RU2405865C1 - Способ получения магния и хлора и электролизер для его осуществления - Google Patents

Способ получения магния и хлора и электролизер для его осуществления Download PDF

Info

Publication number
RU2405865C1
RU2405865C1 RU2009117208/02A RU2009117208A RU2405865C1 RU 2405865 C1 RU2405865 C1 RU 2405865C1 RU 2009117208/02 A RU2009117208/02 A RU 2009117208/02A RU 2009117208 A RU2009117208 A RU 2009117208A RU 2405865 C1 RU2405865 C1 RU 2405865C1
Authority
RU
Russia
Prior art keywords
electrolyte
magnesium
anodes
distance
electrolytic
Prior art date
Application number
RU2009117208/02A
Other languages
English (en)
Inventor
Галина Аркадьевна Яковлева (RU)
Галина Аркадьевна Яковлева
Римма Георгиевна Минина (RU)
Римма Георгиевна Минина
Жанна Вениаминовна Пилецкая (RU)
Жанна Вениаминовна Пилецкая
Ирина Константиновна Елина (RU)
Ирина Константиновна Елина
Original Assignee
Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ") filed Critical Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ")
Priority to RU2009117208/02A priority Critical patent/RU2405865C1/ru
Application granted granted Critical
Publication of RU2405865C1 publication Critical patent/RU2405865C1/ru

