RU2405136C1 - Рентгенооптический эндоскоп - Google Patents

Рентгенооптический эндоскоп Download PDF

Info

Publication number
RU2405136C1
RU2405136C1 RU2009130970/28A RU2009130970A RU2405136C1 RU 2405136 C1 RU2405136 C1 RU 2405136C1 RU 2009130970/28 A RU2009130970/28 A RU 2009130970/28A RU 2009130970 A RU2009130970 A RU 2009130970A RU 2405136 C1 RU2405136 C1 RU 2405136C1
Authority
RU
Russia
Prior art keywords
optical
axis
ray
lens
endoscope
Prior art date
Application number
RU2009130970/28A
Other languages
English (en)
Inventor
Андрей Анатольевич Кеткович (RU)
Андрей Анатольевич Кеткович
Виктор Яковлевич Маклашевский (RU)
Виктор Яковлевич Маклашевский
Людмила Сергеевна Попова (RU)
Людмила Сергеевна Попова
Original Assignee
Виктор Яковлевич Маклашевский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Яковлевич Маклашевский filed Critical Виктор Яковлевич Маклашевский
Priority to RU2009130970/28A priority Critical patent/RU2405136C1/ru
Application granted granted Critical
Publication of RU2405136C1 publication Critical patent/RU2405136C1/ru

Links

Images

Landscapes

  • Endoscopes (AREA)

Abstract

Использование: для неразрушающего контроля изделий и материалов. Сущность: заключается в том, что рентгенооптический эндоскоп содержит корпус с расположенными в нем оптически сопряженными рентгеновским и визуально-оптическим каналами для проецирования изображений объекта на ПЗС-матрицу телевизионной системы, формирующей изображение на мониторе, причем рентгеновский канал содержит фокон с рентгенолюминофором на его входном торце, первый волоконно-оптический регулярный жгут, первый коллиматорный объектив с фокусным расстоянием F1, фокальная плоскость которого совпадает с выходным торцом этого жгута и первое зеркало, установленное на оптической оси первого коллиматорного объектива под углом 45° к ней, при этом в него дополнительно введена кольцевая матрица из N>8 микролазеров, размещенных симметрично относительно оси фокона на окружности диаметром D, равным диаметру входного торца фокона, оптические оси микролазеров параллельны друг другу и оси фокона, благодаря чему они формируют на объекте кольцевую структуру лазерных пятен диаметра D, величина которого остается постоянной при изменениях расстояния от объекта до эндоскопа. Технический результат: обеспечение возможности согласования существенно различных характеристик рентгеновского и оптического каналов, повышение качества изображения, а также уменьшение массы и габаритов устройства. 3 ил.

