RU2403416C1 - Газоперекачивающий агрегат - Google Patents

Газоперекачивающий агрегат Download PDF

Info

Publication number
RU2403416C1
RU2403416C1 RU2009116706/06A RU2009116706A RU2403416C1 RU 2403416 C1 RU2403416 C1 RU 2403416C1 RU 2009116706/06 A RU2009116706/06 A RU 2009116706/06A RU 2009116706 A RU2009116706 A RU 2009116706A RU 2403416 C1 RU2403416 C1 RU 2403416C1
Authority
RU
Russia
Prior art keywords
gas
air
turbine engine
compression mechanism
gas turbine
Prior art date
Application number
RU2009116706/06A
Other languages
English (en)
Inventor
Виктор Григорьевич Пыхтеев (RU)
Виктор Григорьевич Пыхтеев
Николай Дмитриевич Федоренко (RU)
Николай Дмитриевич Федоренко
Олег Константинович Оболенский (RU)
Олег Константинович Оболенский
Лев Владимирович Ткачуков (RU)
Лев Владимирович Ткачуков
Константин Анатольевич Сказыткин (RU)
Константин Анатольевич Сказыткин
Original Assignee
Закрытое акционерное общество "Объединенные газопромышленные технологии "Искра-Авигаз" (ЗАО "Искра-Авигаз")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Объединенные газопромышленные технологии "Искра-Авигаз" (ЗАО "Искра-Авигаз") filed Critical Закрытое акционерное общество "Объединенные газопромышленные технологии "Искра-Авигаз" (ЗАО "Искра-Авигаз")
Priority to RU2009116706/06A priority Critical patent/RU2403416C1/ru
Application granted granted Critical
Publication of RU2403416C1 publication Critical patent/RU2403416C1/ru

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Газоперекачивающий агрегат содержит газотурбинный двигатель и механизм сжатия газа, включающий ротор, установленный в подшипниках и снабженный уплотнениями, воздухоочистительное устройство, выхлопную систему с выхлопным трактом для удаления продуктов сгорания и шумоглушители. Механизм сжатия газа представляет собой многоступенчатую компрессорную машину и выполнен с возможностью обеспечения степени сжатия 1,2-1,7. Газотурбинный двигатель содержит газогенератор и многоступенчатую осевую турбину, которые вместе с электронной системой управления и диагностики газоперекачивающего агрегата, входным и выходным устройствами и топливными агрегатами расположены на общей подмоторной раме. Ротор многоступенчатой турбины выполнен с возможностью передачи крутящего момента на вал ротора устройства для сжатия газа через трансмиссию. Газотурбинный двигатель заключен в теплозвукоизолирующий кожух, на стенках которого расположены элементы систем пожаротушения и газоанализа газоперекачивающего агрегата. Воздухоочистительное устройство снабжено расположенными в шахте воздушными фильтрами и расположенным вне шахты шумоглушителем. Воздухоочистительное устройство вместе с воздуховодами и камерой всасывания входного устройства образует воздухозаборную систему. Воздухоочистительное устройство выполнено с возможностью натекания, по меньшей мере, части прошедшего через воздушные фильтры воздуха в шумоглушитель под углом к продольной оси газотурбинного двигателя 0°≤α≤60°. Выхлопная система выполнена с возможностью отвода паров масла из системы суфлирования газотурбинной установки. Достигается упрощение

