RU2402865C1 - Способ оптимального частотного управления асинхронным двигателем - Google Patents

Способ оптимального частотного управления асинхронным двигателем Download PDF

Info

Publication number
RU2402865C1
RU2402865C1 RU2009133126/07A RU2009133126A RU2402865C1 RU 2402865 C1 RU2402865 C1 RU 2402865C1 RU 2009133126/07 A RU2009133126/07 A RU 2009133126/07A RU 2009133126 A RU2009133126 A RU 2009133126A RU 2402865 C1 RU2402865 C1 RU 2402865C1
Authority
RU
Russia
Prior art keywords
value
frequency
electromagnetic moment
power converter
voltage
Prior art date
Application number
RU2009133126/07A
Other languages
English (en)
Inventor
Дмитрий Борисович Изосимов (RU)
Дмитрий Борисович Изосимов
Лев Николаевич Макаров (RU)
Лев Николаевич Макаров
Original Assignee
Общество с ограниченной ответственностью "Русэлпром-Электропривод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Русэлпром-Электропривод" filed Critical Общество с ограниченной ответственностью "Русэлпром-Электропривод"
Priority to RU2009133126/07A priority Critical patent/RU2402865C1/ru
Application granted granted Critical
Publication of RU2402865C1 publication Critical patent/RU2402865C1/ru

Links

Images

Abstract

Изобретение относится к области электротехники и может быть использовано в электроприводе для регулирования асинхронных двигателей, в частности двигателей с короткозамкнутым ротором, в том числе тяговых. Техническим результатом является обеспечение максимального значения КПД двигателя и максимальных электромагнитных моментов в системах частотного управления асинхронными двигателями с учетом ограничения тока и напряжения силового преобразователя, питающего двигатель. В способе оптимального частотного управления асинхронный двигатель с короткозамкнутым ротором питается от источника регулируемого напряжения, например автономного инвертора напряжения, циклоконвертора и т.п. В способе частотного управления асинхронным двигателем с короткозамкнутым ротором, питаемым от силового преобразователя, величина частоты скольжения ωs в каждый момент времени пропорциональна оптимальной частоте скольжения ωs oпт. Оптимальная частота скольжения при этом умножается на некоторый коэффициент пропорциональности k, причем учитывается знак задаваемого электромагнитного момента sign(Mz) (двигательный или генераторный). Таким образом, частота скольжения в каждый момент времени устанавливается равной ωs=sign(Mz)·k·ωs oпт, где Mz - задаваемый электромагнитный момент. 2 ил.