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к цветной металлургии, в частности к производству магния и хлора электролизом расплавленных солей. Способ включает создание направленного над катодами потока электролита с магнием в сторону верхних циркуляционных окон за счет изменения величины газонаполнения электролита по длине электролитических отделений. Электролизер содержит футерованную ванну, разделенную перегородкой с верхними и нижними циркуляционными окнами на одно или несколько электролитических отделений с чередующимися анодами и катодами, и сборную ячейку, футеровка продольной стены в электролитическом отделении выполнена с нависанием над катодными экранами, при этом расстояние между торцами анодов и футеровкой равно 0,5÷1,5 среднего межэлектродного расстояния для достижения повышенного газонаполнения электролита в районе катодных экранов, разделительная перегородка выше верхних циркуляционных окон размещена относительно торцов анодов на расстоянии, равном 1,5÷4 средних межэлектродных расстояний для поддержания пониженного газонаполнения электролита у разделительной перегородки. Обеспечивается повышение выхода магния по току. 2 н. и 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к цветной металлургии, в частности к производству магния и хлора электролизом расплавленных солей.
Известен способ получения магния и хлора в бездиафрагменном электролизере, состоящем из сборных и рабочих ячеек, в которых находятся аноды и катоды, разделенных перегородкой с верхними и нижними циркуляционными каналами. Благодаря газонаполнению уровень электролита в рабочих ячейках выше, чем в сборных, вследствие чего электролит с корольками магния перетекает из рабочих ячеек в сборные (И.И.Иванов, М.В.Ляндлес, О.В.Прокофьев. Производство магния. - М.: Металлургия, 1979, с.158).
Недостатком известного способа является невозможность управления циркуляционным потоком с точки зрения полного и быстрого вывода металла из рабочих ячеек.
Известен способ получения магния и хлора, описанный в патенте РФ №2095482, C25C 3/04, в котором направленная замкнутая циркуляция электролита создается в магниевом электролизере, включающем металлический кожух с огнеупорной футеровкой, образующей рабочее пространство, разделенное перегородкой с переточными каналами на отделение для накопления магния и электролитическое отделение для размещения введенных через футерованные стенки стальных катодов с экранами и введенных через подину или через перекрытие углеродистых анодов. Направленная циркуляция электролита обеспечивается:
- более высокой объемной плотностью тока на участках, удаленных от отделения накапливания магния, за счет увеличения высоты катодных экранов,
- применением разновеликого межполюсного расстояния по длине рабочей ячейки,
- установкой на катоды направляющих желобов.
Недостатком известного способа является то, что применение всех перечисленных технических решений не обеспечивает полного и быстрого вывода магния из рабочих отделений. Проведенные газогидродинамические исследования на водной модели электролизера в масштабе 1:1 показали, что установка разновеликого межэлектродного расстояния по длине рабочего отделения, а тем более использование направляющих желобов на катоде, приводит к образованию вихревых нисходящих потоков по межэлектродному пространству, препятствующих перемещению электролита к переточным каналам. Время пребывания корольков магния в хлоронасыщенной зоне увеличивается, что приводит к снижению выхода по току. Некоторое повышение плотности тока в районе катодных экранов не обеспечивает в полной мере направленного потока электролита с магнием в сторону верхних переточных каналов.
Известен способ получения магния и хлора из содержащего MgCl2 расплава солей в электролизере с одной или несколькими камерами электролиза с чередующимися анодами и катодами и ячейкой для сепарации магния, отделенной от камеры электролиза перегородкой с верхними и нижними циркуляционными каналами, взятый в качестве прототипа (патент РФ №2243295), включающий поддержание газонаполнения электролита хлором в межэлектродном зазоре, организацию циркуляции, направленной над катодами в сторону верхних циркуляционных каналов, путем изменения высоты верхних циркуляционных каналов в зависимости от межэлектродного пространства, а также обеспечением переменной площади сечения межэлектродных зазоров по ходу движения восходящих потоков электролита.
Как показали гидродинамические испытания на водной модели электролизера-прототипа, основным его недостатком является образование в камере электролиза двух равноценных, четко выраженных циркуляционных контуров противоположного направления:
- часть потока электролита направлена в сторону верхнего циркуляционного канала (основной контур),
- другая часть потока - в сторону катодного экрана (обратный контур).
В циркуляционном контуре, направленном в противоположную от разделительной перегородки сторону, многократно вращаясь, магний дробится на мелкие капли. Увеличивается время пребывания их в хлоронасыщеной зоне, что приводит к значительным потерям металла и снижению выхода по току.
При равномерном газонаполнении электролита по ширине камеры электролиза разделение контуров на основной и обратный происходит практически по центру электродов.
Изменение высоты верхних переточных каналов регулирует количество пузырьков газа, выбрасываемых в сборную ячейку, но мало влияет на разницу газонаполнения электролита над катодными экранами и у разделительной перегородки. Перепада газонаполнения электролита по длине камеры электролиза недостаточно для направления максимальной массы электролита с магнием в сторону разделительной перегородки.
Переменная площадь сечения межэлектродных зазоров по ходу движения восходящих потоков электролита способствует возникновению внутренних вихревых контуров между электродами, направленными перпендикулярно основному контуру и ослабляющему его.
Задачей изобретения является создание благоприятных гидродинамических условий для быстрого и полного вывода магния из электролитических отделений.
Технический результат направлен на повышение технологических показателей электролизера.