Description

Заявляемое изобретение относится к области турбомашиностроения и может быть использовано в газовой и нефтяной промышленности для компримирования природного или нефтяного газа на линейных дожимных компрессорных станциях с использованием газотурбинных установок. Заявляемое устройство относится к комбинациям газотурбинных установок с другими устройствами и может использоваться как при реконструкции работающих газоперекачивающих агрегатов компрессорных станций, так и при производстве новых газоперекачивающих агрегатов.
Известны газоперекачивающие агрегаты, в которых газотурбинные приводные двигатели авиационного или судового типа размещены в контейнерах, объединенных в блоки полной заводской готовности. Из таких блоков комплектуют компрессорные станции на газопроводах, состыковывая контейнеры в определенной последовательности.
Например, газоперекачивающие агрегаты ГПА-Ц-6,3В, ГПА-Ц-6,3ВМ, ГПА-Ц-6,3Б, ГПА-Ц-8В, имеющие блочно-контейнерное исполнение, для линейных компрессорных станций магистральных газопроводов с приводом авиационного типа НК-12 СТ или НК-14 СТ, содержащие воздухоочистительное устройство, систему подогрева циклового воздуха, систему вентиляции контейнера газотурбинного двигателя, шумоглушитель, выхлопное устройство, турбоблок, блок маслоохладителей с шумоглушителем на всасывающей магистрали, всасывающий и нагнетательные патрубки (Информация сектора РНТИ ОАО «НПО им. М.В.Фрунзе», РВА «Комп ютернi Системи», 1999, Украина, стр.3) - аналог.
Недостатком известных агрегатов является сложность их обслуживания, невысокая надежность и долговечность работы в условиях низких температур, а именно в условиях крайнего Севера.
Известен газоперекачивающий агрегат ГПУ-16А, представляющий собой блочное устройство, в состав которого входит ряд технологических блоков, а именно блок привода с судовым турбинным двигателем ДГ 90, блок центрального нагнетателя газа, блоки воздухозаборного и газоотводящего устройств, блоки систем обеспечения работы агрегата и укрытия для размещения блоков (Газоперекачивающая установка ГПА-16А. «Машпроект», Зовнiторгвидав Украiни, 1992 г.) - аналог.
Недостатком данного агрегата является то, что эксплуатация известного агрегата возможна только в перечисленном составе блоков при наличии индивидуальных фундаментов под перечисленные блоки, последующий монтаж на эти фундаменты перечисленных блоков, а также демонтаж существующего технологического оборудования компрессорной станции и последующий монтаж нового технологического оборудования при реконструкции газоперекачивающего агрегата, т.е. известное решение исключает возможность использования структуры технологического оборудования реконструируемой компрессорной станции.
Известен газоперекачивающий агрегат, содержащий газотурбинную установку в теплозвукоизолирующем контейнере, в которой расположены газотурбинный двигатель и механизм сжатия газа, включающий ротор, установленный в подшипниках и снабженный уплотнениями, воздухоочистительное устройство, выхлопную систему с выхлопным трактом для удаления продуктов сгорания и шумоглушитель (см. Газоперекачивающий агрегат ГТК-10-4. Описание, ТИ-6017-71, Невский машиностроительный завод, 1972 г.) - прототип.
Недостатком известного решения является невысокий (28%) кпд, низкая надежность и долговечность работы газоперекачивающего агрегата из-за несовершенства конструкции ротора устройства сжатия газа, конструкции и компоновки воздухоочистительного устройства, которое не позволяет достичь требуемой степени очистки воздуха, что в конечном итоге снижает эксплуатационную надежность и ресурс работы как газотурбинной установки, так и всего газоперекачивающего агрегата в целом.
Техническим результатом, на достижение которого направлено заявляемое решение, является упрощение компоновки, повышение кпд газоперекачивающего агрегата, его надежности и ресурса работы, с обеспечением среднего полного ресурса газоперекачивающего агрегата не менее 100000 часов, при обеспечении эффективного коэффициента полезного действия привода не менее 34% как при модернизации уже существующих компрессорных станций, так и при создании новых.
Указанный технический результат достигается тем, что в газоперекачивающем агрегате, содержащем газотурбинный двигатель и механизм сжатия газа, включающий ротор, установленный в подшипниках и снабженный уплотнениями, воздухоочистительное устройство, выхлопную систему с выхлопным трактом для удаления продуктов сгорания и шумоглушитель, механизм сжатия газа представляет собой многоступенчатую компрессорную машину и выполнен с возможностью обеспечения коэффициента сжатия 1,2-1,7, газотурбинный двигатель содержит газогенератор и многоступенчатую осевую турбину, которые вместе с электронной системой управления и диагностики газоперекачивающего агрегата, входным и выходным устройствами и топливными агрегатами расположены на общей подмоторной раме, ротор устройства для сжатия газа выполнен с возможностью передачи крутящего момента на вал ротора многоступенчатой турбины через трансмиссию, газотурбинный двигатель заключен в теплозвукоизолирующий кожух, на стенках которого расположены элементы систем пожаротушения и газоанализа газоперекачивающего агрегата, воздухоочистительное устройство снабжено, размещенными в шахте воздухоочистительного устройства по его высоте, воздушными фильтрами и вместе с шумоглушителем, воздуховодами и камерой всасывания входного устройства образует воздухозаборную систему, причем шумоглушитель воздухоочистительного устройства размещен вне шахты, воздухоочистительное устройство выполнено с возможностью натекания, по меньшей мере, части прошедшего через воздушные фильтры воздуха в шумоглушитель под углом к продольной оси газотурбинного двигателя 0°≤α≤60°, а выхлопная система выполнена с возможностью отвода паров масла из системы суфлирования газотурбинной установки.
Система выхлопа может быть выполнена с возможностью установки утилизационного теплообменника.
Система охлаждения газотурбинной установки может быть выполнена с возможностью принудительной подачи атмосферного воздуха в теплозвукоизолирующий кожух.
В механизме сжатия газа могут быть использованы торцовые газодинамические уплотнения и магнитные подшипники, или торцовые газодинамические уплотнения и подшипники скольжения, или масляные подшипники и торцовые газодинамические уплотнения.
Механизм сжатия газа может быть выполнен в виде трехступенчатой компрессорной машины с вертикальным разъемом.
Заявляемое решение иллюстрируется на фиг.1-7, где
на фиг.1. показан вид сбоку на газоперекачивающий агрегат, на фиг.2 - вид спереди на газоперекачивающий агрегат, на фиг.3 - вид сверху А на газоперекачивающий агрегат, на фиг.4 - схематичное изображение ротора механизма сжатия газа, снабженного торцовыми газодинамическими уплотнениями и магнитными подшипниками, на фиг.5 - схематичное изображение ротора механизма сжатия газа, снабженного торцовыми газодинамическими уплотнениями и подшипниками скольжения, на фиг.6 - фрагмент конструкции и компоновки газотурбинной установки, снабженной масляными подшипниками и торцовыми газодинамическими уплотнениями, на фиг.7 - схематичное изображение воздухозаборного устройства.
Заявляемый газоперекачивающий агрегат подсоединен к газопроводу посредством входного тракта 1 и содержит газотурбинную установку, в укрытии 2 которой расположены газотурбинный двигатель 3 и механизм сжатия газа 4, включающий ротор 5, установленный в подшипниках 6 и снабженный уплотнениями 7. Газотурбинный двигатель 3 вместе с системой управления и диагностики 8, входным устройством 9 (лемнискатой) и выходным устройством 10 (улиткой), топливными агрегатами, электрическими и трубопроводными коммуникациями (не показаны) расположены на единой подмоторной раме 11. Выходное устройство 10 связано с выхлопным трактом газоперекачивающего агрегата и предназначено для отвода в него выхлопных газов. Выхлопной тракт входит в состав выхлопной системы 12, которая снабжена многосекционной трубой 13 с шумоглушителем 14. Газотурбинный двигатель 3 связан с ротором 5 механизма сжатия газа 4 через расположенную в кожухе 15 трансмиссию с торцовыми газодинамическими уплотнениями, причем механизм сжатия газа выполнен в виде компрессорной машины. Газоперекачивающий агрегат снабжен системами охлаждения 16 и маслообеспечения 17 газотурбинного двигателя 3 с аппаратами воздушного охлаждения масла 18, причем газотурбинный двигатель 3 заключен в расположенный внутри укрытия 2 кожух 19, на стенках которого расположены элементы систем пожаротушения 20, газоанализа 21 газоперекачивающего агрегата и средств измерения на агрегате 22.
Воздухоочистительное устройство 23 снабжено расположенными в шахте 26 воздушными фильтрами 24 и расположенным вне шахты 26 шумоглушителем 25 (или блоком модулей, образующим шумоглушитель), и вместе с воздуховодами (не показаны), защитными элементами воздухозаборника, например, выполненными в виде сеток, камерой 27 всасывания входного устройства 9 образует воздухозаборную систему, причем воздухоочистительное устройство 23 (фиг.7) выполнено с возможностью обеспечения при его работе натекания, по меньшей мере, части прошедшего через воздушные фильтры 24 воздуха в шумоглушитель 25 под углом к горизонтали 0°≤α≤60°, а выхлопная система 12 выполнена с возможностью отвода паров масла из системы суфлирования 29 газотурбинной установки.
Газоперекачивающий агрегат снабжен аппаратурой силовой автоматики 32 и системой автоматического управления 33 элементами устройства.
В механизме сжатия газа 4 могут быть использованы торцовые газодинамические уплотнения и магнитные подшипники, или торцовые газодинамические уплотнения и подшипники скольжения, или масляные подшипники и торцовые газодинамические уплотнения, что проиллюстрировано на фиг.4-6.
В случае использования масляных подшипников и торцовых газодинамических уплотнений целесообразно наличие в газоперекачивающем агрегате системы обеспечения торцовых газодинамических уплотнений 30 и системы воздухообеспечения магнитного подвеса 31.
Заявителем при разработке компоновочной схемы заявляемого устройства из-за значительных габаритов основных узлов и систем, входящих в состав газоперекачивающего агрегата, а именно газотурбинной установки с электронной системой управления и диагностики газоперекачивающего агрегата, входного и выходного устройств, топливных агрегатов, было принято решение об их размещении не в отдельных блоках как в известных решениях, а в общем укрытии на общей подмоторной раме, что является оптимальным вариантом, совмещающим минимальную металлоемкость и оптимальную технологичность заявляемого устройства.