Description

Изобретение относится к регулируемому асинхронному электроприводу и может быть использовано при регулировании асинхронных двигателей, в частности двигателей с короткозамкнутым ротором, в том числе тяговых. Конкретно изобретение относится к системам асинхронного привода, в которых асинхронный двигатель питается от источника регулируемого напряжения, например автономного инвертора напряжения, циклоконвертора и т.п. Такие источники позволяют реализовать любое желаемое напряжение и частоту питания двигателя с точностью, быть может, до высокочастотной модуляционной составляющей, и в пределах известных ограничений выходного тока и напряжения преобразователя, определяемых используемыми силовыми приборами.
Известны способы частотного управления асинхронными двигателями, в которых амплитуда и частота напряжения питания двигателя изменяются согласованно, так, чтобы обеспечить требуемую частоту вращения ротора двигателя. Для повышения КПД двигателя используется формирование оптимального соотношения между изменениями фазы и амплитуды напряжения питания, позволяющего, при данном (текущем) значении развиваемого момента, минимизировать потери энергии в двигателе. Для этого значение частоты скольжения ωs формируется, как известно из теории частотного управления (см., например, Булгаков А.А. Частотное управление асинхронными двигателями. М. Энергоиздат, 1982, 216 с., с.51-78), постоянным по величине и равным оптимальному по потерям в двигателе, ωss oпт. Значение ωs oпт определяется экспериментально или теоретически. В частности, оно может теоретически определяться по формуле ωs oпт=Rr/Lr, где Rr и Lr - активное сопротивление и индуктивность обмотки ротора соответственно. Частота скольжения может быть пропорциональна электромагнитному моменту, ωs=Mz1H2H)/МН, где MH - номинальный электромагнитный момент асинхронного двигателя, Нм; ω1H - номинальная синхронная частота вращения асинхронного двигателя, рад/с; ω2H - номинальная частота вращения асинхронного двигателя, рад/с.
Наиболее близким к изобретению среди систем частотного управления является способ управления асинхронным двигателем, заключающийся в том, что измеряют частоту вращения ротора асинхронного двигателя f, вводят в регулятор напряжения разность между заданной и текущей частотами вращения ротора асинхронного двигателя, определяют частоту напряжения суммированием частоты вращения ротора асинхронного двигателя и оптимальной частотой скольжения; оптимальное скольжение определяют по формуле
Figure 00000001
, величину напряжения асинхронного двигателя - по формуле
Figure 00000002
, изменяют частоту и величину напряжения на асинхронном двигателе в соответствии с требуемыми значениями, где Mz - требуемый момент асинхронного двигателя; MN - номинальный момент двигателя; f1N - номинальная синхронная частота вращения двигателя; f2N - номинальная частота вращения двигателя (описание к патенту Российской Федерации на изобретение №2294050 C2, опубл. 20.02.2007). Использование известных способов позволяет регулировать скорость вращения ротора двигателя в широком диапазоне с коэффициентом мощности и перегрузочной способностью, близкими к номинальным значениям.
Недостатками известных способов является то, что вследствие изменения частоты скольжения потери в двигателе увеличиваются по сравнению с потерями при оптимальной постоянной частоте скольжения; кроме того, увеличение электромагнитного момента и увеличение частоты вращения неизбежно приводят к ограничению как тока, так и напряжения силового преобразователя, питающего асинхронный двигатель, что не позволяет реализовать максимальный электромагнитный момент двигателя. Повышение КПД и реализация максимального момента, с учетом ограничений тока и напряжения, особенно важны в тяговых приводах вследствие ограниченных ресурсов мощности и необходимости повышения эффективности тяговых приводов, в которых КПД и полное использование ресурсов силового преобразователя являются основными критериями качества работы привода.
Техническим результатом, который обеспечивается изобретением, является обеспечение максимального значения КПД двигателя, если такой режим реализуем, и обеспечение реализации максимальных электромагнитных моментов в системах частотного управления асинхронными двигателями с учетом ограничения тока и напряжения силового преобразователя, питающего двигатель.
При ограничениях выходного напряжения U0 и тока I0 силового преобразователя, питающего двигатель, что характерно для регулируемых приводов, особенно тяговых:
- обеспечиваются минимальные потери в двигателе, если при текущем значении частоты вращения ротора и заданном электромагнитном моменте Mz ограничения предельно допустимых значений амплитуды напряжения и тока на выходе силового преобразователя не достигаются;
- обеспечивается условный минимум потерь в двигателе при данных уровнях ограничения напряжения и тока на выходе силового преобразователя, если заданный момент Mz не реализуем при оптимальном значении скольжения, но реализуем при больших значениях скольжения без превышения уровней ограничения напряжения и тока;
- обеспечивается максимально реализуемый электромагнитный момент при данных уровнях ограничения напряжения и тока на выходе силового преобразователя, если заданный момент Mz не реализуем.
Указанный технический результат обеспечивается тем, что в способе частотного управления асинхронным двигателем с короткозамкнутым ротором, питаемым от силового преобразователя, задают максимально допустимое значения тока I0 на выходе силового преобразователя, в каждый момент времени задают требуемое значение электромагнитного момента Mz, измеряют круговую частоту вращения ротора асинхронного двигателя ω и напряжение Ud звена постоянного тока силового преобразователя, питающего двигатель, определяют значения круговой частоты оптимального скольжения ωопт, круговой частоты критического скольжения из выражения
Figure 00000003
максимально допустимого напряжения на выходе силового преобразователя из выражения
Figure 00000004
и максимального электромагнитного момента Mzmax, развиваемого асинхронным двигателем, из выражения
Figure 00000005
задают значение реализуемого электромагнитного момента Mzp либо равным значению электромагнитного момента Mz, либо, если требуемое значение электромагнитного момента Mz превышает Mzmax, равным Mzmax, причем знаки Mz и Mzp совпадают, далее, если измеренная частота вращения ротора ω меньше
Figure 00000006
, а также в случае, если измеренная частота вращения ротора ω не меньше
Figure 00000007
, но величина реализуемого электромагнитного момента Mzp меньше значения электромагнитного момента, рассчитанного по формуле
Figure 00000008
при условии ωss oпт, требуемые значения амплитуды A напряжения питания обмоток статора определяют из выражения
Figure 00000009
при значении частоты скольжения ωss oпт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, а значение частоты напряжения питания обмоток статора ω0 определяют как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs oпт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz; если измеренная частота вращения ротора ω не
Figure 00000010
, а величина реализуемого электромагнитного момента Mzp не меньше значения электромагнитного момента, рассчитанного по формуле
Figure 00000011
при условии ωss oпт, но не больше значения электромагнитного момента, рассчитанного по той же формуле при условии ωss крит, требуемое значение амплитуды A напряжения питания обмоток статора определяют как равное максимально допустимому значению напряжения U0 силового преобразователя, а значение его частоты ω0 - как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs oпт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, и умноженной на коэффициент пропорциональности, равный
Figure 00000012
; если измеренная частота вращения ротора ω не меньше
Figure 00000013
, а величина реализуемого электромагнитного момента Mzp больше значения электромагнитного момента, рассчитанного по формуле
Figure 00000014
при условии ωss oпт, и больше значения электромагнитного момента, рассчитанного по той же формуле при условии ωss крит, требуемое значение амплитуды A напряжения питания обмоток статора определяют как равное максимально допустимому значению напряжения U0 силового преобразователя, а значение его частоты ω0 - как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs oпт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, и умноженной на коэффициент пропорциональности, равный
Figure 00000015
, формируют с помощью силового преобразователя напряжение питания обмоток статора асинхронного двигателя с определенной выше амплитудой и частотой, где Ls, Lr и Lh - индуктивности обмоток статора, ротора и их взаимоиндуктивность, Rs и Rr - активные сопротивления статора и ротора, соответственно.
Отличием предлагаемого способа от существующих является то, что частота скольжения при частотном управлении не является постоянной или изменяющейся пропорционально электромагнитному моменту, а изменяется таким образом, чтобы обеспечить минимальные потери в двигателе, или условный минимум потерь при данных уровнях ограничения напряжения и тока, или максимально реализуемый электромагнитный момент, если заданный момент не реализуем при данных уровнях ограничения напряжения и тока.
В частности, величина частоты скольжения ωs в каждый момент времени пропорциональна оптимальной частоте скольжения ωs oпт. Оптимальная частота скольжения при этом умножается на некоторый коэффициент пропорциональности k, причем учитывается знак задаваемого электромагнитного момента sign(Mz) (двигательный или генераторный). Таким образом, частота скольжения в каждый момент времени устанавливается равной
Figure 00000016
Способ оптимального частотного управления асинхронным двигателем поясняется фиг.1, где приведен пример устройства, реализующего способ. В данном случае приводится пример транспортного средства (автомобиля, трактора и т.п.) с электрической трансмиссией переменно-переменного тока.
Блок-схема алгоритма вычисления требуемых параметров работы устройства представлена на фиг.2.
Двигатель внутреннего сгорания 1 приводит во вращение генератор переменного тока 2, который выдает переменное трехфазное напряжение на вход выпрямителя 3 силового преобразователя.
Выход выпрямителя 3 и вход инвертора 5 силового преобразователя образуют звено постоянного тока силового преобразователя, на котором установлен датчик напряжения 4, осуществляющий измерение мгновенного значения напряжения звена постоянного тока (Ud). В соответствии с Ud по известным соотношениям задается величина максимально допустимого значения выходного напряжения инвертора U0. Так, при широтно-импульсной модуляции выходного напряжения силового преобразователя, допустимая амплитуда синусоидального линейного напряжения U0 не может превышать
Figure 00000017
(см. Розанов Ю.К., Рябчицкий М.В., Кваснюк А.А. Силовая электроника. Учебник. - М.: Издательский дом МЭИ, 2007, 632 с., с.409).
К выходу инвертора 5 подключен тяговый асинхронный двигатель 6, на одном валу с которым установлен датчик скорости вращения 7, сигнал которого, пропорциональный скорости вращения ротора двигателя n [об/мин], усиливается усилителем 8, преобразуется аналого-цифровым преобразователем 9 и умножается на коэффициент
Figure 00000018
в блоке коэффициента 10, где p - число пар полюсов статора асинхронного двигателя. В результате на выходе блока 10 получается значение мгновенной круговой частоты ω [с-1] вращения ротора асинхронного двигателя 6.
Требуемый электромагнитный момент Mz тягового асинхронного двигателя 6 задается педалью «газ» 11, установленной в кабине водителя транспортного средства, и передается через усилитель 12 и аналого-цифровой преобразователь 13.
Максимально допустимое значение выходного тока I0 инвертора 5, а также параметры схемы замещения тягового асинхронного двигателя Rr, Rs, Lr, Ls, Lh вводятся посредством ПЭВМ 14 в контроллер 15. Значения параметров Ls, Lr, Lh, Rs, Rr берутся по данным схемы замещения фазы асинхронного двигателя (см., например, Булгаков А.А. Частотное управление асинхронными двигателями. М.: Энергоиздат, 1982, 216 с., с.51-78) или могут быть получены экспериментально (см., например, Виноградов А.Б. Векторное управление электроприводами переменного тока. Учебное пособие. - Иваново: ГОУВПО «Ивановский государственный энергетический университет им. В.И.Ленина», 2008, 298 с., с.220-230).