Данная задача решается тем, что в предлагаемом способе получения магния и хлора из расплавов хлормагниевых солей в электролизере, содержащем футерованную ванну, разделенную перегородкой с верхними и нижними циркуляционными окнами на одно или несколько электролитических отделений с чередующимися анодами и катодами с катодными экранами, и сборную ячейку, включающем создание замкнутой циркуляции электролита между электролитическими отделениями и сборной ячейкой, для создания потока электролита с магнием, горизонтально направленного над катодами в сторону верхних циркуляционных окон, формируется зона повышенного газонаполнения электролита в районе катодных экранов путем выполнения футеровки продольной стены в электролитическом отделении с нависанием над катодными экранами и с расстоянием между торцами анодов и футеровкой, равным 0,5÷1,5 среднего межэлектродного расстояния, и зона пониженного газонаполнения электролита - у разделительной перегородки.
В электролизере для осуществления вышеописанного способа получения магния и хлора, включающем футерованную ванну, разделенную перегородкой с верхними и нижними циркуляционными окнами на одно или несколько электролитических отделений с чередующимися анодами и катодами и сборную ячейку, футеровка продольной стены в электролитическом отделении выполнена с нависанием над катодными экранами. При этом расстояние между торцами анодов и футеровкой равно 0,5÷1,5 среднего межэлектродного расстояния.
Кроме того, разделительная перегородка выше верхних циркуляционных окон размещена относительно торцов анодов на расстоянии, равном 1,5÷4 средних межэлектродных расстояний.
Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критериям «новизна» и «существенные отличия».
Продольный разрез электролизера для получения магния и хлора представлен на чертеже. Электролизер содержит футерованную ванну 1, разделительную перегородку 2 с верхними 3 и нижними 4 циркуляционными окнами, сборную ячейку 5 и электролитическое отделение 6, в которых размещены аноды 7 и катоды 8 с катодными экранами 9.
Электролизер работает следующим образом.
В сборную ячейку 5 электролизера заливают расплав хлористых солей, подают электрический ток к электродам. При прохождении электрического тока на анодных поверхностях 7 выделяется газообразный хлор, а на катодных 8 - жидкий магний.
Пузырьки хлора и капли магния вместе с электролитом поднимаются вверх между рабочими поверхностями электродов. Хлор сепарируется от электролита в электролитическом отделении 6, а электролит с магнием через верхние циркуляционные окна 3 в разделительной перегородке 2 выносится в сборную ячейку 5, где происходит отделение металла от основного циркулирующего потока электролита. Этот поток электролита через нижние циркуляционные окна 5 возвращается в электролитическое отделение электролизера.
По результатам газогидродинамических испытаний на водной модели электролизера в масштабе 1:1 и исследований на полупромышленных электролизерах установлено, что в рабочих отделениях бездиафрагменного электролизера за счет газонаполнения наблюдается повышение уровня электролита относительно уровня в сборной ячейке. Изменение подъема уровня электролита по длине рабочего отделения характеризует условия выноса магния в сборную ячейку. Для хорошо работающего электролизера характерно повышенное газонаполнение электролита, обеспечивающее больший подъем уровня расплава в районе катодных экранов, и пониженное газонаполнение с меньшим подъемом уровня электролита в районе верхних циркуляционных окон. Этот перепад уровней создает достаточный гидродинамический напор для организации упорядоченного и ускоренного движения всего поднимающегося вдоль электродов потока в сторону разделительной перегородки. В предлагаемом способе этот результат достигается тем, что в электролизере в районе катодных экранов формируется зона повышенного газонаполнения электролита и зона пониженного газонаполнения электролита - у разделительной перегородки.
Повышение уровня электролита в районе катодных экранов 9 достигается выполнением нависающей над катодными экранами футеровкой, что уменьшает свободное пространство между торцами анодов и продольной стенкой, затрудняя сепарацию хлора от электролита, повышая газонасыщение в этом районе. Как было установлено при исследованиях, проводимых на гидродинамической модели электролизера, оптимальное размещение нависающей футеровки относительно торцов анодов зависит от среднего межэлектродного расстояния и составляет 0,5÷1,5 от него. При зазоре между торцами анодов и нависающей футеровкой менее 0,5 среднего межэлектродного расстояния возможно зашламление его с утечками тока через футеровку электролизера. Превышение этого расстояния более 1,5 среднего межэлектродного расстояния приводит к появлению замкнутого обратного циркуляционного контура, увлекающего магний, что увеличивает его потери от окисления хлором. Это приводит к снижению выхода по току.
Увеличение расстояния между торцами анодов и разделительной перегородкой выше верхних циркуляционных окон улучшает сепарацию хлора в электролитическом отделении, что обеспечивает понижение уровня электролита в этом районе. Это расстояние тоже зависит от среднего межэлектродного расстояния. Соотношение менее 1,5 недостаточно для сепарации хлора в электролитическом отделении, большая часть пузырьков газа проскакивает через циркуляционные окна в сборную ячейку. Высокое газонаполнение электролита у разделительной перегородки препятствует направленному движению потока через циркуляционные окна.
При превышении расстояния между торцами анодов и разделительной перегородкой выше верхних циркуляционных окон более 4 средних межэлектродных расстояний скорость и полнота выноса магния в сборную ячейку значительно снижается. Перед разделительной перегородкой в электролитических ячейках образуются нисходящие замкнутые контуры, в которых неоднократно вращается и дробится магний. Это приводит к дополнительным его потерям и снижению выхода магния по току.
Таким образом, подбор оптимальных конструктивных решений электролизера позволяет упорядочить циркуляцию электролита в электролитических отделениях, ликвидировать обратный контур, создать благоприятные газогидродинамические условия для максимально полного и быстрого вывода магния в сборную ячейку путем организации потока электролита с магнием, горизонтально направленного над катодами в сторону верхних циркуляционных окон. Это снижает потери магния и обеспечивает существенное повышение выхода магния по току.
Предложенные решения позволяют организовать стабильную работу электролизера с повышением его технико-экономических показателей.