Механизм сжатия газа 4 включает ротор 5, установленный в подшипниках 6 и снабженный уплотнениями 7. Для достижения заявляемого технического результата в совокупности с остальными признаками независимого пункта формулы изобретения возможны несколько вариантов выполнения уплотнений и подшипников, а именно
торцовые газодинамические уплотнения и магнитные подшипники, или торцовые газодинамические уплотнения и подшипники скольжения, или масляные подшипники и торцовые газодинамические уплотнения, в частности, из уровня техники известно, что магнитные подшипники, выгодно отличаясь от классических подшипников скольжения, имеют лучшие показатели по демпфированию и жесткости, малые затраты энергии на трение и, кроме того, использование магнитных подшипников в механизмах сжатия газоперекачивающих агрегатов позволяет снизить потребляемую мощность таких механизмов.
Вместе с тем, в последнее время как наиболее перспективные, все более широко стали применять масляные подшипники в сочетании с торцовыми газодинамическими уплотнениями для исключения попадания масла в перекачиваемый технологический газ. Система уплотнений механизма сжатия в данном случае может состоять из собственно уплотнительных узлов и панели контроля и управления в комплекте с трубной обвязкой (фиг.6). Уплотнительные узлы - газодинамические уплотнения типа «тандем». Подобие условий эксплуатации уплотнений стороны всасывания и нагнетания обеспечивается уравнительными трубопроводами, соединяющими задуммисную полость с всасывающей камерой. В качестве уплотнительного газа может применяться очищенный перекачиваемый газ, в качестве барьерного газа на всех режимах работы - азот, подаваемый в проточки лабиринтов между подшипниками и сухими уплотнениями. Подача воздуха обеспечивает защиту газодинамических уплотнений от возможного попадания масла из подшипников.
Выбор пары подшипники - уплотнения происходит для каждого механизма сжатия газа газоперекачивающего агрегата отдельно при условии обеспечения параметров указанных в независимом пункте формулы изобретения, а именно обеспечения степени сжатия от 1,2 до 1,7 (что соответствует значениям абсолютного рабочего давления газа на его выходе в диапазоне 7,5-12,0 МПа). Указанные диапазоны связаны с необходимостью унифицирования механизма сжатия газа для технологических модификаций с применением сменных проточных частей, перекрывающих диапазоны: давления нагнетания 7,5-12,0 МПа и степени сжатия 1,2-1,7.
Заявляемый газоперекачивающий агрегат имеет существенные отличия от известных решений в части, относящейся к конструкции воздухозаборной системы, а именно - шумоглушитель 25 воздухозаборного устройства вынесен за пределы шахты 26, в которой по ее высоте расположены воздушные фильтры 24 и может быть выполнен многоярусным, однако с налагаемыми на его конструкцию ограничениями, в соответствие с которыми должно выполняться условие - воздухоочистительное устройство 23 (фиг.7) должно быть выполнено с возможностью обеспечения при его работе натекания, по меньшей мере, части прошедшего через воздушные фильтры 24 воздуха в шумоглушитель 25 под углом к продольной оси двигателя (к горизонтали) - 0°≤α≤60°. Под шумоглушителем воздухоочистительного устройства понимается либо единичный шумоглушитель, либо блок из шумоглушащих модулей (элементов), установленных относительно друг друга определенным образом.
В данном случае устраняется плохо организованный в известных газоперекачивающих агрегатах поворот потока на 90° из вертикальной шахты воздухоочистительного устройства через камеру всасывания к горизонтальному воздуховоду, т.е. устраняется источник дополнительных гидравлических потерь и увеличенной дополнительно к уже имеющейся за воздухозаборным устройством неравномерности потока на входе в газотурбинный двигатель, что в сочетании с остальными признаками независимого пункта формулы изобретения позволяет обеспечить достижение заявляемого технического результата.
Газоперекачивающий агрегат работает следующим образом.
Перекачиваемый газ по газопроводу 1 через всасывающий патрубок поступает в механизм сжатия газа 4, где происходит его сжатие и подача через нагнетательный патрубок в напорный коллектор компрессорной станции (не показаны). Приводом механизма сжатия газа 4 является газотурбинный двигатель 3, использующий в качестве топлива очищенный и приведенный к рабочему давлению перекачиваемый газ.
Атмосферный воздух, прошедший в воздухоочистительном устройстве 23 очистку, обеспеченную в том числе и воздушными фильтрами 24, поступает на вход газотурбинного двигателя 3, снабженного традиционными техническими средствами подготовки и сжигания топливовоздушной смеси. Продукты сгорания, имеющие высокую температуру и давление и, следовательно, обладающие большой энергией, формируют газовый поток, энергия которого, в конечном итоге, преобразуется в механическую работу, используемую для приведения в действие механизма сжатия газа 4. При движении газа через проточную часть газотурбинного двигателя 3 уменьшается его энергия и происходит снижение температуры и давления газа. Выхлопные газы через выхлопную систему 12 выбрасываются в атмосферу.
Примеры конкретного выполнения приведены в таблице 1.
Таблица 1

п/п
Показатели ГТК-10-4 (прототип) Заявляемое решение
1. Номинальная мощность привода в станционных условиях, МВт 9,5 16,0 12,0 25,0
2. Номинальный кпд механизма сжатия газа 0,83 0,85 0,85 0,87
3. Размещение элементов газотурбинного двигателя на единой подмоторной раме с электронной системой управления и диагностики газоперекачивающего агрегата, входным и выходным устройствами и топливными агрегатами нет да да
4. Ротор свободной турбины выполнен с возможностью передачи крутящего момента на вал ротора устройства для сжатия газа через трансмиссию с торцовыми газодинамическими уплотнениями да да да да
5. Абсолютное рабочее давления газа на выходе механизма сжатия газа, МПа 7,3 9,91 7,5 11,8
6. Системы охлаждения и маслообеспечения газотурбинной установки с аппаратами воздушного охлаждения масла да да да да
7. Средний полный ресурс газоперекачивающего агрегата (тыс.ч) 100 100 Не менее 100 Не менее 100
8. Эффективный кпд привода 28,0 34,0 36,3 38,0
Как следует из примеров конкретного выполнения, заявляемая совокупность признаков изобретения позволяет обеспечить достижение заявляемого технического результата по сравнению с прототипом.

Claims (7)