В контроллер 15 также поступают задание требуемого момента Mz тягового двигателя 6 и измеренные мгновенные значения напряжения Ud и частоты ω. В контроллере 15 реализован алгоритм формирования амплитуды A и частоты ω0 напряжения питания обмоток статора асинхронного двигателя 6, представленный на фиг.2.
В контроллере 15 определяется частота оптимального и критического скольжения. Значение оптимального скольжения ωs oпт может определяться по значениям сопротивлений и индуктивностей, например, по формуле
Figure 00000019
где указано значение абсолютного скольжения, оптимального по потреблению тока статора. Формула (2) определяет значение скольжения, совпадающее с законом регулирования М.П.Костенко (см., например, Л.М.Пиотровский. Электрические машины. - М.-Л.: Госэнергоиздат, 1949, 528 с., с.408). Возможно также задание величины оптимального скольжения по результатам экспериментальных исследований, в функции электромагнитного момента, скорости и т.д. (см., например, Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000, 654 с., с.544-547).
Значение критического скольжения определяется по формуле:
Figure 00000020
Определяют максимально допустимое выходное напряжение силового преобразователя, питающего двигатель. Например, если необходимо обеспечить синусоидальность выходного напряжения питания силового преобразователя с широтно-импульсной модуляцией, максимально допустимое выходное линейное напряжение определяют по формуле (4)
Figure 00000021
По формуле (5) определяют величину максимального электромагнитного момента Mzmax, которой ограничивают возможное задание реализуемого электромагнитного момента Mzp по заданному значению максимального тока I0. Таким образом, если задание электромагнитного момента превышает полученное значение, то Mzp принимают равным Mzmax. Знаки Мz и Mzp совпадают.
Figure 00000022
В случае, если выполняется условие
Figure 00000023
ресурсов силового преобразователя достаточно, чтобы реализовать режим работы двигателя с минимальными потерями и при этом достичь реализуемого значения электромагнитного момента Mzp, причем ограничения по напряжению и току на выходе силового преобразователя, с учетом (5), не достигаются. Поскольку минимальные потери в асинхронном двигателе имеют место при оптимальном скольжении, то, исходя из (1), принимают k=1. Тогда ωs=sign(Mz)·ωs oпт, а величина напряжения питания двигателя определяется исходя из реализуемого электромагнитного момента Mzp по формуле:
Figure 00000024
где:
A - амплитуда напряжения, В;
ω - измеренная частота вращения, рад/с;
ωs - частота скольжения, рад/с.
В случае, если условие (6) не выполняется, для расчета электромагнитного момента используется соотношение:
Figure 00000025
При этом возможны следующие три случая.
Случай 1. Величина момента М, вычисляемого по соотношению (8) при условии, что ωss oпт, больше, чем величина требуемого момента Mzp.
Figure 00000026
В этом случае инвертор 5 может обеспечить работу асинхронного двигателя 6 с реализуемым моментом Mzp при минимальных потерях (с оптимальным скольжением), но при ограничении выходного тока силового преобразователя на уровне не более I0. Принимается k=1, что соответствует ωs=sign(Mz)·ωs oпт, и для расчета требуемой амплитуды напряжения используется соотношение (7). Очевидно, что амплитуда напряжения на выходе силового преобразователя будет меньше максимальной U0. Реализуется режим работы асинхронного двигателя с минимальными потерями (оптимальным скольжением) при электромагнитном моменте M=Mzp.
Случай 2. Величина момента М, вычисляемого по соотношению (8) при ωss крит, меньше, чем величина реализуемого момента Mzp.
Figure 00000027
Выполнение условия (10) означает, что при заданных ограничениях тока и напряжения силового преобразователя невозможно получить реализуемый электромагнитный момент Mzp даже при критическом скольжении. Следовательно, задается момент, максимально достижимый при имеющихся ограничениях напряжения и тока на выходе силового преобразователя U0 и I0. Тогда принимается
Figure 00000028
а частота скольжения принимает значение
Figure 00000029
Амплитуда напряжения на выходе силового преобразователя принимается максимальной и равной U0, достигаемый момент определяется в соответствии с (8).
Случай 3. В противном случае (т.е. если ни (9), ни (10) не выполнены) реализуемый момент невозможно обеспечить в режиме минимальных потерь (при оптимальном скольжении), но этот момент можно получить несколько увеличив скольжение (не более критического). В этом случае амплитуда напряжения задается максимальной и равной U0, а соотношение (8) используется для расчета требуемой величины коэффициента k при M=Mzp.
Для упрощения решения (8) относительно ωs используется предположение, что при больших частотах вращения, характерных для тягового привода при регулировании во второй зоне при ограниченном напряжении питания двигателя, частота скольжения и зависимые от нее слагаемые в знаменателе (8) пренебрежимо малы: ω>>ωss→0); также пренебрежимо мало сопротивление статора и зависимые от него слагаемые в знаменателе (8): Rs→0. Тогда, с учетом (2), коэффициент k равен:
Figure 00000030
В случае, если ωs oпт задается не по (2), а иначе, решение (8) относительно k находится аналогично. Частота скольжения определяется по (1) с учетом (13).
Задание частоты напряжения ω0 силового преобразователя определяется как сумма измеренной частоты вращения ротора и частоты скольжения по следующей формуле:
Figure 00000031
Сигналы, пропорциональные определенным в контроллере 15 мгновенным значением A и ω0, подаются на вход контроллера 16 инвертора, который формирует на выходе задающие сигналы мгновенных выходных напряжений uА, uB, uC, поступающие на вход драйвера 17 силовых ключей инвертора. Драйвер управляет силовыми ключами инвертора, коммутируя их таким образом, что на выходе инвертора (на обмотках статора асинхронного двигателя) формируется трехфазное напряжение заданной амплитуды А и частоты ω0.
Предлагаемый способ позволяет реализовать большой диапазон изменения величины магнитного поля и обеспечить малый уровень потерь в асинхронном двигателе в широком диапазоне частот вращения и моментов.