Description

Изобретение относится к области неразрушающего контроля, а более конкретно к средствам комплексной визуальной и радиационной дефектоскопии изделий, находящихся в труднодоступных полостях.
Известен рентгенооптический эндоскоп, который содержит корпус с расположенными в нем оптически сопряженными с помощью зеркал и призм рентгеновским и визуально-оптическим каналами для проецирования изображения объекта на ПЗС-матрицу. Рентгенооптический канал содержит фокон с расположенным на его торце рентгенолюминофором, волоконно-оптический регулярный жгут, выходной фокон, состыкованный торцами с жгутом и входной волоконно-оптической шайбой электронно-оптического усилителя яркости, коллиматорный объектив и зеркало. Визуально-оптический канал содержит объектив, регулярный жгут, окуляр, осветительный жгут и блок осветителя с лампой, перед которой установлен оптический аттенюатор. В эндоскоп дополнительно введены два полупрозрачных зеркала из оргстекла, первое из которых установлено в рентгенооптическом канале на входе между первым зеркалом и рентгенолюминофором фокона, второе установлено на выходе эндоскопа на оптической оси объектива, установленного перед выходным торцем усилителя яркости изображения, между первым зеркалом и дополнительным полупрозрачным зеркалом установлена положительная линза из оргстекла, перпендикулярно оптической оси линзы установлена точечная диафрагма, освещаемая с помощью первого дополнительного светодиода, перед вторым дополнительным полупрозрачным зеркалом установлена шкала, освещаемая вторым дополнительным светодиодом с помощью конденсорной линзы [1].
Недостатки данного устройства - увеличение габаритов и массы за счет применения второго полупрозрачного зеркала и линзы из оргстекла, дополнительные потери света в этих элементах, а также вносимые ими дополнительные артефакты типа нарушения сплошности и локальных изменений структуры материала линзы и подложек зеркал под действием рентгеновского излучения.
Кроме того, разномасштабность изображений в каналах эндоскопа затрудняет проведение сравнительной дефектометрии, а появление сверхвысокочувствительных ПЗС-матриц делает нецелесообразным применение дорогостоящих электронно-оптических усилителей яркости изображения.
Цель изобретения - устранение этих недостатков.
Данная цель достигается за счет того, что рентгенооптический эндоскоп содержит корпус с расположенными в нем оптически сопряженными рентгеновским и визуально-оптическим каналами для проецирования изображений объекта на ПЗС-матрицу телевизионной системы, формирующей изображение на мониторе, причем рентгеновский канал содержит фокон с рентгенолюминофором на его входном торце, первый волоконно-оптический регулярный жгут, первый коллиматорный объектив с фокусным расстоянием F1, фокальная плоскость которого совпадает с выходным торцом этого жгута, и первое зеркало, установленное на оптической оси первого коллиматорного объектива под углом 45° к ней, визуально-оптический канал содержит первое полупрозрачное зеркало из оргстекла, расположенное перед фоконом на его оптической оси под углом 45° к ней, объектив с фокусным расстоянием Fo, второй регулярный волоконно-оптический жгут, второй коллиматорный объектив с фокусным расстоянием F2, идентичный первому коллиматорному объективу, осветительный жгут, блок осветителя с лампой, перед которой установлен оптический аттенюатор, второе зеркало, установленное на оптической оси объектива с фокусным расстоянием Fo под углом 45° к ней в точке ее пересечения с осью, проходящей через центр первого полупрозрачного зеркала перпендикулярно к ней, второе полупрозрачное зеркало, расположенное на оптической оси второго коллиматорного объектива под углом 45° к ней в точке ее пересечения с осью, проходящей через центр первого зеркала перпендикулярно к оси этого объектива, третий коллиматорный объектив с фокусным расстоянием F3, задняя фокальная плоскость которого совпадает с плоскостью ПЗС-матрицы телевизионной системы, а оптическая ось совпадает с осью второго коллиматорного объектива и проходит через центр этой матрицы перпендикулярно к ней, при этом фокусные расстояния F1, F2, F3 связаны соотношениями F1/F3=F2/F3=d/A, где А - размер растра ПЗС-матрицы, d - диаметр регулярных жгутов, отличающийся тем, что