1. Газоперекачивающий агрегат, содержащий газотурбинный двигатель и механизм сжатия газа, включающий ротор, установленный в подшипниках и снабженный уплотнениями, воздухоочистительное устройство, выхлопную систему с выхлопным трактом для удаления продуктов сгорания и шумоглушители, отличающийся тем, что механизм сжатия газа представляет собой многоступенчатую компрессорную машину и выполнен с возможностью обеспечения степени сжатия 1,2-1,7, газотурбинный двигатель содержит газогенератор и многоступенчатую осевую турбину, которые вместе с электронной системой управления и диагностики газоперекачивающего агрегата, входным и выходным устройствами и топливными агрегатами расположены на общей подмоторной раме, ротор многоступенчатой турбины выполнен с возможностью передачи крутящего момента на вал ротора устройства для сжатия газа через трансмиссию, газотурбинный двигатель заключен в теплозвукоизолирующий кожух, на стенках которого расположены элементы систем пожаротушения и газоанализа газоперекачивающего агрегата, воздухоочистительное устройство снабжено расположенными в шахте воздушными фильтрами и расположенным вне шахты шумоглушителем, воздухоочистительное устройство вместе с воздуховодами и камерой всасывания входного устройства образует воздухозаборную систему, причем воздухоочистительное устройство выполнено с возможностью натекания по меньшей мере части прошедшего через воздушные фильтры воздуха в шумоглушитель под углом к продольной оси газотурбинного двигателя 0°≤α≤60°, а выхлопная система выполнена с возможностью отвода паров масла из системы суфлирования газотурбинной установки.
2. Устройство по п.1, отличающееся тем, что выхлопная система выполнена с возможностью установки утилизационного теплообменника.
3. Устройство по п.1, отличающееся тем, что система охлаждения газотурбинной установки выполнена с возможностью принудительной подачи атмосферного воздуха под теплозвукоизолирующий кожух.
4. Устройство по п.1, отличающееся тем, что в механизме сжатия газа используются торцовые газодинамические уплотнения и магнитные подшипники.
5. Устройство по п.1, отличающееся тем, что в механизме сжатия газа используются торцовые газодинамические уплотнения и подшипники скольжения.
6. Устройство по п.1, отличающееся тем, что в механизме сжатия газа используются масляные подшипники и торцовые газодинамические уплотнения.
7. Устройство по п.1, отличающееся тем, что шумоглушитель воздухоочистительного устройства выполнен в виде модулей.
RU2009116706/06A 2009-05-04 2009-05-04 Газоперекачивающий агрегат RU2403416C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009116706/06A RU2403416C1 (ru) 2009-05-04 2009-05-04 Газоперекачивающий агрегат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009116706/06A RU2403416C1 (ru) 2009-05-04 2009-05-04 Газоперекачивающий агрегат

Publications (1)

Publication Number Publication Date
RU2403416C1 true RU2403416C1 (ru) 2010-11-10

Family

ID=44026072

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009116706/06A RU2403416C1 (ru) 2009-05-04 2009-05-04 Газоперекачивающий агрегат

Country Status (1)

Country Link
RU (1) RU2403416C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485353C1 (ru) * 2012-01-11 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Подводный газоперекачивающий агрегат для многониточного трубопровода
RU2528891C1 (ru) * 2013-08-08 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2528889C1 (ru) * 2013-08-12 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2529294C1 (ru) * 2013-08-07 2014-09-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2675729C1 (ru) * 2018-03-05 2018-12-24 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), способ охлаждения газотурбинного двигателя (ГТД) ГПА и система охлаждения ГТД ГПА, работающая этим способом, направляющий аппарат системы охлаждения ГТД ГПА
RU2678793C1 (ru) * 2018-03-05 2019-02-05 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), газотурбинная установка (ГТУ), входное устройство ГТУ ГПА (варианты), опорный комплекс входного устройства ГТУ ГПА
RU2684294C1 (ru) * 2018-03-05 2019-04-05 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), тракт всасывания воздуха ГПА, воздуховод тракта всасывания ГПА, камера всасывания воздуха ГПА (варианты)
RU204000U1 (ru) * 2021-02-19 2021-05-04 Сергей Владимирович Винокуров Устройство для соединения пластикового блока воздухоподготовки с приемным отверстием в металлическом воздуховоде газоперекачивающего агрегата
RU2801878C1 (ru) * 2022-07-29 2023-08-17 Эдуард Борисович Назаров Система подогрева циклового воздуха в воздухоочистительном устройстве