Claims (1)

  1. Способ управления асинхронным двигателем с короткозамкнутым ротором, питаемым от силового преобразователя, заключающийся в том, что задают максимально допустимое значения тока I0 на выходе силового преобразователя, в каждый момент времени задают требуемое значение электромагнитного момента Mz, измеряют круговую частоту вращения ротора асинхронного двигателя ω и напряжение Ud звена постоянного тока силового преобразователя, питающего двигатель, определяют значения круговой частоты оптимального скольжения ωonm, круговой частоты критического скольжения из
    Figure 00000032
    максимально допустимого напряжения на выходе силового преобразователя из выражения
    Figure 00000033
    и максимального электромагнитного момента Mzmax, развиваемого асинхронным двигателем, из выражения
    Figure 00000034
    задают значение реализуемого электромагнитного момента Mzp, либо равным значению электромагнитного момента Mz, либо, если требуемое значение электромагнитного момента Mz превышает Mzmax, равным Mzmax, причем знаки Mz и Mzp совпадают, далее, если измеренная частота вращения ротора ω меньше
    Figure 00000035
    а также в случае, если измеренная частота вращения ротора ω не меньше
    Figure 00000036
    но величина реализуемого электромагнитного момента Mzp меньше значения электромагнитного момента, рассчитанного по формуле
    Figure 00000037