в него дополнительно введена кольцевая матрица из N>8 микролазеров, размещенных симметрично относительно оси фокона на окружности диаметром D, равном диаметру входного торца фокона, оптические оси микролазеров параллельны друг другу и оси фокона, благодаря чему они формируют на объекте кольцевую структуру лазерных пятен диаметра D, величина которого остается постоянной при изменениях расстояния от объекта до эндоскопа, фокусное расстояние объектива Fo выбирается с учетом соотношения Fo=L/K, где K=(М+2+1/М) - константа, L - расстояние от эндоскопа до объекта, при котором производится измерение дефектов, М - масштаб переноса изображения фоконом и объективом, равный M=d/D, а размер дефектов определяется с помощью размещаемой непосредственно на экране монитора телевизионной стандартной метрической шкалы на прозрачном трафарете по формуле Do=Co×n, где Со - цена деления шкалы в плоскости объекта, n - число делений шкалы, приходящихся на изображение дефекта.
Схема рентгенооптического эндоскопа приведена на фиг.1.
На фиг.1 изображены источник рентгеновского излучения 1, исследуемый объект 2, а также основные элементы рентгеновского и визуально-оптического каналов.
Рентгеновский канал состоит из фокона 6, на входном торце которого нанесен рентгенолюминофор 5, защищенный фольгой 4 регулярного волоконно-оптического жгута 7 первого коллиматорного объектива 8 с фокусным расстоянием F1, расположенного на оси фокона, фокальная плоскость его совмещена с выходным торцем жгута 7. На оптической оси коллиматорного объектива 8 после него установлено первое зеркало 9 под углом 45° к ней.
Визуально-оптический канал содержит первое полупрозрачное зеркало из оргстекла, расположенное перед фоконом на его оптической оси под углом 45° к ней, объектив 11, регулярный жгут 12, второй коллиматорный объектив с фокусным расстоянием F2, осветительный жгут 18, блок осветителя 21 с лампой 20 и оптическим аттенюатором 19. Перед объективом 11 установлено на его оптической оси под углом 45° к ней второе зеркало 10 для оптического совмещения осей рентгеновского и визуально-оптического каналов. После объектива 13 на его оптической оси расположены второе полупрозрачное зеркало 14 и третий коллиматорный объектив 15 с фокусным расстоянием F3, в фокальной плоскости которого расположена ПЗС-матрица 16 телевизионного канала. Монитор 17 служит для визуализации изображений объекта.
На оптической оси первого фокона соосно с ней установлена кольцевая матрица 22 из N>8 микролазеров диаметром D. Оптические оси микролазеров параллельны друг другу и оси фокона. Благодаря этому на объекте формируется кольцевая структура лазерных пятен, диаметр которой остается постоянным при изменениях - расстояния от объекта до эндоскопа. Это дает возможность оценивать текущий масштаб изображения в визуально-оптическом канале, сравнивая известный диаметр кольца лазерных пятен на объекте с величиной его изображения на мониторе с помощью метрической шкалы. В свою очередь, зная масштаб изображения, легко определить текущую цену деления шкалы, приведенную к плоскости объекта. По степени эллиптичности изображения кольца лазерных пятен можно оценивать перпендикулярность поверхности объекта к оптической оси фокона и/или объектива 11. Для удобства работы шкала 23 располагается непосредственно на экране монитора 17 с возможностью перемещения по нему. Шкала со стандартной ценой деления 1 мм располагается на прозрачной подложке для наблюдения изображений без экранировки их элементов. Для обеспечения постоянства и одинаковости цены делений шкалы в плоскости объекта для обоих каналов эндоскопа масштаб переноса изображения объективом визуально-оптического канала выбран численно равным масштабу переноса изображения фоконом, равного M=D/d. Очевидно, что это условие согласно известным соотношениям геометрической оптики [2] реализуется при данном расстоянии от эндоскопа до объекта L, только для одного значения фокусного расстояния объектива Fo, разного Fo=L/K, где K=(М+2+1/М).