Claims (3)

1. Способ получения магния и хлора из расплавов хлормагниевых солей в электролизере, содержащем футерованную ванну, разделенную перегородкой с верхними и нижними циркуляционными окнами на одно или несколько электролитических отделений с чередующимися анодами и катодами с катодными экранами, и сборную ячейку, включающий создание замкнутой циркуляции электролита между электролитическими отделениями и сборной ячейкой, отличающийся тем, что создают поток электролита с магнием, горизонтально направленный над катодами в сторону верхних циркуляционных окон, формируя зону повышенного газонаполнения электролита в районе катодных экранов путем выполнения футеровки продольной стены в электролитическом отделении с нависанием над катодными экранами и с расстоянием между торцами анодов и футеровкой, равным 0,5÷1,5 среднего межэлектродного расстояния, и зону пониженного газонаполнения электролита - у разделительной перегородки.
2. Электролизер для получения магния и хлора из расплавов хлормагниевых солей с замкнутой циркуляцией электролита, содержащий футерованную ванну, разделенную перегородкой с верхними и нижними циркуляционными окнами на одно или несколько электролитических отделений с чередующимися анодами и катодами с катодными экранами, и сборную ячейку, отличающийся тем, что футеровка продольной стены в электролитическом отделении выполнена с нависанием над катодными экранами, при этом расстояние между торцами анодов и футеровкой равно 0,5÷1,5 среднего межэлектродного расстояния.
3. Электролизер по п.2, отличающийся тем, что разделительная перегородка выше верхних циркуляционных окон расположена от торцов анодов на расстоянии, равном 1,5÷4 средних межэлектродных расстояний.
RU2009117208/02A 2009-05-05 2009-05-05 Способ получения магния и хлора и электролизер для его осуществления RU2405865C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009117208/02A RU2405865C1 (ru) 2009-05-05 2009-05-05 Способ получения магния и хлора и электролизер для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009117208/02A RU2405865C1 (ru) 2009-05-05 2009-05-05 Способ получения магния и хлора и электролизер для его осуществления

Publications (1)

Publication Number Publication Date
RU2405865C1 true RU2405865C1 (ru) 2010-12-10

Family

ID=46306455

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009117208/02A RU2405865C1 (ru) 2009-05-05 2009-05-05 Способ получения магния и хлора и электролизер для его осуществления

Country Status (1)

Country Link
RU (1) RU2405865C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702215C1 (ru) * 2019-04-29 2019-10-04 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Электролизер для получения магния и хлора
RU2760025C1 (ru) * 2018-07-11 2021-11-22 Акционерное общество "Усть-Каменогорский титано-магниевый комбинат" Способ получения магния и хлора и электролизер для его осуществления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760025C1 (ru) * 2018-07-11 2021-11-22 Акционерное общество "Усть-Каменогорский титано-магниевый комбинат" Способ получения магния и хлора и электролизер для его осуществления
RU2702215C1 (ru) * 2019-04-29 2019-10-04 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Электролизер для получения магния и хлора

Similar Documents

Publication Publication Date Title
EP0101243B1 (en) Metal production by electrolysis of a molten electrolyte
EP1364077B1 (en) A method and an electrowinning cell for production of metal
AU2008291662B2 (en) Method for operating copper electrolysis cells
RU2405865C1 (ru) Способ получения магния и хлора и электролизер для его осуществления
US4613414A (en) Method for magnesium production
RU2316618C2 (ru) Электролизер для получения магния и хлора
US2468022A (en) Electrolytic apparatus for producing magnesium
US20130032487A1 (en) Multipolar Magnesium Cell
KR20090074041A (ko) 용융 염화물로부터 금속을 제조하는 방법 및 이를 제조하기 위한 전해 전지
RU74923U1 (ru) Электролизер для получения магния и хлора
RU2336368C1 (ru) Электролизер для получения магния и хлора
RU2760025C1 (ru) Способ получения магния и хлора и электролизер для его осуществления
RU2702215C1 (ru) Электролизер для получения магния и хлора
RU2206639C1 (ru) Электролизер для получения магния и хлора
JPS5839789A (ja) 溶融塩化物の電解方法
RU2128245C1 (ru) Электролизер для получения магния и хлора
RU1665722C (ru) Бездиафрагменный электролизер для получения магния и хлора
RU2094536C1 (ru) Бездиафрагменный электролизер для получения магния и хлора
RU2148682C1 (ru) Электролизер для получения магния и хлора
RU217407U1 (ru) Бездиафрагменный электролизер для получения магния и хлора с нижним вводом анодов
RU2243295C1 (ru) Способ получения магния и хлора и электролизер для его осуществления
RU2284372C1 (ru) Электролизер для получения магния и хлора
RU2190703C1 (ru) Электролизер для получения магния и хлора
RU2196849C1 (ru) Электролизер для получения магния и хлора
UA52752C2 (ru) Электролизер для получения магния

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner