необходимое значение давления в источнике 2 для обеспечения заданного расхода среды 1 по организованному транспортному каналу 4 и расчетным либо опытным путем устанавливают значения ее давления вдоль канала 4.
В соответствии со свойствами жидкой среды 1 и ее потребного расхода выбирают динамическое сопло с соответствующими рабочими и техническими характеристиками и понижающий насос 14. Определяют значения рабочего давления на входе и выходе из динамического сопла для его оптимальной работы. И с учетом рабочих характеристик насоса 14 задают первое и второе значения давлений, а также уровень давления, до которого снижают значение второго заданного давления. Определяют местонахождение первого и второго заданного значения давления в транспортном канале 4 и в соответствующих местах размещают динамическое сопло и насос 14. По завершении предварительных работ начинается подача жидкой среды 1.
Жидкая среда 1 подается на вход сопла и при ее прохождении через сопло поток закручивается на элементе 12, приобретая форму спирали с заданным значением соотношения угловой и поступательной скоростей, а элемент 13 обеспечивает непрерывное зарождение кавитационных пузырьков, которые выстраиваются по ходу движения обрабатываемого потока среды с формированием кавитационной области 9, которая далее переходит в управляемую зону кавитации 7.
В процессе обработки жидкая среда при прохождении через зону кавитации 7 подвергается воздействию ударных волн, образующихся при схлопывании кавитационных пузырьков. Кроме того, происходит частичный «микрокрекинг» - разрыв химических связей с образованием радикалов и углеводородов с меньшей молекулярной массой. Вращение потока обеспечивает полноту кавитационной обработки всего потока.
Выбором конструктивных особенностей элементов 12 и 13, а также заданием соответствующих радиальной и поступательной скоростей обрабатываемого потока обеспечивают определенный объем управляемой зоны кавитации 7, ее интенсивность и, соответственно, степень воздействия кавитации на состояние жидкой среды. В результате комплексной обработки потока жидкой среды в вихревом и кавитационном полях вязкость ее снижается и отложения на стенках канала 4 уменьшаются.
В процессе обработки среды могут вести контроль значения ее вязкости и, при необходимости, осуществлять регулировку размера управляемой зоны кавитации через управление параметрами потока жидкой среды до системы 8 преобразования потока или же регулировкой степени снижения значения второго заданного давления с помощью насоса 14.
При подаче смеси жидких углеводородов (нефти и нефтепродуктов) в дополнение к физико-химическим параметрам могут определять также и наноструктуру смеси (мицеллы, конгломераты и т.д.), в соответствии с которой и выбирают ту или иную конструкцию элементов 12 и 13 динамического сопла, обеспечивающую оптимальное соотношение угловой и поступательной скоростей для обработки смеси с определенной наноструктурой.
Таким образом, предложенное техническое решение уменьшает вязкость подаваемой жидкой среды, снижает отложения из нее на стенки транспортного канала, повышает пропускную способность самого канала, уменьшает материальные и энергетические затраты на прокачку жидкой среды и повышает технологичность процесса в целом.

Claims (3)

1. Способ подачи жидкой среды, преимущественно смеси жидких углеводородов, от источника к потребителю путем определения физико-химических параметров жидкой среды в источнике, организации транспортного канала и обеспечения требуемого перепада давления вдоль упомянутого канала, отличающийся тем, что по ходу движения жидкой среды устанавливают значения ее давления вдоль транспортного канала, выбирают по ходу ее движения первое и второе заданные значения давления, на первом из которых создают в канале дополнительное сопротивление, преобразуют движение жидкой среды во вращательно-винтовое с приданием ей определенного соотношения угловой и поступательной скоростей и формируют кавитационную область, а второе заданное значение давления принудительно снижают до требуемого уровня и постоянно поддерживают указанный уровень с образованием управляемой зоны кавитации за дополнительным сопротивлением.
2. Способ подачи жидкой среды по п.1, отличающийся тем, что ведут контроль значения вязкости жидкой среды за управляемой зоной кавитации и осуществляют регулировку зоны кавитации в соответствии с упомянутым значением вязкости.
3. Способ подачи жидкой среды по п.1, отличающийся тем, что при использовании смеси жидких углеводородов дополнительно определяют наноструктуру упомянутой смеси в источнике, в соответствии с которой выбирают значение соотношения угловой и поступательной скоростей смеси.
RU2009122678A 2009-06-16 2009-06-16 Способ подачи жидкой среды RU2406017C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2009122678A RU2406017C1 (ru) 2009-06-16 2009-06-16 Способ подачи жидкой среды
US12/816,272 US20100313961A1 (en) 2009-06-16 2010-06-15 Liquid medium supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009122678A RU2406017C1 (ru) 2009-06-16 2009-06-16 Способ подачи жидкой среды