    при условии ωssonm, требуемые значение амплитуды А напряжения питания обмоток статора определяют из выражения
    Figure 00000038

    при значении частоты скольжения ωss опт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, а значение частоты напряжения питания обмоток статора ω0 определяют, как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs опт взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz; если измеренная частота вращения ротора ω не меньше
    Figure 00000039
    а величина реализуемого электромагнитного момента Mzp не меньше значения электромагнитного момента, рассчитанного по формуле
    Figure 00000040

    при условии ωss опт, но не больше значения электромагнитного момента, рассчитанного по той же формуле при условии ωss крит, требуемое значение амплитуды А напряжения питания обмоток статора определяют, как равное максимально допустимому значения напряжения U0 силового преобразователя, а значение его частоты ω0 - как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs опт взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, и умноженной на коэффициент пропорциональности, равный
    Figure 00000041
    если измеренная частота вращения ротора ω не меньше
    Figure 00000042
    а величина реализуемого электромагнитного момента Mzp больше значения электромагнитного момента, рассчитанного по формуле
    Figure 00000043

    при условии ωss опт, и больше значения электромагнитного момента, рассчитанного по той же формуле при условии ωss крит, требуемые значение амплитуды А напряжения питания обмоток статора определяют, как равное максимально допустимому значению напряжения U0 силового преобразователя, а значение его частоты ω0 - как сумму величины измеренной частоты вращения ротора ω и определенной величины частоты оптимального скольжения ωs опт, взятой со знаком, соответствующим знаку заданного электромагнитного момента Mz, и умноженной на коэффициент пропорциональности, равный
    Figure 00000044
    формируют с помощью силового преобразователя напряжение питания обмоток статора асинхронного двигателя с определенной выше амплитудой и частотой, где Ls, Lr и Lh - индуктивности обмоток статора, ротора и их взаимоиндуктивность, Rs и Rr - активные сопротивления статора и ротора соответственно.
RU2009133126/07A 2009-09-04 2009-09-04 Способ оптимального частотного управления асинхронным двигателем RU2402865C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009133126/07A RU2402865C1 (ru) 2009-09-04 2009-09-04 Способ оптимального частотного управления асинхронным двигателем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009133126/07A RU2402865C1 (ru) 2009-09-04 2009-09-04 Способ оптимального частотного управления асинхронным двигателем