Это вытекает из последовательного применения формулы Ньютона X·X'=Fo2 и формулы для увеличения оптической системы (фиг.2). Из-за соответствия масштаба изображения объектива масштабу переноса изображения фокона удобно принять факт полного вписания кольцевой структуры лазерных пятен, диаметр которой равен входному диаметру фокона, в растр ПЗС-матрицы и соответственно в экран монитора, т.к. диаметры регулярных световодных жгутов обоих каналов равны друг другу, а масштабы переноса их изображений системой коллиматорных объективов на ПЗС-матрицу и с этой матрицы на экран монитора также равны для обоих каналов. Добиться этого можно, перемещая эндоскоп вдоль его оси относительно объекта (при использовании объектива с фиксированной величиной фокусного расстояния) или за счет применения объектива с переменным фокусным расстоянием (трансфолатора). На фиг.3 представлен вид экрана при различных установках эндоскопа. Шкалу удобно применять стандартную, с ценой деления 1 мм, что эргономически и метрологически обоснованно. При этом цену деления шкалы в плоскости объекта, равную, очевидно, С/К, где К - суммарный масштаб переноса изображения от объекта до монитора, равный произведению отдельных звеньев каналов, удобно принять равной 0,1 мм. Для этого достаточно выполнить условие К=0,1. Например, для характерных значений увеличения фокона Мф=d/D=0,2 коллиматоров Мк=F1/F2=F2/F3=5 и телевизионной системы Мтв=В/А=10 получим Мо=Мф·Мк·Мтв=10. В обратном ходе лучей это соответствует, очевидно, L/Mo=0,1, т.е. цена деления шкалы в плоскости объекта будет равна Со=0,1 мм. Таким образом, если, например, изображение дефекта на экране монитора занимает 10 мм, то его истинный размер равен 1,0 мм. Существенно, что цена деления шкалы одинакова для обоих каналов эндоскопа, если выполнено вышеприведенное условие полного вписания кольцевой структуры лазерных пятен в растр телевизионной системы.
Эндоскоп работает следующим образом. Сначала оператор производит общий осмотр объекта, используя визуально-оптический канал. После предварительного обследования и выбора участка объекта для проведения измерительных процедур оператор передвижением эндоскопа (при отсутствии трансфокатора) или изменением фокусного расстояния трансфокатора добивается вписания изображения кольцевой структуры лазерных пятен полностью в растр монитора и, пользуясь шкалой, измеряет размер дефекта или интересующей его детали объекта. В случае необходимости производится контроль объекта в рентгеновском излучении и необходимые измерения его внутренних дефектов. Цена деления шкалы в этом случае остается равной его величине при визуально-оптическом контроле.
Вначале обычно производится визуальный осмотр контролируемой полости с помощью визуально-оптического канала. Рентгенооптический эндоскоп вводится в полость и координируется в ней с помощью известных технических средств, например механических манипуляторов с дистанционным управлением и т.п. Включают осветитель эндоскопа и, наблюдая на мониторе поверхность объекта, наводят эндоскоп на интересующую оператора область. Совмещают шкалу с изображением дефекта и оценивают его размер по формуле Do=C×N, где С - цена деления шкалы в плоскости объекта, мм, N - число делений шкалы, приходящееся на изображение. Шкала установлена с возможностью перемещения относительно экрана монитора, что дает возможность оценивать размеры дефектов в различных направлениях. Затем включают рентгеновский аппарат и производят радиографическое обследование объекта. При этом подсветка объекта может быть выключена.
Отметим, что масштаб изображения в рентгеновском канале остается постоянным при любых изменениях расстояния от объекта до рентгенооптического эндоскопа, т.к. реально используемые аппараты генерируют слаборасходящиеся пучки излучения, а объект удален от источника рентгеновского излучения на значительные расстояния (3-5 м и более), особенно при контроле крупногабаритной авиакосмической техники и специзделий. Поэтому размер изображения объекта в рентгеновском излучении на входном торце фокона всегда постоянен и равен его диаметру D. В то же время размер изображения зоны просвечивания объекта рентгеновским излучением в визуально-оптическом канале, очевидно, идентичен его истинной величине только при таком масштабе изображения в визуально-оптическом канале, когда кольцевая структура лазерных пятен диаметра D полностью вписана в торец регулярного жгута диаметром d, т.е М=d/D.
Литература
1. Патент РФ 2239179.
2. Р.Шредер, Ф.Трайбер. Техническая оптикаЮМ, Техносфера, 2009, 424 с.