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485353C1 (ru) * 2012-01-11 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Подводный газоперекачивающий агрегат для многониточного трубопровода
RU2529294C1 (ru) * 2013-08-07 2014-09-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2528891C1 (ru) * 2013-08-08 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2528889C1 (ru) * 2013-08-12 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2675729C1 (ru) * 2018-03-05 2018-12-24 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), способ охлаждения газотурбинного двигателя (ГТД) ГПА и система охлаждения ГТД ГПА, работающая этим способом, направляющий аппарат системы охлаждения ГТД ГПА
RU2678793C1 (ru) * 2018-03-05 2019-02-05 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), газотурбинная установка (ГТУ), входное устройство ГТУ ГПА (варианты), опорный комплекс входного устройства ГТУ ГПА
RU2684294C1 (ru) * 2018-03-05 2019-04-05 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Газоперекачивающий агрегат (ГПА), тракт всасывания воздуха ГПА, воздуховод тракта всасывания ГПА, камера всасывания воздуха ГПА (варианты)
RU204000U1 (ru) * 2021-02-19 2021-05-04 Сергей Владимирович Винокуров Устройство для соединения пластикового блока воздухоподготовки с приемным отверстием в металлическом воздуховоде газоперекачивающего агрегата
RU2801878C1 (ru) * 2022-07-29 2023-08-17 Эдуард Борисович Назаров Система подогрева циклового воздуха в воздухоочистительном устройстве

Similar Documents

Publication Publication Date Title
RU2403416C1 (ru) Газоперекачивающий агрегат
RU115843U1 (ru) Газоперекачивающий агрегат
CA2797209C (en) Cooling system for gas turbine load coupling
US8172512B2 (en) Accessory gearbox system with compressor driven seal air supply
US8313312B2 (en) Screw compressor
RU2015120738A (ru) Система и способ для сжатия окислителя в газотурбинной системе на основе стехиометрической рециркуляции выхлопного газа
KR20110033793A (ko) 가스 터빈의 냉각 시스템 및 대응하는 작동 방법
US8157512B2 (en) Heat pipe intercooler for a turbomachine
KR20110104328A (ko) 터빈 시스템
CN101660451A (zh) 用于燃气涡轮机入口的热管理的系统和方法
CN103133347A (zh) 无油螺杆压缩机
RU134244U1 (ru) Газоперекачивающий агрегат
CN102022180B (zh) 废气涡轮增压器装置、配属驱动系统和驱动系统设计方法
CN105164373B (zh) 旋转机械
RU86678U1 (ru) Газоперекачивающий агрегат
CN112046767A (zh) 飞行器动力装置
CN102900535A (zh) 涡轮增压燃气轮机
RU2554670C1 (ru) Двухвальный газокомпрессорный агрегат для дожимных компрессорных станций
EP3168431A1 (en) Heat exchangers and cooling methods for gas turbines
CN104769227B (zh) 工艺气体压缩机-燃气轮机系统
US9568014B2 (en) Gas system for compressing a process gas
RU82778U1 (ru) Газотурбинный привод с регенерацией тепла выхлопных газов
JP2015232324A (ja) ガスタービンコンパートメントの換気排気を利用するためのシステム及び方法
RU90505U1 (ru) Газодожимная установка газокомпрессорной станции магистрального газопровода
CN110799741B (zh) 两个涡轮轴发动机的布置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140505