Publications (1)

Publication Number Publication Date
RU2402865C1 true RU2402865C1 (ru) 2010-10-27

Family

ID=44042391

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009133126/07A RU2402865C1 (ru) 2009-09-04 2009-09-04 Способ оптимального частотного управления асинхронным двигателем

Country Status (1)

Country Link
RU (1) RU2402865C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476982C1 (ru) * 2011-08-01 2013-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ управления электромагнитным моментом асинхронного электродвигателя с короткозамкнутым ротором
RU2547123C1 (ru) * 2013-11-05 2015-04-10 Михаил Юрьевич Кузнецов Способ оптимального регулирования тягового электропривода автономного транспортного средства с асинхронными тяговыми электродвигателями
RU2626325C1 (ru) * 2016-10-10 2017-07-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ частотного управления асинхронным электроприводом
RU2779636C1 (ru) * 2022-02-03 2022-09-12 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И.Ульянова (Ленина)" Регулятор частоты вращения асинхронного двигателя

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2294050 С2, 20.02.2007. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476982C1 (ru) * 2011-08-01 2013-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ управления электромагнитным моментом асинхронного электродвигателя с короткозамкнутым ротором
RU2547123C1 (ru) * 2013-11-05 2015-04-10 Михаил Юрьевич Кузнецов Способ оптимального регулирования тягового электропривода автономного транспортного средства с асинхронными тяговыми электродвигателями
RU2626325C1 (ru) * 2016-10-10 2017-07-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ частотного управления асинхронным электроприводом
RU2779636C1 (ru) * 2022-02-03 2022-09-12 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И.Ульянова (Ленина)" Регулятор частоты вращения асинхронного двигателя

Similar Documents

Publication Publication Date Title
US9762160B2 (en) Method of controlling multiple parallel-connected generators
KR980012833A (ko) 열기관 발전 시스템
EP2266201B1 (en) Varying flux versus torque for maximum efficiency
JP5117510B2 (ja) 発電機アセンブリ
RU2402865C1 (ru) Способ оптимального частотного управления асинхронным двигателем
RU2402147C1 (ru) Способ оптимального векторного управления асинхронным двигателем
RU2597248C1 (ru) Дизель-генераторная установка
RU2297090C1 (ru) Электрическая передача мощности тягового транспортного средства
RU2396696C2 (ru) Электропривод переменного тока
RU2641723C2 (ru) Система управления электромагнитным моментом электрической машины, в частности, для автотранспортного средства
RU2313895C1 (ru) Электропривод переменного тока
CN201181925Y (zh) 自动变速恒频恒压柴油发电机组
RU2447573C1 (ru) Электропривод переменного тока
RU2451389C1 (ru) Способ управления асинхронным тяговым двигателем
RU172810U1 (ru) Автономная генераторная установка
RU2436691C1 (ru) Система электродвижения автономного объекта
JP5851867B2 (ja) 誘導電動機の駆動装置
RU2528612C2 (ru) Электропривод переменного тока
RU2254666C1 (ru) Электропривод переменного тока
CN113472246B (zh) 一种行车自发电控制方法、控制装置及系统
RU2773744C1 (ru) Автономная электростанция переменного тока
Wang et al. Control of a cascaded permanent magnet switched reluctance generator for automobile generation application
RU2268392C2 (ru) Способ управления стартер-генератором и блок формирования заданных значений составляющих вектора тока статора
RU2404503C1 (ru) Мехатронная система
RU2746795C1 (ru) Способ частотного управления электроприводом с синхронным двигателем без датчика положения ротора

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110905

NF4A Reinstatement of patent

Effective date: 20120610

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160905