Claims (1)

  1. Рентгенооптический эндоскоп, содержащий корпус с расположенными в нем оптически сопряженными рентгеновским и визуально-оптическим каналами для проецирования изображений объекта на ПЗС-матрицу телевизионной системы, формирующей изображение на мониторе, причем рентгеновский канал содержит фокон с рентгенолюминофором на его входном торце, первый волоконно-оптический регулярный жгут, первый коллиматорный объектив с фокусным расстоянием F1, фокальная плоскость которого совпадает с выходным торцом этого жгута и первое зеркало, установленное на оптической оси первого коллиматорного объектива под углом 45° к ней, визуально-оптический канал содержит первое полупрозрачное зеркало из оргстекла, расположенное перед фоконом на его оптической оси под углом 45° к ней, объектив с фокусным расстоянием Fo, второй регулярный волоконно-оптический жгут, второй коллиматорный объектив с фокусным расстоянием F2, идентичный первому коллиматорному объективу, осветительный жгут, блок осветителя с лампой, перед которой установлен оптический аттенюатор, второе зеркало, установленное на оптической оси объектива с фокусным расстоянием Fo под углом 45° к ней в точке ее пересечения с осью, проходящей через центр первого полупрозрачного зеркала перпендикулярно к ней, второе полупрозрачное зеркало, расположенное на оптической оси второго коллиматорного объектива под углом 45° к ней в точке ее пересечения с осью, проходящей через центр первого зеркала перпендикулярно к оси этого объектива, третий коллиматорный объектив с фокусным расстоянием F3, задняя фокальная плоскость которого совпадает с плоскостью ПЗС-матрицы телевизионной системы, а оптическая ось совпадает с осью второго коллиматорного объектива и проходит через центр этой матрицы перпендикулярно к ней, при этом фокусные расстояния F1, F2, F3 связаны соотношениями F1/F3=F2/F3=d/A, где А - размер растра ПЗС-матрицы, d - диаметр регулярных жгутов, отличающийся тем, что в него дополнительно введена кольцевая матрица из N>8 микролазеров, размещенных симметрично относительно оси фокона на окружности диаметром D, равном диаметру входного торца фокона, оптические оси микролазеров параллельны друг другу и оси фокона, благодаря чему они формируют на объекте кольцевую структуру лазерных пятен диаметра D, величина которого остается постоянной при изменениях расстояния от объекта до эндоскопа, фокусное расстояние объектива Fo выбирается с учетом соотношения Fo=L/K, где К=(М+2+1/М) - константа, L - расстояние от эндоскопа до объекта, при котором производится измерение дефектов, М - масштаб переноса изображения фоконом и объективом, равный M=d/D, а размер дефектов определяется с помощью размещаемой непосредственно на экране монитора телевизионной стандартной метрической шкалы на прозрачном трафарете по формуле Do=Co·n, где Со - цена деления шкалы в плоскости объекта, n - число делений шкалы, приходящихся на изображение дефекта.
RU2009130970/28A 2009-08-14 2009-08-14 Рентгенооптический эндоскоп RU2405136C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009130970/28A RU2405136C1 (ru) 2009-08-14 2009-08-14 Рентгенооптический эндоскоп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009130970/28A RU2405136C1 (ru) 2009-08-14 2009-08-14 Рентгенооптический эндоскоп

Publications (1)

Publication Number Publication Date
RU2405136C1 true RU2405136C1 (ru) 2010-11-27

Family

ID=44057672

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130970/28A RU2405136C1 (ru) 2009-08-14 2009-08-14 Рентгенооптический эндоскоп

Country Status (1)

Country Link
RU (1) RU2405136C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211939A (zh) * 2018-11-26 2019-01-15 易思维(杭州)科技有限公司 激光焊保护镜片的缺陷检测装置、模块及检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211939A (zh) * 2018-11-26 2019-01-15 易思维(杭州)科技有限公司 激光焊保护镜片的缺陷检测装置、模块及检测方法
CN109211939B (zh) * 2018-11-26 2023-09-08 易思维(杭州)科技有限公司 激光焊保护镜片的缺陷检测装置、模块及检测方法

Similar Documents

Publication Publication Date Title
JPH02146514A (ja) 光学装置
US8705041B2 (en) Coaxial interferometer and inspection probe
KR20160030356A (ko) 형광 x 선 분석 장치 및 그 측정 위치 조정 방법
US5896035A (en) Electric field measuring apparatus
JP2012078784A (ja) 撮像装置
MXPA01002436A (es) Aparato y metodo para la inspeccion visual de uniones soldadas ocultas.
RU2405136C1 (ru) Рентгенооптический эндоскоп
RU2413205C1 (ru) Рентгенооптический эндоскоп
RU2405137C1 (ru) Рентгенооптический эндоскоп
JP4709576B2 (ja) 内視鏡装置
RU2386956C1 (ru) Рентгенооптический эндоскоп
RU2405138C1 (ru) Рентгенооптический эндоскоп
RU2239179C1 (ru) Рентгенооптический эндоскоп
US20100202042A1 (en) Multiple magnification optical system with single objective lens
JP6249681B2 (ja) 顕微鏡システムおよび測定方法
JPH02259515A (ja) ケイ光x線膜厚測定装置
PL227532B1 (pl) Układ optyczny czujnika konfokalnego z podglądem wizualnym
JPH04229816A (ja) 同軸照明式観察装置
RU2325048C1 (ru) Лазерный центратор для рентгеновского излучателя
RU2405135C1 (ru) Рентгенооптический эндоскоп
RU2280963C1 (ru) Лазерный центратор для рентгеновского излучателя
RU2377544C1 (ru) Рентгенооптический эндоскоп
RU2325051C1 (ru) Лазерный центратор для рентгеновского излучателя
RU2413206C1 (ru) Рентгенооптический эндоскоп
JP2009101239A (ja) パターン投影装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120815