Publications (1)

Publication Number Publication Date
RU2406017C1 true RU2406017C1 (ru) 2010-12-10

Family

ID=43305343

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122678A RU2406017C1 (ru) 2009-06-16 2009-06-16 Способ подачи жидкой среды

Country Status (2)

Country Link
US (1) US20100313961A1 (ru)
RU (1) RU2406017C1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140316180A1 (en) * 2013-04-23 2014-10-23 Quantum Vortex, Inc. Apparatuses and methods for hydrodynamic cavitation treatment of liquids

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559855B1 (fr) * 1984-02-21 1986-10-31 Schlumberger Cie Dowell Procede pour ameliorer les caracteristiques d'un laitier de ciment pour cimentation de puits
US5110443A (en) * 1989-02-14 1992-05-05 Canadian Occidental Petroleum Ltd. Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor
ATE224013T1 (de) * 1996-02-15 2002-09-15 Oleg Vyacheslavovich Kozyuk Verfahren und vorrichtung zur herstellung eines frei dispersen systems in einer flüssigkeit
US5937906A (en) * 1997-05-06 1999-08-17 Kozyuk; Oleg V. Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation
US6221260B1 (en) * 1999-04-02 2001-04-24 Dynaflow, Inc. Swirling fluid jet cavitation method and system for efficient decontamination of liquids
US6200486B1 (en) * 1999-04-02 2001-03-13 Dynaflow, Inc. Fluid jet cavitation method and system for efficient decontamination of liquids
US6725167B2 (en) * 2002-01-16 2004-04-20 Fisher Controls International Llc Flow measurement module and method
US8042989B2 (en) * 2009-05-12 2011-10-25 Cavitation Technologies, Inc. Multi-stage cavitation device
US7762715B2 (en) * 2008-10-27 2010-07-27 Cavitation Technologies, Inc. Cavitation generator
US9243653B2 (en) * 2009-05-08 2016-01-26 Watreco Ip Ab Vortex generator with vortex chamber

Also Published As

Publication number Publication date
US20100313961A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US8042989B2 (en) Multi-stage cavitation device
US7540837B2 (en) Systems for centrifuge control in response to viscosity and density parameters of drilling fluids
JP2010500170A (ja) 長鎖有機物の分子構造を分解するための装置
CN107398093B (zh) 用于稠细粒尾矿脱水操作的分散和调节技术
CA2696999A1 (en) Fluid flow conduit and method defining a spiral path
EP2719452A1 (en) Method and apparatus for physical or chemical processes
RU2406017C1 (ru) Способ подачи жидкой среды
EP2321057B1 (en) Dual feed centrifuge
CN205903804U (zh) 射流式固液混合装置
Heywood et al. Developments in slurry pipeline technologies
MX2014015877A (es) Metodo para operar una bomba de fases multiples y un aparato de esta.
NO339736B1 (en) Subsea pump and system and methods for control
RU2329862C2 (ru) Диспергатор-активатор
CN104912811A (zh) 一种螺杆泵
CN107234009A (zh) 一种轴向进料型旋流器
CA2989292A1 (en) Subsea pump and system and methods for control
CN207071467U (zh) 一种轴向进料型旋流器
RU2574408C1 (ru) Способ переработки углеводородного сырья
CN217962317U (zh) 混浆装置
WO2016141223A1 (en) Variable speed torque monitoring inline mixer
RU2695193C1 (ru) Роторно-импульсный аппарат и способ его эксплуатации
RU2413140C2 (ru) Способ нагрева технологических жидкостей и устройство для его осуществления
RU2668345C1 (ru) Гидродинамический модуль обработки высокомолекулярных остаточных продуктов нефтепереработки
RU2266776C1 (ru) Способ приготовления эмульсии типа "вода в масле" и система его реализующая
US9562197B2 (en) Method for processing of liquid hydrocarbon raw materials

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20110310

PC41 Official registration of the transfer of exclusive right

Effective date: 20110518

PC41 Official registration of the transfer of exclusive right

Effective date: 20110726

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130617